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For My Grandson Nicky

without young people to continue 

to wonder and care and study and learn, 

it's all over. 

With all humility, I think "Whatsoever thy hand findeth to do, do it with thy might" infi
nitely more important than the vain attempt to love one's neighbor as oneself. If you want 
to hit a bird on the wing, you must have all your will in a focus; you must not be think
ing about yourself, and, equally, you must not be thinking about your neighbor; you must 
be living in your eye on that bird. Every achievement is a bird on the wing. 

Oliver Wendell Holmes 

If you bring forth what is within you, what you bring forth will save you. If you do not 
bring forth what is within you, what you do not bring forth will destroy you. 

Jesus. The Gospel of Thomas 
in the Nag Hammadi manuscripts 

The more I work and practice, the luckier I seem to get. 

Gary Player 
( professional golfer) 

A witty chess master once said that the difference between a master and a beginning chess 
player is that the beginner has everything clearly fixed in mind, while to the master every
thing is a mystery. 

N. la. Vilenkin 

Marshall's Generalized Iceberg Theorem: Seven-eighths of everything can't be seen. 

Everything should be made as simple as possible, but not simpler. 

Albert Einstein 
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PREFACE TO 
THE INSTRUCTOR 

It is a curious fact that people who write thousand-page textbooks still seem to 
find it necessary to write prefaces to explain their purposes. Enough is enough, 
one would think. However, every textbook - and this one is no exception- is 
both an expression of dissatisfaction with existing books and a statement by the 
author of what he thinks such a book ought to contain, and a preface offers one 
last chance to be heard and understood. Furthermore, anyone who adds to the 
glut of introductory calculus books should be called upon to justify his action (or 
perhaps apologize for it) to his colleagues in the mathematics community. 

I borrow this phrase from my old friend Paul Halmos as a handy label for the 
noise and confusion that have agitated the calculus community for the past dozen 
years or so. Regardless of one's  attitude toward these debates and manifestoes, 
it seems reasonably clear that two opinions lie at the center of it all: first, too 
many students fail calculus; and second, our calculus textbooks are so bad that 
it's natural for these students to fail. 

About the books, I completely-or almost completely - disagree. By  and 
large, our calculus textbooks are written by excellent teachers who love their sub
ject and write clear expository English. Naturally, each author has a personal 
agenda, and this is what separates their books from one another and provides di
versity and choice for a healthy marketplace. Some writers prefer to emphasize 
the theoretical parts of calculus. Others are technology buffs. Yet others (like my
self ) want a modest amount of biography and history, and believe that interest
ing and substantial applications from other parts of mathematics and other sci
ences are highly desirable. 

But let there be no misunderstanding: textbooks are servants of teachers, and 
not their masters. Any group of ten calculus teachers gathered together in a room 
will have ten very different views of what should be in their courses and how it 
should be taught. They will differ on the proper amount of theory; on how much 
numerical calculation is desirable; on whether or not to make regular use of graph
ing calculators or computer software; on whether some of the more elaborate ap
plications to science are too difficult; on whether biography and history are in
teresting or boring for their students; and so on. But the bottom line is that only 
the teachers themselves are in a position to decide what goes on in their own 
classrooms-and certainly not textbook writers who are completely ignorant of 
local conditions. 

xiii 

THE CALCULUS 
TURMOIL 



XIV PREFACE TO THE INSTRUCTOR 

Those of us who write these books try to provide everything we can think of 
that a teacher might want or need, in full awareness that some parts of what we 
offer have no place in the course plans of many teachers. Every teacher omits 
some sections (and even some chapters) and amplifies others, in accordance with 
individual judgment and personal taste. It is my hope that this book will be use
ful and agreeable for many diverse tastes and interests. I want it to be a conve
nient tool for teachers that offers help when help is wanted, and gets out of the 
way when it is not wanted. 

As for the fact that too many of our students fai l-if indeed it i s  a fact-what 
are the reasons for this? To understand these reasons, let us consider for a mo
ment what is needed for success in calculus. There are clearly three main re
quirements: a decent background in high school algebra and geometry, some of 
which is remembered and understood; the ability to read closely and carefully; 
and tenacity of purpose. 

In the matter of preparation in algebra and geometry, our students are in deep 
trouble. This is suggested by the fact that a few years ago the United States ranked 
last among the thirteen industrialized nations for the mathematics achievement 
of its high school graduates. As for reading skills and tenacity of purpose, some 
of our young people have these qualities, but the great majority do not. Unfor
tunately, tenacity of purpose is especially important for genuine success in cal
culus, because this is a subject in which almost every stage depends on having 
a reasonable com mand of all that went before, and which therefore requires steady 
application day after day, week after week, for many months. 

We know from our own experience as teachers that calculus is very difficult 
for most students, and we fully understand the reasons why this is so. But im
proving our high school mathematics education, and arresting the decline of se
rious reading and instilling tenacity of purpose among the majority of our young 
people, are only remote possibilities. Obviously help from outside is not com
ing, so we must look within ourselves for better ways of doing our jobs. 

Most of these ways are familiar to us. Regular class meetings over periods of 
many months, with frequent quizzes, are intended to encourage steady applica
tion to the task of learning. We praise (whenever possible), plead, cajole, and 
warn. We constantly review the elementary mathematics our students either never 
learned or have forgotten. We do today's homework problems for them in class, 
continually thinking out loud and welcoming questions, in the hope that some of 
the useful ways of thought will rub off to smooth the path for their efforts on to
morrow's homework. However, there is one big thing we can do but rarely do. 

Most calculus courses concentrate on the technical details, on developing in 
students the ability to differentiate and integrate lots of functions. We tum out 
many students who can perform these somewhat routine tasks. However, if we 
regularly pause to ask these successful differentiators and integrators just what 
derivatives and integrals actually are, and what they are for, we rarely get a sat
isfactory answer-by which I mean an answer that reveals genuine understand
ing on the part of the student. Many can give the standard limit definitions, but 
we should expect more than parroted formal definitions. I believe we ought to 
do a better j ob of conveying a solid sense of what calculus is really about, what 
its purpose is ,  why we need the elaborate machinery of methods for computing 
derivatives and integrals, and why the Fundamental Theorem of Calculus is  truly 
"fundamental." In a word, we need to communicate what calculus is for. More 
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generally, we ought to do more toward encouraging students to learn why things 
are true, rather than merely memorizing ways of solving a few problems to pass 
examinations. It is clear to us, but not to them, that the only way to learn calcu
lus is to understand it-it is much too massive and complex for mere memoriz
ing to be more than a temporary stopgap-and we have an obligation to help 
students get this message. 

If we can give more attention to these matters, we have a good chance of mak
ing calculus less frightening and more relevant for many more students than we have 
in the past. One of the main purposes of this book is to help us move our teach
ing in this direction, to convey more light to our students-and less mystery. 

1 .  Early Trig. In the First Edition, I thought it preferable to place trigonometry 
just before methods of integration. I still agree with myself, but most users think 
otherwise. I have therefore inserted an account of sines and cosines in Chapter 1 ,  
with the calculus of these functions at appropriate places in the following chap
ters. Since a solid command of trigonometry is so essential for methods of inte
gration, a full review is still given just before the chapter on these methods (Chap
ter 10). 

2 . Homework Problems. I have added many new problems, mostly of the 
routine drill type, raising the total to well over 7,000. This is an increase of more 
than 1 5  percent and provides about four times as many as most instructors will 
want to use for their class assignments. 

3. Chapter Summaries. It seems to help students in their efforts to review 
and pull things together if they have the ideas and methods of each chapter boiled 
down to a few pregnant phrases. I have tried to provide this assistance in the sum
maries at the ends of the chapters. 

4. Appendices. The first edition had several massive appendices totaling hun
dreds of pages and containing enrichment material that I thought was so inter
esting that others would be interested, too. Many were, but I failed to realize that 
students barely keeping their heads above water in the regular work of the course 
would take a dim view of any unnecessary burdens. The frrst two of these long 
appendices were a collection of material that I thought of as "miscellaneous fun 
stuff," and a biographical history of calculus. These have been removed, aug
mented, and published separately in a little paperback book called Calculus Gems: 
Brief Lives and Memorable Mathematics (McGraw-Hill, 1 992). However, I have 
retained some of this material in greatly abbreviated form and placed it in un
obtrusive locations throughout the present book. 

5 .  Theory. The third of the long appendices in the first edition was on the the
ory of calculus. I have retained this appendix with a few additions because many 
colleges and universities offer honors sections that use this material to provide 
greater theoretical depth than is appropriate for regular sections. M ost instruc
tors seem to agree with me in my desire to avoid cluttering our regular courses 
with any more theory than is absolutely necessary. This approach says: Do not 
try to prove what no one doubts. However, a number of people have asked me 
to expand my very condensed discussion of limits and continuous functions and 
also to give an informal descriptive treatment of the Mean Value Theorem, point
ing out its practical uses as they arise. This new material can be found at the end 
of Chapter 2. 

CHANGES FROM THE 
FIRST EDITION 

xv 
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6. Infinite Series. My idea for handling this subject in the first edition was 
not a good one. Most students moving from the first chapter of informal overview 
into the second of detailed systematic treatment were impatient because they 
thought they were wasting their time by studying the same concepts all over 
again .  I have therefore completely reorganized these two chapters into a tradi
tional treatment, with series of constants developed first, and then power series. 

7. Vector Analysis. In the first edition I closed my discussion of vector analy
sis with Green's Theorem. However, there seems to be general agreement these 
days that multivariable calculus should go a bit further, and include Gauss's The
orem (the divergence theorem) and Stokes' Theorem. I have rewritten Chapter 
21 accordingly. 

8. The Workman Logo. I thought it would be useful for students if there were 
some way to signal passages in the text that always cause trouble, because most 
students are not accustomed to the very slow and careful reading these passages 
require. The logo I chose for this purpose is copied from a European road sign: 

It suggests that hard work is necessary to get through the adjoining passage. I 
have tried to use it sparingly. 

9. Simplify, Simplify! When writing this book the first time, I thought I was 
aiming at the middle of my target, but many users thought I aimed too high. Dur
ing the preparation of this revision, I kept a poster with these words on it directly 
in my line of sight as I sat at my work, and of course I looked at this message 
thousands of times. I hope it worked. 

These marvelous tools are great fun to use and can make many contributions to 
the teaching and learning of calculus. But like all tools they should be used wisely, 
and this means very different things to different people. A scythe can harvest 
grain or cut off a foot, depending on the skill and judgment of the user. 

Some of those in the calculus reform movement believe that the role of num
bers and numerical computations should be greatly increased to reach a parity 
with symbolic (algebraic)  and geometric ways of thinking. But I believe we should 
stop far short of this. In my opinion, there are five subject areas of calculus in 
which calculators are clearly of great value: 

graphing; 

calculation of limits; 

Newton's method; 

numerical integration ; 

computations using Taylor's formula. 

In the last four of these areas, our calculators do heavy computational labor for 
us, and we are all grateful. B ut there are dangers, and one of these is an increasing 
tendency to replace mathematical thinking and learning by button-pushing. 
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The most surprising examples of this that I 've seen involve teachers whose stu
dents use graphing calculators- instead of factoring or the quadratic formula
to solve quadratic equations as  simple as  x2 - 2x - 3 = 0. The procedure i s  to 
"plot" the function y = x2 - 2x - 3 on the calculator by pushing suitable buttons 
and then look at the graph the calculator produces to see where it crosses the 
x-axis. These students are enthusiastic about their calculators and enjoy experi
menting with them, and I applaud the teachers who take advantage of this natural 
interest. But unfortunately, in many cases these students do not know how to sketch 
simple graphs, or how to factor or use the quadratic formula, and are not learning 
these basic methods of elementary algebra. More generally, sketching the graphs 
of functions by thinking is a fundamental part of learning mathematics. Let us use 
calculators in our classes to supplement this thinking-but not to replace it. Let 
us remember that the action that matters takes place in the mind of the student. 

These wonderful graphing calculators are superb instruments when used in the 
right way. It is sobering to reflect that Leibniz himself would perhaps have given 
a year of his life to possess one-Leibniz who not only (along with Newton) 
created calculus, but also invented the first calculating machine that could mul
tiply and divide as well as add and subtract. 

The many problems in this book that require the use of a calculator are sig
naled by the standard symbol rrrrn. 

This book is intended to be a mainstream calculus text that is suitable for every 
kind of course at every level. It is designed particularly for the standard course 
of three semesters for students of science, engineering, or mathematics. Students 
are expected to have a background of high school algebra and geometry, and 
hopefully, some trigonometry as well. 

The text itself-that is, the 2 1  chapters without considering Appendix A-is 
traditional in subject matter and organization. I have placed great emphasis on 
motivation and intuitive understanding, and the refinements of theory are down
played. Most students are impatient with the theory of the subject, and justifi
ably so, because the essence of calculus does not lie in theorems and how to 
prove them, but rather in tools and how to use them. My overriding purpose has 
been to present calculus as a problem-solving art of immense power that is in
dispensable in all the quantitative sciences. Naturally, I wish to convince students 
that the standard tools of calculus are reasonable and legitimate, but not at the 
expense of turning the subject into a stuffy logical discipline dominated by ex
tra-careful definitions, formal statements of theorems, and meticulous proofs. It 
is my hope that every mathematical explanation in these chapters will seem to 
the thoughtful student to be as natural and inevitable as the fact that water flows 
downhill (rather than uphill) along a canyon floor. The main theme of our work 
is what calculus is good for- what it enables us to do and understand-and not 
what its logical nature is as seen from the specialized (and limited ) point of view 
of the modern pure mathematician. 

There are several additional features of the book that it might be useful for me 
to comment on. 

Precalculus Material Because of the great amount of calculus that must be cov
ered, it is desirable to get off to a fast start and introduce the derivative quickly, 

THE PURPOSE 
OF THIS BOOK 
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PREFACE TO THE INSTRUCTOR 

and to spend as little time as possible reviewing precalculus material. However, 
college freshmen constitute a very diverse group, with widely different levels of 
mathematical preparation. For this reason I have included a first chapter on pre
calculus material, which I urge teachers to skim over as lightly as they think ad
visable for their particular students. This chapter is written in enough detail so 
that individual students who need to spend more time on the preliminaries should 
be able to absorb most of it on their own with a little extra effort.* 

Problems For students, the most important parts of their calculus book may well 
be the problem sets, because this is where they spend most of their time and en
ergy. There are more than 7 ,000 problems in this book, including many old stand
bys familiar to all calculus teachers and dating back to the time of Euler and even 
earlier. I have tried to repay my debt to the past by inventing new problems when
ever possible. The problem sets are carefully constructed, beginning with routine 
drill exercises and building up to more complex problems requiring higher lev
els of thought and skill. The most challenging problems are marked with an as
terisk (*). In general, each set contains approximately twice as many problems 
as most teachers will want to assign for homework, so that a large number will 
be left over for students to use as review material. 

Most of the chapters conclude with Jong lists of additional problems. Many of 
these are intended only to provide further scope and variety to the problems sets 
at the ends of the sections. However, teachers and students alike should treat these 
additional problems with special care, because a few are quite subtle and diffi
cult and should be attacked only by students with ample reserves of drive and 
tenacity. 

I should also mention that there are several sections scattered throughout the 
book with no corresponding problems at all. Sometimes these sections occur in 
small groups and are merely convenient subdivisions of what I consider a single 
topic and intend as a single assignment, as with Sections 6. 1 ,  6.2, 6.3, and 6.4, 
6.5. In other cases (e.g., Sections 15 .5  and 1 9 .4), the absence of problems is a 
tacit suggestion that the subject matter of these sections should be touched upon 
only lightly and briefly. 

There are a great many so-called "story problems" spread through the entire 
book. All teachers know that students shudder at these problems, because they 
usually require nonroutine thinking. However, the usefulness of mathematics in 
the various sciences demands that we try to teach our students how to penetrate 
into the meaning of a story problem, how to judge what is relevant to it, and how 
to translate it from words into sketches and equations. Without these skills
which are equally valuable for students who wil l  become doctors, lawyers, fi
nancial analysts, or thinkers of any kind-there is no mathematics education 
worthy of the name. t 

•A more complete exposition of high school mathematics that is still respectably concise can be found 
in my little book, Precalculus Mathematics in a Nutshell (Janson Publications, Dedham, MA, 1 9 8 1 ), 
1 1 9 pages. 

t1 cannot let the opportunity pass without quoting a classic story problem that appeared in The New 
Yorker magazine many years ago. "You know those terrible arithmetic problems about how many 
peaches some people buy, and so forth? Well, here's one we like, made up by a third-grader who was 
asked to think up a problem similar to the ones in his book: "My father is forty-four years old. My 
dog is eight. If my dog was a human being, he would be fifty-six years old. How old would my fa
ther plus my dog be if they were both human beings?" 



PREFACE TO THE INSTRUCTOR 

Differential Equations and Vector Analysis Each of these subjects is an impor
tant branch of mathematics in its own right. They should be taught in separate 
courses, after calculus, with ample time to explore their distinctive methods and 
applications. One of the main responsibilities of a calculus course is to prepare 
the way for these more advanced subjects and take a few preliminary steps in 
their direction, but just how far one should go is a debatable question. Some 
writers on calculus try to include mini-courses on these subj ects in large chap
ters at the ends of their books. I disagree with this practice and believe that 
few teachers make much use of these chapters. Instead, in the case of differen
tial equations I prefer to introduce the subject as early as possible (Section 5.4) 
and return to it in  a low-key way whenever the opportunity arises (Sections 5 .5 ,  
7.7, 8 .5 ,  9.6, 17.7, 19.9); and in vector analysis I have responded to review
ers by including a discussion of Gauss's Theorem and Stokes' Theorem in 
Chapter 2 1 .  

Appendix A One of the major ways in which this book is unique and different 
from all its competitors can be understood by examining Appendix A, which I 
will now comment on very briefly. Before doing so, I emphasize that this mate
rial is entirely separate from the main text and can be carefully studied, dipped 
into occasionally, or completely ignored, as each individual student or instructor 
desires. 

In the main text, the level of mathematical rigor rises and falls  in accordance 
with the nature of the subject under discussion. It is rather low in the geometri
cal chapters, where for the most part I rely on common sense together with in
tuition aided by illustrations;  and it is rather high in the chapters on infinite se
ries, where the substance of the subject cannot really be understood without 
careful thought. I have constantly kept in mind the fact that most students have 
very little interest in purely mathematical reasoning for its own sake, and I have 
tried to prevent this type of material from intruding any more than is absolutely 
necessary. Some students, however, have a natural taste for theory, and some in
structors feel as a matter of principle that all students should be exposed to a cer
tain amount of theory for the good of their souls. This appendix contains virtu
ally all of the theoretical material that by any stretch of the imagination might 
be considered appropriate for the study of calculus. From the purely mathemat
ical point of view, it is possible for instructors to teach courses at many differ
ent levels of sophistication by using-or not using-material selected from this 
appendix. 

Supplements The following supplements have been developed to accompany 
this Second Edition of Calculus with Analytic Geometry. 

A Student Solutions Manual is  available for students and contains detailed so
lutions to the odd-numbered problems. An Instructor's Solutions Manual is avail
able for instructors and contains detailed solutions to the even-numbered prob
lems. Also available to instructors adopting the text are a Print Test Bank and an 
algorithmic Computerized Test B ank. 

There are a variety of texts available from McGraw-Hill that support the use 
of specific graphing calculators and mathematical software programs for calcu
lus. Please contact your local McGraw-Hill representative for more information 
on these titles. 

XlX 
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As to the flaws and errors that undoubtedly remain-for there are always a 
pesky few that manage to hide no matter how fervently we try to find them
there is no one to blame but myself. I will consider it a great kindness if col
leagues and student users will take the trouble to inform me of any blemishes 
they detect, for correction in future printings and editions. As Confucius said, "A 
man who makes a mistake and doesn't correct it is making two mistakes." 

George F Simmons 
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TO THE STUDENT 

Appearances to the contrary, no writer deliberately sets out to produce an un
readable book; we all do what we can and hope for the best. Naturally, I hope 
that my language will be clear and helpful to students, and in the end only they 
are qualified to judge. However, it would be a great advantage to all of us
teachers and students alike- if student users of mathematics textbooks could 
somehow be given a few hints on the art of reading mathematics, which is a very 
different thing from reading novels or magazines or newspapers. 

In high school mathematics courses, most students are accustomed to tackling 
their homework problems first, out of impatience to have the whole burdensome 
task over and done with as soon as possible. These students read the explana
tions in the text only as a last resort, if at all. This is a grotesque reversal of rea
sonable procedure, and makes about as much sense as trying to put on one's 
shoes before one's socks. I suggest that students should read the text first, and 
when this has been thoroughly assimilated, then and only then turn to the home
work problems. After all, the purpose of these problems is to nail down the ideas 
and methods described and illustrated in the text. 

How should a student read the text in a book like this? Slowly and carefully, 
and in full awareness that a great many details have been deliberately omitted. 
If this book contained every detail of every discussion, it would be five times as 
long, which God forbid! There is a saying of Voltaire: "The secret of being a 
bore is to tell everything." Every writer of a book of this kind tries to walk a nar
row path between saying too much and saying too little. 

The words "clearly," "it is easy to see," and similar expressions are not in
tended to be taken literally, and should never be interpreted by any student as a 
putdown on his or her abilities. These are code-phrases that have been used in  
mathematical writing for hundreds of  years. Their purpose i s  to  give a signal to 
the careful reader that in this particular place, the exposition is somewhat con
densed, and perhaps a few details of calculations have been omitted. Any phrase 
like this amounts to a friendly hint to the student that it might be a good idea to 
read even more carefully and thoughtfully in order to fill in omissions in the ex
position, or perhaps get out a piece of scratch paper to verify omitted details  of 
calculations. Or better yet, make full use of the margins of this book to empha
size points, raise questions, perform little computations, and correct misprints. 

George F. Simmons 
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1 NUMBERS , 
FUNCTIONS , 

AND GRAPHS 

Everyone knows that the world in which w e  live i s  dominated by motion and 
change. The earth moves in its orbit around the sun; a rock thrown upward slows 
and stops, and then falls back to earth with increasing speed; the population of 
India grows each year at an increasing rate; and radioactive elements decay. These 
are merely a few items in the endless array of phenomena for which mathemat
ics is the most natural medium of communication and understanding. As Galileo 
said more than 300 years ago, "The Great Book of Nature is written in math
ematical symbols." 

Calculus is that branch of mathematics whose primary purpose is the study of 
motion and change. It is  an indispensable tool of thought in almost every field 
of pure and applied science-in physics, chemistry, biology, astronomy, geol
ogy, engineering, and even some of the social sciences. It also has many impor
tant uses in other parts of mathematics, especially geometry. By any standard, 
the methods and applications of calculus constitute one of the greatest intellec
tual achievements of civilization, and to become acquainted with these ideas is 
to open many doors that lead to a broader and richer life of the mind. 

The main objects of study in calculus are functions. But what is a function? 
Roughly speaking, it is a rule or law that tells us how one variable quantity de
pends upon another. This is the master concept of the exact sciences. It offers us 
the prospect of understanding and correlating natural phenomena by means of 
mathematical machinery of great and sometimes mysterious power. The concept 
of a function is so vitally important for all our work that we must strive to clar
ify it beyond any possibility of confusion. This purpose is the theme of the 
present chapter. 

The following sections contain a good deal of material that many readers have 
studied before. Some will welcome the opportunity to review and refresh their 
ideas. Those who already understand this material and find it irksome to tread 
the same path over again may discover some interesting sidelights and stimulat
ing challenges among the Additional Problems at the end of the chapter. This 
chapter is intended solely for purposes of review. It can be studied carefully, or 
lightly, or even skipped altogether, depending on the reader's level of prepara
tion. The actual subject matter of this course begins in Chapter 2, and it would 
be very unfortunate if even a single student should come to feel that this pre
liminary chapter is more of an obstacle than a source of assistance-for its only 
purpose is to smooth the way. 

1 

1 . 1  
INTRODUCTION 
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1 . 2 
THE REAL LINE AND 

COORDINATE PLANE. 
PYTHAGORAS 

NUMBERS. FUNCTIONS, AND G RAPHS 

Most of the variable quantities we study- such as length, area, volume, posi
tion, time, and velocity- are measured by means of real numbers, and in this 
sense calculus is based on the real number system. It is true that there are other 
important and useful number systems-for instance, the complex numbers. It is  
also true that two- and three-dimensional treatments of position and velocity re
quire the use of vectors. These ideas will be examined in due course, but for a 
long time to come the only numbers we shall be working with are the real num
bers. * 

It is assumed in this book that students are familiar with the elementary alge
bra of the real number system. Nevertheless, in this section we give a brief de
scriptive survey that may be helpful.  For our purposes this is sufficient, but any 
reader who wishes to probe more deeply into the nature of real numbers will find 
a more precise discussion in Appendix A. 1 at the back of the book. 

The real number system contains several types of numbers that deserve spe
cial mention: the positive integers (or natural numbers) 

1 ,  2, 3, 4, 5, . . .  ; 

the integers 

. . .  , 
- 3 , -2, - 1 , 0, I ,  2, 3, . . 

and the rational numbers, which are those real numbers that can be represented 
as fractions (or quotients of integers), such as 

f, -f, 4, 0, -5, 3 . 8 7, 2t. 

A real number that is not rational is said to be irrational; for example, 

V2, \/3, v'2 + \/3, Vs, Vs, and 'TT 

are irrational numbers.t 

We take this opportunity to remind the reader that for any positive number a, 
the symbol Va always means its positive square root. Thus, \/4 is equal to 2 
and not -2, even though (-2)2 = 4. If we wish to designate both square roots 
of 4, we must write ±W. Similarly, V1a always means the positive nth root of 
a .  

THE REAL LINE 

The use of the real numbers for measurement is reflected in the very convenient 
custom of representing these numbers graphically by points on a horizontal 
straight line (Fig. 1 .1). 

This representation begins with the choice of an arbitrary point as the origin 
or zero point, and another arbitrary point to the right of it as the point 1 .  The dis-

•The adjective "real'' was originally used to distinguish these numbers from numbers like v'=l, 
which were once thought to be "unreal" or "imaginary." 
tour aims in the present book are almost entirely practical. Nevertheless, our discussions often give 
rise to certain "impractical" questions that some readers may find interesting and appealing. As an 
example, how do we know that the number v'2 is irrational? For readers with the time and inclina
tion to pursue such questions -and also because we consider the answers to be worth knowing about 
for their own sake-we offer food for further thought in a little paperback book entitled Calculus 
Gems: Brief Lives and Memorable Mathematics (McGraw-Hill, 1 992). Some of the facts about irra
tional numbers, with proofs, are discussed in Section B.2 of this book. 
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tance between these two points (the unit distance) then serves as a scale by means 
of which we can assign a point on the line to every positive and negative inte
ger, as illustrated in the figure, and also to every rational number. Notice that all 
positive numbers lie to the right of 0, in the "positive direction," and all negative 
numbers lie to the left.* The method of assigning a point to a rational number is 
shown in the figure for the number f = 2±: the segment between 2 and 3 is sub
divided by two points into three equal segments, and the first of these points is 
labeled 2±. This procedure of using equal subdivisions clearly serves to deter
mine the point on the line which corresponds to any rational number whatever. 
Furthermore, this correspondence between rational numbers and points can be 
extended to irrational numbers; for the decimal expansion of an irrational num
ber, such as 

v'2 = 1 .4 14  . . .  ' V3 = 1 .732 . . .  ' Tr =  3 . 14 159 . . .  ' 

can be interpreted as a set of instructions specifying the exact position of the cor
responding point. For example, by looking at the expansion we see that the point 
corresponding to V2 lies between 1 and 2, between 1 .4 and 1 .5 ,  between 1 .4 1  
and 1 .42, and so on, and these requirements uniquely determine the position of 
the corresponding point. 

We have described a one-to-one correspondence between all real numbers and 
all points on the line which establishes these numbers as a coordinate system for 
the line. This coordinatized line is called the real line. It is convenient and cus
tomary to merge the logically distinct concepts of the real number system and 
the real line, and we shall freely speak of points on the line as if they were num
bers and of numbers as if they were points on the line. Thus, such mixed ex
pressions as "irrational point" and "the segment between 2 and 3" are quite nat
ural and will be used without further comment. 

INEQUALITIES 

The left-to-right linear succession of points on the real line corresponds to an im
portant part of the algebra of the real number system, that dealing with inequal
ities. These ideas play a larger role in calculus than in earlier mathematics courses, 
so we briefly recall the essential points. 

The geometric meaning of the inequality a < b (read "a is  less than b") is sim
ply that a lies to the left of b; the equivalent inequality b > a ("b is greater than 
a") means that b lies to the right of a. A number a is positive or negative ac
cording as a > 0 or a < 0. The main rules used in working with inequalities are 
the following: 

*The arrowhead on the right end of the real line indicates the positive direction and nothing more. 

Figure I. I The real line. 
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1 .  If a > 0 and b < c, then ab < ac. 
2. If a < 0 and b < c, then ab > ac. 
3 .  I f  a <  b,  then a +  c < b + c for any number c .  

Rules 1 and 2 are usually expressed by  saying that an inequality is preserved on 
multiplication by a positive number, and reversed on multiplication by a nega
tive number; and rule 3 says that an inequality is preserved when any number 
(positive or negative) is added to both sides. It is often desirable to replace an 
inequality a > b by the equivalent inequality a - b > 0, with rule 3 being used 
to establish the equivalence. 

If we wish to say that a is positive or equal to 0, we write a ;:::: 0 and read this 
"a is greater than or equal to zero." Similarly, a ;:::: b means that a > b or a = b. 
Thus, 3 ;:::: 2 and 3 ;:::: 3 are both true inequalities. 

We also recall that a product of two or more numbers is zero if and only if 
one of its factors i s  zero. If none of its factors are zero, it is positive or negative 
according as it has an even or an odd number of negative factors. 

ABSOLUTE VALUES 

The absolute value of a number a is denoted by !al and defined by 

if a 2: 0, 
if a <  0. 

For example, 1 3 1 = 3, l -2 1 = -(-2) = 2, and IO I = 0. It is clear that the opera
tion of forming the absolute value leaves positive numbers unchanged and re
places each negative number by the corresponding positive number. The main 
properties of this operation are and la + bl :S la l + lbl . 
In geometric language, the absolute value of a number a is simply the distance 
from the point a to the origin. Similarly, the distance from a to b is la - bl . 

To solve an equation such as Ix + 21 = 3, we can write it in the form 
Ix - (-2)1 = 3 and think of it as saying that "the distance from x to -2 is 3." 
With Fig. 1 . 1  in mind, it is evident that the solutions are x = I and x = -5.  We 
can also solve this equation by using the fact that Ix + 21 = 3 means that x + 
2 = 3 or x + 2 = -3; the solutions are x = 1 and x = -5, as before. 

INTERVALS 

The sets of real numbers we shall be dealing with most frequently are intervals. 
An interval is simply a segment on the real line. If its endpoints are the numbers 
a and b, then the interval consists of all numbers that lie between a and b. How
ever, we may or may not want to include the endpoints themselves as part of the 
interval. 

To be more precise, suppose that a and b are numbers, with a < b. The closed 
interval from a to b, denoted by [a, b] -using brackets-includes its endpoints, 
and therefore consists of all real numbers x such that a ::5 x ::5 b. Parentheses are 
used to indicate excluded endpoints. The interval (a, b), with both endpoints 
excluded, is called the open interval from a to b; it consists of all x such that 
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a <  x < b. Sometimes we wish to include only one endpoint in an interval. Thus, 
the intervals denoted by [a, b) and (a, b] are defined by the inequalities a ::5 x < 
b and a < x ::5 b, respectively. In each of these cases, any number c such that 
a < c < b is called an interior point of the interval (Fig. 1 .2) .  

Strictly speaking, the notations a ::5 x ::5 b and [a, b] have different meanings 
-the first represents a restriction imposed on x, while the second denotes a set 
-but both designate the same interval. We will therefore consider them to be 
equivalent and use them interchangeably, and the reader should become familiar 
with both. However, the geometric meaning of the notation a ::5 x ::5 b is more 
easily grasped by the eye, and for this reason we usually prefer it to the other. 

A half-line is often considered to be an interval extending to infinity in one 
direction. The symbol oo (read "infinity") is frequently used in designating such 
an interval. Thus, for any real number a the intervals defined by the inequalities 
a < x and x ::5 a can be written as a < x < oo and - oo < x ::5 a, or equivalently 
as (a, oo) and (-oo, a]. Remember, however, that the symbols oo and -= do not 
denote real numbers; they are used in this manner only as a convenient way of 
emphasizing that x is allowed to be arbitrarily large (in either the positive or neg
ative direction). As an aid in keeping the notation clear in one's  mind, it may be 
helpful to think of - oo and oo as "fictitious numbers" located at the left and right 
"ends" of the real line, as suggested in Fig. 1 .3 .  Also, it is sometimes convenient 
to think of the entire real line itself as an interval, - oo < x < oo or ( - =, oo ) .  

Sets of  numbers described by means of  inequalities and absolute values are 
often intervals. It is clear, for instance, that the set of all x such that lxl < 2 is 
the interval -2 < x < 2 or ( - 2, 2).  

Example l Solve the inequality x2 - 2 < x. 

Solution To "solve" an inequality like this means to find all numbers x for which 
the inequality is  true. We begin by writing it as x2 - x - 2 < 0, and then we 
write it in the factored form 

(x + l )(x - 2) < 0. 

For this to be true, the two factors must have opposite signs: x + 1 > 0 and x -
2 < 0, or x + 1 < 0 and x - 2 > 0. These conditions are equivalent to x > - 1  
and x < 2, or x < - 1  and x > 2. The second pair of conditions is  easily seen to 
be impossible. The first pair of conditions means that x lies in the open interval 
- 1  < x < 2, and these x's constitute the solution of the given inequality. 

THE COORDINATE PLANE 

Just as real numbers are used as coordinates for points on a line, pairs of real 
numbers can be used as coordinates for points in a plane. For this purpose we 
establish a rectangular coordinate system in the plane, as follows. 

Draw two perpendicular straight lines in the plane, one horizontal and the other 
vertical, as shown in Fig. 1 .4 .  These lines are called the x-axis and y-axis, re
spectively, and their point of intersection is called the origin. Coordinates are as
signed to these axes in the manner described earlier, with the origin as the zero 
point on both and the same unit of distance measurement on both. The positive 

a c 

Interior point 

/ 
b 

� Endpoints / 
a b 

Closed: a S x  S b  or [a, b l  

a b 

Open: a <  x < b or (a , b)  

Figure 1.2 Intervals. 
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Figure 1 .3 
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Figure 1.4 The coordinate plane or 
xy-plane. 
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x-axis is to the right of the origin and the negative x-axis to the left, as before; 
and the positive y-axis is above the origin and the negative y-axis below. 

Now consider a point P anywhere in the plane. Draw a line through P paral
lel to the y-axis, and let x be the coordinate of the point where this line crosses 
the x-axis. Similarly, draw a line through P parallel to the x-axis, and let y be the 
coordinate of the point where this line crosses the y-axis. The numbers x and y 
determined in this way are called the x-coordinate and y-coordinate of P. In re
ferring to the coordinates of P, it is customary to write them as an ordered pair 
(x, y) with the x-coordinate written first; we say that P has coordinates (x, y). * 

This correspondence between P and its coordinates establishes a one-to-one cor
respondence between all points in the plane and all ordered pairs of real num
bers; for P determines its coordinates uniquely, and by reversing the process we 
see that each ordered pair of real numbers uniquely determines a point P with 
these numbers as its coordinates. As in the case of the real line, it is customary 
to drop the distinction between a point and its coordinates, and to speak of "the 
point (x, y)" instead of "the point with coordinates (x, y)." The coordinates x and 
y of the point P are sometimes called the abscissa and ordinate of P. Notice par
ticularly that points (x, 0) lie on the x-axis, that points (0, y) lie on the y-axis, 
and that (0, 0) is the origin. Also, the axes divide the plane into four quadrants, 
as shown in Fig. 1 .4, and these quadrants are characterized as follows by the 
signs of x and y: first quadrant, x > 0 and y > O; second quadrant, x < 0 and y > 
O; third quadrant, x < 0 and y < O; fourth quadrant, x > 0 and y < 0. 

When the plane is equipped with the coordinate system described here, it is  
usually called the coordinate plane or the xy-plane. 

THE DISTANCE FORMULA 

Much of our work involves geometric ideas - right triangles, s imilar triangles, 
circles, spheres, cones, etc. - and we assume that students have acquired a rea
sonable grasp of elementary geometry from earlier mathematics courses. A ma-

'In practice, the use of the same notation for ordered pairs as for open intervals never leads to con
fusion, because in any specific context it is always clear which is meant. 
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a2 + b2 = c2 

a b a 
b 

7 

a� 
b a 

Figure 1 .5 The Pythagorean theorem 
and a proof. 

jor fact of particular importance is the Pythagorean theorem: In any right trian
gle, the sum of the squares of the legs equals the square of the hypotenuse (Fig. 
1 .5 ) .  There are many proofs of this theorem, but the following is probably sim
pler than most. Let the legs be a and b and the hypotenuse c, and arrange four 
replicas of the triangle in the corners of a square of side a + b, as shown on the 
right in Fig. 1 .5 .  Then the area of the large square equals 4 times the area of the 
triangle plus the area of the small square; that is, 

(a + b)2 = 4(tab) + c2. 
This simplifies at once to a2 + b2 = c2, which is the Pythagorean theorem. 

As the first of many applications of this fact, we obtain the formula for the 
distance d between any two points in the coordinate plane. If the points are 
P1 = (x1 , y 1 )  and P2 = (x2, y2), then the segment joining them is the hypotenuse 
of a right triangle (Fig. 1 .6) with legs lx1 - x2 I and IY 1 - Yzl . By the Pythago- Y 
rean theorem, 

so 

d2 = lx 1 - x212 + IY1 - Y2 l2 
= (x1 - x2)2 + (Y 1 - Y2)2, 

This is the distance formula. 

( 1 )  

Example 2 The distance d between the points ( -4, 3) and ( 3 ,  - 2) in  Fig. 1 .4 Figure 1.6 
i s  

d = v (-4 - 3)2 + (3 + 2)2 = v74. 
Notice that in applying formula ( 1 )  it does not matter in which order the points 
are taken. 

Example 3 Find the lengths of the sides of the triangle whose vertices are P1 = 
(- 1 ,  -3), P2 = (5, - 1), P3 = ( - 2, 1 0).  

By ( 1 ), these lengths are 

P1P2 = Y(- 1  - 5 )2 + (-3 + 1 )2 = v4o = 2v'IO, 

P1P3 = Y(- 1 + 2)2 + (-3 - 1 0)2 = Vi70, 
P2P3 = Y(5 + 2)2 + ( - 1  - 10)2 = '\/170. 

These calculations reveal that the triangle is isosceles, with P1P3 and P2P3 as the 
equal sides. 

x 
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y 

y - - - -

Y 1  - - -

X 1 x x 

NUMBERS, FUNCTIONS, ANO GRAPHS 

THE MIDPOINT FORMULAS 

It is often useful to know the coordinates of the midpoint of the segment joining 
two given distinct points. If the given points are P1 = (x1 ,  y 1 ) and P2 = (x2, y2), 
and if P = (x, y) is the midpoint, then it is clear from Fig. 1 .7 that x is the mid
point of the projection of the segment on the x-axis, and similarly for y. This tells 
us (examine the figure-and think ! )  that x = x1 + 1Cx2 - x1 ) and y = y1 + I(Y2 - y , ) ,  so 

and 

Figure 1.7 Another way of obtaining these formulas is to notice from Fig. 1 .7 that x - x1 = 
x2 - x, so 2x = x1 + x2 or x = 1Cx1 + x2), with the same argument applying to 
y. Similarly, if P is a trisection point of the segment joining P1 and P2, its coor
dinates can be found from the fact that x and y are trisection points of the cor
responding segments on the x-axis and y-axis. 

y 

(b, c) 

x 

Example 4 In any triangle, the segment joining the midpoints of two sides is 
parallel to the third side and half its length. We know this from elementary geom
etry; but to prove it by our methods, we begin by noticing that the triangle can 
always be placed in the position shown in Fig. 1 . 8, with its third side along the 
positive x-axis and the left endpoint of this side at the origin. We then insert the 
midpoints of the other two sides, as shown, and observe that since they have the 
same y-coordinate, the segment joining them is parallel to the third side lying 
on the x-axis. The length of this segment is simply the difference between the 
x-coordinates of its endpoints, 

a +  b b a 
-- - -

2 2 2 '  

Figure 1 .8 which is half the length of the third side. 

This example illustrates the way in which coordinates can often be used to 
give algebraic proofs of geometric theorems. The device employed here, of plac
ing the figure in a convenient position relative to the coordinate system, has the 
purpose of simplifying the algebra. 

lAJ NOTE ON PYTHAGORAS m Who w" th;, Pythog°"', whore nome ;, 
attached to the great theorem of geometry we have just been 
using? And why should we care? 

The pre-Socratic philosophers of ancient Greece-that is, 
those who lived before the time of Socrates (470?-399 B .C.) 
-were one of the most remarkable and influential groups 
of people in human history. The best known of these was 
Pythagoras of Samos (580?-500? B.C.), a mathematician, 

scientist, and mystic whose ideas live on today as part of 
the bone and flesh of our modern civilization. 

Greek geometry was certainly one of the half-dozen 
supreme intellectual achievements of all time. Pythagoras' 
master Thales (625?-547? B .C.) had created geometry as 
the contemplation of abstract patterns of lines and figures 
and constructed the first proofs of the first theorems. But 
Pythagoras was the first person to see geometry as an orga-
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nized system of thought held together by deductive proof, 
with one theorem depending on another in a tightly woven 
fabric of logic. Also, tradition tells us that he himself dis
covered many theorems, most notably, the fact that the sum 
of the angles in any triangle equals two right angles, and the 
famous Pythagorean theorem discussed above. 

Pythagoras was born on the beautiful island of Samas, a 
mile or two off the Aegean coast of Turkey and a good day's 
walk along the shore from Thales' home town of Miletus. 
At the age of about 50, he migrated from Samas to the Greek 
colony of Crotona in southern Italy, where he established 
the famous Pythagorean school, a quasi-religious society 
with a solid claim to the honor of being the world's first uni
versity. The Pythagoreans were best known for two teach
ings: the doctrine of transmigration of souls at death from 
one body into another, and the theory that numbers consti
tute the true essence of all things. Believers performed rites 
of purification and followed strict moral and dietary rules 
(no sex, no meat) to enable their souls to rise to higher lev
els of spirituality in subsequent lives. Their beliefs also led 
them to consider the sexes as equal and to treat animals and 
slaves humanely. For who knows? In a subsequent life one 
might return as a slave, or one's soul might take up resi
dence in an animal's body, or even-alas! - an insect's. 

As a way of achieving purification of the mind, the 
Pythagoreans studied geometry, arithmetic, music, and as
tronomy-arithmetic not in the sense of useful computa
tional skills but rather as the abstract theory of numbers. 
They were particularly fond of the "figurate numbers," 
which arise by arranging dots or points in regular geomet
ric patterns. For example, there are the square numbers 1 ,  
4, 9 ,  16, . . .  : 

PROBLEMS 

1 Among the words "integer,'' "rational," and "irrational," 
state the ones that apply to 

(a) -f; (b) O; 
(c) �; (d) 0.75; 
(e) -\149; (f) l/7r; 
(g) 9.000 . . . ; (h) 3 112 ;  
(i) -'*; (j) 2,f-. 

2 Every integer is either even or odd. The even integers are 
those that are divisible by 2, so n is even if and only if 
it has the form n = 2k for some integer k. The odd inte
gers are those that have the form n = 2k + 1 for some 
integer k. 

• • • • 

• • • • • • • 

• • :1 • • • • • 

• :i • • • • • • • 

As indicated, each square number can be obtained from its 
predecessor by adding an L-shaped border called a gnomon, 
meaning a carpenter's square. Since the successive gnomons 
are the successive odd numbers, it is immediately clear from 
the square arrays that the sum of the first n odd numbers 
equals n2: 

l + 3 + 5 + · · · + (2n - 1) = n2. 
Who would have believed that the common odd numbers 
and the relatively rare perfect squares are related in such a 
simple yet remarkable way? The Pythagoreans were fasci
nated, and rightly so, by the grave and beautiful games that 
numbers play with each other-games that seemed to them 
to take place outside of space and time and to be quite in
dependent of the human mind itself. 

Further, Pythagoras performed the first deliberate scien
tific experiment, on the relation between positive whole 
numbers and the musical notes emitted by a plucked lyre 
string. Also, he was the first person to conceive the 
supremely daring conjecture that the world is an ordered, 
understandable whole, and he applied the word kosmos
which previously meant order or harmony-to this whole. 

In these and other ways Pythagoras was one of the prime 
creators of the Western civilization that sustains us all-as 
fish are sustained by the water in which they swim. 

(a) If n is even, prove that n2 is also even. 
(b) If n is odd, prove that n2 is also odd. 

In Problems 3- 12, rewrite the given expression without using 
the absolute value symbol. 
3 17 - 1 81 . 
s 1 1T - 3 1 . 
1 Ix - 51 if x < s. 
9 lx2 + 101 . 
1 1  I l - 3x21 if x 2: 1 .  

4 17 1 - 1 - 1 8 1 . 
6 J3 - nj. 
8 Ix - SJ if x > 5 .  
10 1 - 1 1 1 - 1 - 1 01 . 

lvTo - 1 01 . 12 
13 Solve the following inequalities: 

(a) x(x - I ) > O; 
(b) (x - l )(x + 2) < O; 
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14 

15 

16 

(c) x2 + 4x - 21  > O; 
(d) 2x2 + x < 3; 
(e) 4x2 + lOx - 6 < 0; 
(f) x2 + 2x + 4 > 0. 
Recall that Va is a real number if and only if a � 0, and 
find the values of x for which each of the following is a 
real number: 

(a) �; 
I 

(c) 
\/4 - 3x' 

(b) �; 
I 

(d) . 
Yx2 - x - 1 2 

Find the values of x for which each of the following is 
positive: 

x x 
(a) 

x2 + 4
; (b) 

x2 - 4
; 

x + I  x2 - I 
(c) 

x - 3 ' (d) _2_3_· x - x 
State the values of a for which the following inequali-
ties are valid: 
(a) a :s a; (b) a <  a. 

17 If a :s b and b :s a, what conclusion can be drawn about 
a and b? 

1 8  (a) If a <  b is true, is it also necessarily true that 
a :s b? 

(b) If a :s b is true, is it also necessarily true that 
a <  b? 

19 State whether each pair of points lies on a horizontal or 
a vertical line: 
(a) ( -2, -5), (-2, 3) ;  
(c)  (-3 ,  4), (6, 4); 
(e) (2, 2), ( - 1 3, 2); 
(g) (3, 5), (3, -2); 

(b) (-2, -5), (7 ,  -5); 
(d) (2, - I I ), (2, 5) ; 
(f) (-7, -7), ( -7 ,  7); 
(h) (- 1 ,  -2), (2, -2). 

20 Three vertices of a rectangle are ( - I ,  2), (3, -5), 
( - I ,  -5). What is the fourth vertex? 

21  Find the distance between each pair of  points: 
(a) ( 1, 2), (6, 7); (b) (2, 5), ( - 1 ,  3 ); 
(c) (-7, 3), ( 1 ,  -2); (d) (a, b), (b, a). 

22 In Problem 21 find the midpoint of the segment joining 
each pair of points. 

23 Draw a sketch indicating the points (x, y) in the plane for 
which 
(a) x < 2; 
(b) - l < y :s 2; 
(c) 0 :s x :s I and 0 :s y :s I ;  
(d) x = - 1 ;  
(e) y = 3; 
(f) x = y. 

24 Use the distance formula to show that the points (-2, 1 ) , 
(2, 2), and ( 10, 4) lie on a straight line. 

25 Show that the point (6, 5)  lies on the perpendicular bi
sector of the segment joining the points ( -2, 1 )  and 
(2, - 3). 

26 

27 

28 

29 

30 

3 1  

32 

Show that the triangle whose vertices are (3, -3), 
(-3, 3) ,  and (3\/3, 3v3) is equilateral. 
The two points (2, -2) and ( - 6, 5) are the endpoints of 
a diameter of a circle. Find the center and radius of the 
circle. 
Find every point whose distance from each of the two 
coordinate axes equals its distance from the point (4, 2). 
Find the point equidistant from the three points (-9, 0), 
(6, 3), and ( -5, 6). 
If a and b are any two numbers, convince yourself that: 
(a) the points (a, b) and (a, -b) are symmetric with re-

spect to the x-axis; 
(b) (a, b) and (-a, b) are symmetric with respect to the 

y-axis ;  
(c) (a, b) and ( -a, -b) are symmetric with respect to 

the origin. 
What symmetry statement can be made about the points 
(a, b) and (b, a)? 
In each case, place the figure in a convenient position 
relative to the coordinate system and prove the statement 
algebraically: 
(a) The diagonals of a parallelogram bisect each other. 
(b) The sum of the squares of the diagonals of a paral

lelogram equals the sum of the squares of the sides. 
(c) The midpoint of the hypotenuse of a right triangle is 

equidistant from the three vertices .  
Use the fact stated in (c) to show that when the acute an
gles of a right triangle are 30° and 60°, the side opposite 
the 30° angle is half the hypotenuse. 

33 In an isosceles right triangle, both acute angles are 45°. 
If the hypotenuse is h, what is the length of each of the 
other sides? 

34 Let P 1 = (x1 , y 1 )  and P2 = (x2, yz) be distinct points. If 
P = (x, y) is on the segment joining P1 and P2 and one
third of the way from P1 to P2, show that 

and 

Find the corresponding formulas if P is two-thirds of the 
way from P 1 to P2• 

35 Consider an arbitrary triangle with vertices (x1 , y1) , (x2, 

)'2), and (x3, y3) .  Find the point on each median which is 
two-thirds of the way from the vertex to the midpoint of 
the opposite side.* Perform the calculations separately 
for each median and verify that these three points are all 
the same, with coordinates 

and 

This proves that the medians of any triangle intersect at 
a point which is two-thirds of the way from each vertex 
to the midpoint of the opposite side. 

•A median of a triangle is a segment joining a vertex to the midpoint 
of the opposite side. 
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In this section we use the language of algebra to describe the set of all points 
that lie on a given straight line. This algebraic description is called the equation 
of the line. First, however, it is necessary to discuss an important preliminary 
concept: the slope of a line. 

THE SLOPE OF A LINE 

Any nonvertical straight line has a number associated with it that specifies its di
rection, called its slope. This number is defined as follows (Fig. 1 .9 illustrates 
the definition). Choose any two distinct points on the line, say P1 = (xi ,  y 1)  and 
P2 = (x2, y2) .  Then the slope is denoted by m and defined to be the ratio 

Y2 - YI m = ---. ( 1 )  X2 - XJ 

If we reverse the order of subtraction in both numerator and denominator, then 
the sign of each is changed, so m is unchanged: 

m = Y2 - Y 1 = Y1 - Y2 
X2 - XJ X 1 - X2 

This shows that the slope can be computed as the difference of the y-coordinates 
divided by the difference of the x-coordinates - in either order, as long as both 
differences are formed in the same order. In Fig. 1 .9, where P2 is placed to the 
right of P1 and the line rises to the right, it is clear that the slope as defined by 
( 1 )  is simply the ratio of the height to the base in the indicated right triangle. It 
is necessary to know that the value of m depends only on the line itself and is 
the same no matter where the points P1 and P2 happen to be located on the line. 
This is easy to see by visualizing the effect of moving P1 and P2 to different po
sitions on the line; this change gives rise to a similar right triangle and therefore 
leaves the ratio in ( 1 )  unaltered. 

If we choose the position of P2 so that x2 - x1 = 1, that is, if we place P2 1 
unit to the right of Pi ,  then m = y2 - YI - This tells us that the slope is simply 
the change in y as a point (x, y) moves along the line in such a way that x in
creases by 1 unit. This change in y can be positive, negative, or zero, depending 
on the direction of the line. We therefore have the following important correla
tions between the sign of m and the indicated directions: 

y 

I 
I I I I 
: Yi - Yi > 0 
I I I 

_ _ _ __ _J 

x 
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y m = 5 

m = -5 

Figure 1 . 1 0  A variety of slopes. 

y 

(x, y) lies on line 
if and only if x = a 

(a , 0) 

Figure I . I  I 

Y Slope = Y - Yo 

X - Xo 'v/ I I I I 

(x, y) lies on line 
if and only if 
Y - Yo = m 
X - Xo 

x 

x 

x 

Figure 1 . 1 2  
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m >  0, 

m <  0, 

m = 0, 

line rises to the right; 

line falls to the right; 

line horizontal. 

Further, the absolute value of m is a measure of the steepness of the line (Fig. 
1 . 10) .  It i s  evident from ( l )  why a vertical line has no slope, for in this case the 
two points have equal x-coordinates and the denominator in ( 1 )  is 0-and we 
know that division by 0 is undefined. 

If the line under discussion crosses the x-axis, then the angle a from the pos
itive x-direction to the line, measured counterclockwise, is called the inclination 
-or sometimes the angle of inclination-of the line. Students who have stud
ied trigonometry will see from Fig. 1 .9 that the slope is the tangent of this an
gle, m = tan a. 

EQUATIONS OF A LINE 

A vertical line is characterized by the fact that all points on it have the same 
x-coordinate. If the line crosses the x-axis at the point (a, 0), then a point (x, y) 
lies on the line if and only if 

x = a, (2) 

as illustrated in Fig. 1 . 1 1 .  The statement that (2) is the equation of the line means 
precisely this: A point (x, y) lies on the line if and only if condition (2) is satis
fied. 

Next consider a nonvertical line, and let it be "given" in the sense that we know 
a point (x0, y0) on it and its slope m (Fig. 1 . 1 2) .  If (x, y) is a point in the plane 
that does not lie on the vertical line through (x0, y0), then it is easy to see that 
this point lies on the given line if and only if the line determined by (x0, y0) and 
(x, y) has the same slope as the given line : 

y - Yo = m. x - xo (3) 

This would be the equation of our line except for the minor flaw that the coor
dinates of the point (x0, y0)- which is certainly on the line-do not satisfy the 
equation (they reduce the left side to the meaningless expression 0/0). This flaw 
is easily removed by writing equation (3) in the form 

y - Yo = m(x - x0). (4) 

Nevertheless, we usually prefer the form (3) , because its direct connection with 
the geometric idea illustrated in Fig. 1 . 1 2  makes it easy to remember. Either equa
tion (or both) is called the point-slope equation of a line, since the line is ini
tially specified by means of a known point on it and its known slope. To grasp 
more firmly the meaning of equation (4), imagine a point (x, y) moving along 
the given line. As this point moves, its coordinates x and y change; but even 
though they change, they are bound together by the fixed relationship expressed 
by equation (4). 
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If the known point on the line happens to be the point where the line crosses 
the y-axis, and if this point is denoted by (0, b), then equation (4) becomes y -
b = mx or 

y = mx + b. (5) 
The number b is called the y-intercept of the line, and (5) is called the slope
intercept equation of a line. This form is especially convenient because it tells at 
a glance the location and direction of a line. For example, if the equation 

6x - 2y - 4 = 0 (6) 
is solved for y, we see that 

y = 3x - 2.  (7) 

Comparing (7) with (5) shows at once that m = 3 and b = -2, and so (6) and 
(7) both represent the line that passes through (0, -2) with slope 3. This infor
mation makes it very easy to sketch the line. It may seem that (6) and (7) are 
different equations, so that (6) should be referred to as "an" equation of the line 
and (7) as "another" equation of the line, but we prefer to regard them as merely 
different forms of a single equation. Many other forms are possible, for instance, 

y + 2 = 3x, x = tY + f, 3x - y = 2. 
It is reasonable to cut through appearances and speak of any one of these as "the" 
equation of the line. 

More generally, every equation of the form 

Ax + By + C = 0, (8) 

where the constants A and B are not both zero, represents a straight line. For if 
B = 0, then A -=F 0, and the equation can be written as 

c x =  - A ' 
which is clearly the equation of a vertical line. On the other hand, if B -=F 0, then 

A C Y = -sx - s, 
and this equation has the form (5) with m = -A/B and b = - CIB. Equation (8) 
is rather inconvenient for most purposes because its constants are not directly re
lated to the geometry of the line. Its main merit is that it is capable of repre
senting all lines, without any need for distinguishing between the vertical and 
nonvertical cases. For this reason it is called the general linear equation. 

PARALLEL AND PERPENDICULAR LINES 

Two distinct nonvertical straight lines with slopes m 1 and m2 are evidently par
allel if and only if their slopes are equal : 

The criterion for perpendicularity is the relation 

(9) 

1 3  
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y This is not obvious, but can be established quite easily by using similar trian
gles, as follows (Fig. 1 .  1 3) .  Suppose that the lines are perpendicular, as shown 
in Fig. 1 . 1 3 .  Draw a segment of length 1 to the right from their point of inter
section, and from its right endpoint draw vertical segments up and down to the 
two lines. From the meaning of the slopes, the two right triangles formed in this 
way have sides of the indicated lengths. Since the lines are perpendicular, the in
dicated angles are equal and the triangles are similar. This similarity implies that 
the following ratios of corresponding sides are equal: 

x 
Figure 1 . 13 This is equivalent to (9), so (9) is true when the lines are perpendicular. The rea

soning given here is easily reversed, telling us that if (9) is true, then the lines 
are perpendicular. Since equation (9) is equivalent to 

y 

and 

we see that two nonvertical lines are perpendicular if and only if their slopes are 
negative reciprocals of one another. 

The ideas of this section enlarge our supply of tools for proving geometric the
orems by algebraic methods. 

Example If the diagonals of a rectangle are perpendicular, then the rectangle i s  
a square. To establish this, we place the rectangle in  the convenient position shown 
in Fig. 1 . 14 .  The slopes of the diagonals are clearly b/a and - b/a. If these di
agonals are perpendicular, then 

b a 
a b ' a2 - b2 = 0, and (a + b)(a - b) = 0. 

(0, 0) 

Fii:ure 1 . 1 4  
(a, 0) x 

The last equation implies that a = b, so the rectangle is a square. 

PROBLEMS 

Plot each pair of points, draw the line they determine, 
and compute the slope of this line: 
(a) ( -3, I ), (4, - 1 ) ; (b) (2, 7), ( - 1 , - 1 ) ;  
(c)  (-4, 0), (2, 1 ) ;  (d) (-4, 3 ) ,  (5 ,  -6) ; 
(e) (-5, 2), (7, 2); (f) (0, -4), ( 1 , 6). 

2 Plot each of the following sets of three points, and use 
slopes to determine in each case whether all three points 
lie on a single straight line: 
(a) (5, - I ), (2, 2), (-4, 6); 
(b) ( 1 , I ), (-5, -2), (5, 3); 
(c) (4, 3), ( IO, 1 4) ,  ( - 2, - 8);  
(d) ( - 1 ,  3), (6, - 1 ), ( -9, 7). 

3 Plot the points ( - 1 ,  - 1 ), (9, 1 ), (8,  6), and (-2, 4), and 
show that they are the vertices of a rectangle. 

4 Plot the points (-3 ,  8), (3, 5), (0, - 1 ) ,  and (-6, 2), and 
show that they are the vertices of a square. 

5 Plot each of the following sets of three points, and use 
slopes to determine in each case whether the points form 
a right triangle: 
(a) (2, -3), (5, 2), (0, 5); 
(b) ( 10, -5), (5,  4), (-7, -2); 
(c) (8 ,  2) , ( - ! ,  - 1 ), (2, -7); 
(d) (-2, 6), (3, -4), (8, 1 1 ) . 

6 Write the equation of each line in Problem I using the 
point-slope form; then rewrite each of these equations in 
the form y = mx + b and find the y-intercept. 

7 Find the equation of the line: 
(a) through (2, -3) with slope -4; 
(b) through (-4, 2) and (3 ,  - 1 ) ;  
(c) with slope t and y-intercept -4; 
(d) through (2, -4) and parallel to the x-axis; 
( e) through ( 1 ,  6) and parallel to the y-axis; 
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(f) through (4, -2) and parallel to x + 3y = 7 ;  
(g) through (5 ,  3)  and perpendicular to  y + 7 = 2x; 
(h) through (-4, 3) and parallel to the line determined 

by (-2, - 2) and ( I ,  0); 
(i) that is the perpendicular bisector of the segment join

ing ( I ,  - 1 ) and (5, 7); 
(j) through ( -2, 3) with inclination 135°. 

8 If a line crosses the x-axis at the point (a, 0), the num
ber a is called the x-intercept of the line. If a line has 
x-intercept a -=f. 0 and y-intercept b -=f. 0, show that its 
equation can be written as 

� + l'. = I a b · 

This is called the intercept form of the equation of a line. 
Notice that it is easy to put y = 0 and see that the line 
crosses the x-axis at x = a, and to put x = 0 and see that 
the line crosses the y-axis at y = b. 9 Put each equation in intercept form and sketch the cor
responding line: 
(a) 5x + 3y + 15 = O; (b) 3x = 8y - 24; 
(c) y = 6 - 6x; (d) 2x - 3y = 9. 

10 The set of all points (x, y) that are equally distant from 
the points P1 = ( - 1 ,  -3) and P2 = (5, - 1 ) is the per
pendicular bisector of the segment joining these points. 
Find its equation 
(a) by equating the distances from (x, y) to P1 and P2, 

and simplifying the resulting equation; 
(b) by finding the midpoint of the given segment and us

ing a suitable slope. 

1 1  Sketch the lines 3x + 4y = 7 and x - 2y = 6 ,  and find 
their point of intersection. Hint: Their point of intersec
tion is that point (x, y) whose coordinates satisfy both 
equations simultaneously. 

1 2  Find the point of intersection of each of the following 
pairs of lines: 
(a) 2x + 2y = 2, y = x - 1 ;  
(b) !Ox + 7y = 24, 1 5x - 4y = 7; 
(c) 3x - Sy = 7, 1 5y + 25 = 9x. 

13 Let F and C denote temperature in degrees Fahrenheit 
and degrees Celsius. Find the equation connecting F and 
C, given that it is l inear and that F = 32 when C = 0, 
F = 2 1 2  when C = 100. 

14 Find the values of the constant k for which the line 
(k - 3)x - (4 - k2)y + k2 - 7k + 6 = 0 is 
(a) parallel to the x-axis; 
(b) parallel to the y-axis; 
(c) through the origin. 

I S  Show that the segments joining the midpoints of adja
cent sides of any quadrilateral form a parallelogram. 

16 Show that the lines from any vertex of a parallelogram 
to the midpoints of the opposite sides trisect a diagonal. 

17 Let (0, 0), (a, 0), and (b, c) be the vertices of an arbi
trary triangle placed so that one side lies along the pos
itive x-axis with its left endpoint at the origin. If the 
square of this side equals the sum of the squares of the 
other two sides, use slopes to show that the triangle is a 
right triangle. Thus, the converse of the Pythagorean the
orem is also true. 

The coordinate plane or xy-plane is often called the Cartesian plane, and x and 
y are frequently referred to as the Cartesian coordinates of the point P = (x, y). 
The word "Cartesian" comes from Cartesius, the Latinized name of the French 
philosopher-mathematician Descartes, who is considered one of the two princi
pal founders of analytic geometry.* The basic idea of this subject is quite sim
ple: Exploit the correspondence between points and their coordinates to study 
geometric problems-especially the properties of curves-with the tools of al
gebra. The reader will see this idea in action throughout this book. Generally 
speaking, geometry is visual and intuitive, while algebra is rich in computational 
machinery, and each can serve the other in many fruitful ways. 

1 . 4  
CIRCLES AND 
PARABOLAS.  
DESCARTES 
AND FERMAT 

Most people who have had a course in algebra have learned that an equation 

F(x, y) = 0 ( 1 )  

usually determines a curve (its graph) which consists of all points P = (x, y) 
whose coordinates satisfy the given equation. Conversely, a curve defined by 
some geometric condition can usually be described algebraically by an equation 

*The other (also French) was Fermat, a less well known figure than Descartes but a much greater 
mathematician. The names of these two men are pronounced "Fair-MA" and "Day-CART." 
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of the form ( 1 ) .  It is intuitively clear that straight lines are the simplest curves, 
and our work in Section 1 .3 demonstrated that straight lines in the coordinate 
plane correspond to linear equations in x and y. We now develop algebraic de
scriptions of several other curves that will be useful as illustrative examples in 
the next few chapters. 

CIRCLES 

The distance formula of Section 1 .2 is often useful in finding the equation of a 
curve whose geometric definition depends on one or more distances. 

One of the simplest curves of this kind is a circle, which can be defined as the 
set of all points at a given distance (the radius) from a given point (the center). 
If the center is the point (h, k) and the radius is the positive number r (Fig. 1 . 1 5),  
and if (x, y) is an arbitrary point on the circle, then the defining condition says 
that 

Y(x - h)2 + (y - k)2 = r. 

It is convenient to eliminate the radical sign by squaring, which yields 

(x - h)2 + (y - k)2 = ,.2. (2) 
This is therefore the equation of the circle with center (h, k) and radius r. In par
ticular, if the center happens to be the origin, so that h = k = 0, then 

x2 + y2 = r2 

is the equation of the circle. 

Example 1 If the radius of a circle is VlO and its center is ( - 3, 4 ), then its 
equation i s  

(x + 3)2 + (y  - 4)2 = 10. 

Notice that the coordinates of the center are the numbers subtracted from x and 
y in the parentheses. 

Example 2 An angle inscribed in a semicircle is necessarily a right angle.* To 
prove this algebraically, let the semicircle have radius r and center at the origin 
(Fig. 1 . 1 6), so that its equation is x2 + y2 = r2 with y � 0. The inscribed angle 
is a right angle if and only if the product of the slopes of its sides is - 1 , that is, 

_Y_ . _Y_ = - 1
. 

x - r  x + r  
(3) 

This is easily seen to be equivalent to x2 + y2 = r2, which is  certainly true for 
any point (x, y) on the semicircle, so (3) is  true and the angle is a right angle. 

It is clear that any equation of the form (2) is easy to interpret geometrically. 
For instance, 

'According to tradition, this is  one of the theorems discovered and proved by Thales. 
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(x - 5)2 + (y + 2)2 = 16 (4) 

is immediately recognizable as the equation of the circle with center (5, - 2) and 
radius 4, and this information enables us to sketch the graph without difficulty. 
However, if the equation has been roughly treated by someone who likes to "sim
plify" things algebraically, then it might have the form 

x2 + y2 - I Ox + 4y + 1 3  = 0. (5) 

This is an equivalent but scrambled version of ( 4 ), and its constants tell us noth
ing directly about the nature of the graph. To find out what the graph is, we must 
"unscramble" by completing the square. * To do this, we begin by rewriting equa
tion (5) as 

(x2 - 1 0x + ) + (y2 + 4y +  ) = - 1 3 ,  

with the constant term moved to the right and blank spaces provided for the in
sertion of suitable constants. When the square of half the coefficient of x is added 
in the first blank space and the square of half the coefficient of y in the second, 
and the same constants are added to the right side to maintain the balance of the 
equation, we get 

(x2 - I Ox + 25) + (y2 + 4y + 4) = - 1 3  + 25 + 4 

or 

(x - 5)2 + (y + 2)2 = 1 6 . (6) 
Exactly the same process can be applied to the general equation of the form (5), 
namely, 

x2 + y2 + Ax + By + C = 0, (7) 

but there is little to be gained by writing out the details in this general case. How
ever, it is important to notice that if the constant term 1 3  in (5) is replaced by 
29, then (6) becomes 

(x - 5)2 + (y + 2)2 = 0, 

whose graph is the single point (5, -2).  Similarly, if this constant term is re
placed by any number greater than 29, then the right-hand side of (6) becomes 
negative and the graph is empty, in the sense that there are no points (x, y) in the 
plane whose coordinates satisfy the equation. We therefore see that the graph of 
(7) is sometimes a circle, sometimes a single point, and sometimes empty- de
pending entirely on the constants A, B, and C. 

PARABOLAS 

The definition we use for a parabola is the following (Fig.  1 . 1 7a): It is the curve 
consisting of all points that are equally distant from a fixed point F (called the 
focus) and a fixed line d (called the directrix). The distance from a point to a line 
is always understood to mean the perpendicular distance. 

'The form of the equation (x + a)2 = x2 + 2ax + a2 is the key to the process of completing the 
square. Notice that the right side is a perfect square-the square of x + a -precisely because its 
constant term is the square of half the coefficient of x. 

1 7  
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Figure 1.17 Parabola. 

Figure 1.18 Various parabolas. 
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To find a simple equation for a parabola, we place it in the coordinate system 
as shown in Fig. l . 1 7b, with the focus and directrix equally far above and below 
the x-axis .  The line through the focus perpendicular to the directrix is called the 
axis of the parabola; this is the axis of symmetry of the curve, and is the y-axis 
in the figure. The point on the axis halfway between the focus and the directrix 
is called the vertex of the parabola; in the figure this point is the origin. If (x, y) 
is an arbitrary point on the parabola, the condition expressed i n  the definition is 
stated algebraically by the equation 

Vxz + <y - p)z = y + p. (8) 
On squaring both sides and simplifying, we obtain 

x2 + y2 _ 2py + pz = y2 + 2py + p2 

or 

x2 = 4py. (9) 

These steps are reversible, so (8)  and (9) are equivalent and (9) is the equation 
of the parabola whose focus and directrix are located as shown in Fig. 1 . 17 b. No
tice particularly that the positive constant p in (9) is the distance from the focus 
to the vertex, and also from the vertex to the directrix. 

If we change the position of the parabola relative to the coordinate axes, we 
naturally change its equation. Three other positions are shown in Fig. 1 . 1 8, each 
with its corresponding equation and with p > 0 in each case. Students should 

y 

y = p 

x2 = -4py 

I 
x = -p l  I I I 

y 

y2 = 4px 

x 

y I I 
I x  = p  I 
I 
I 

y2 = -4px 
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verify the correctness of all three equations. We also point out that each of these 
four equations can be put in the form 

y = ax2 ( 10) 
or 

x = ay2. 

These forms conceal the constant p, with its geometric significance, but as com
pensation they are more useful in visualizing the overall appearance of the graph. 
For instance, in ( 1 0) the variable x is squared but y is not. This tells us that as a 
point (x, y) moves out along the curve, y increases much faster than x, and so the 
curve opens in the y-direction-upward or downward, according as a is positive 
or negative. It also tells us that the graph is symmetric with respect to the y-axis, 
because x is squared, and therefore we get the same number y for any number x 
and its negative. 

Example 3 What is the graph of the equation 1 2x + y2 = O? If this is put in the 
form y2 = - 12x and compared with the equation on the right in Fig. 1 . 1 8, it is 
clear that the graph is a parabola with vertex at the origin and opening to the left. 
Since 4p = 1 2  and therefore p = 3 ,  the point (-3 ,  0) i s  the focus and x = 3 is 
the directrix. 

Example 4 The graph of y = 2x2 is  evidently a parabola with vertex at the ori
gin and opening upward. To find its focus and directrix ,  the equation must be 
rewritten as x2 = iY and compared with equation (9). This yields 4p = t, so p = t. The focus is therefore (0, t), and the directrix is y = -t. 

We illustrate one last point about parabolas by examining the equation 

y = x2 - 4x + 5 .  

If this is written as 

y - 5 = x2 - 4x, 
and if we complete the square on the terms involving x, then the result is  

( 1 1 )  

y - 1 = (x - 2)2. ( 1 2) 
If we now introduce the new variables 

then equation ( 1 2) becomes 

x = x - 2, 
y = y - 1 ,  

Y =  X2. 

( 13) 

The graph of this equation is clearly a parabola opening upward with vertex at 
the origin of the XY coordinate system. By equations ( 1 3) ,  the origin in the XY 
system is the point (2, 1 )  in the xy system, as shown in Fig. 1 . 19. What has hap
pened here is that the coordinate system has been shifted or translated to a new 

y 

position in the plane, and the axes renamed, and equations ( 13) express the re- Figure 1 . 1 9  

19 

x 

x 
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lation between the coordinates of an arbitrary point with respect to each of the 
two coordinate systems. In exactly the same way, any equation of the form 

y = ax2 + bx + c, a =f. 0, 
represents a parabola with vertical axis which is congruent to y = ax2 and opens 
up or down according as the number a is positive or negative. Similarly, the equa
tion 

X = ay2 + by + C, a =f. 0, 
represents a parabola with horizontal axis which opens to the right or left ac
cording as a > 0 or a < 0. 

In our work up to this stage we have used the static concept of a curve as a 
certain set of points or geometric figure. It is often possible to adopt the dynamic 
point of view, in which a curve is thought of as the path of a moving point. For 
instance, a circle i s  the path of a point that moves in such a way that it main
tains a fixed distance from a given point. When this mode of thought is used
with its advantage of greater intuitive vividness-a curve is often called a locus. 
Thus, a parabola is the locus of a point that moves in such a way that it main
tains equal distances from a given point and a given line. 

IAI NOTE ON DESCARTES AND FERMAT m Ne the<e •ome people •mong "' who foe! '"d •lw•y• follow the ne="''Y onl« in deduoing one 
that what passes for "knowledge" in our time is an uncriti- thing from another, there is nothing so remote that we 
cal mishmash of sense and nonsense, fact and guesswork, cannot reach it, nor so hidden that we cannot discover it. 
gossip and hearsay and clumsy propaganda-mostly ac
quired from wishful thinking, lazy reasoning, inadequate 
senses, credulous parents, overworked teachers, and self
serving institutions? This was also the opinion of the 23-
year-old Frenchman Rene Descartes ( 1 596-1650) on Nov. 
1 0, 1619. For this was the day above all others when the 
modern world began, our world of victorious rationality and 
triumphant science. 

On this day-a  famous day in the history of thought
in a state of exhaustion and feverish excitement, Descartes 
found the method he sought for extending the certainty of 
mathematics to all other fields of knowledge: 

The long chains of simple reasoning which geometers use 
to arrive at their most difficult conclusions made me be
lieve that all things which are the objects of human knowl
edge are similarly interdependent; and that if we will only 
abstain from assuming something to be true which is not, 

This is a quotation from Part 2 of his Discourse on Method, 
a short and highly readable book published in 1 637 which 
is commonly considered to mark the birth of modern phi
losophy. In this work he rejected the sterile scholasticism 
prevailing at the time and set himself the task of rebuilding 
knowledge from the ground up, on a foundation of reason 
and science instead of authority and faith. He provided the 
fresh points of view needed for the vigorous development 
of the Scientific Revolution, whose influence has been the 
dominant fact of modern history. Further, in an appendix to 
the Discourse on his ideas about geometry, he foreshadowed 
the new forms of mathematics-analytic geometry and cal
culus-without which this Revolution would have died in 
infancy. It was no exaggeration for the great American ju
rist Oliver Wendell Holmes to write: "Descartes commanded 
the future from his study more than Napoleon from his 
throne." 
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Descartes was a brilliant man-and enormously influen
tial with a corresponding ego-but he was not quite as bril
liant as he thought. His contemporary Pierre Fermat 
( 1 60 1- 1665) was a man of genius and perhaps the greatest 
mathematician of the seventeenth century; and when the two 
men collided on issues of science or mathematics, it was al
ways Descartes's nose that was bloodied. 

By profession Fermat was a lawyer and a member of the 
provincial supreme court in Toulouse, a city in southwest
ern France. However, his hobby and private passion was 
mathematics, and his casual creativity was one of the won
ders of the age to the few who knew about it. His letters 
suggest that he was a shy and retiring man, courteous and 
affable but slightly remote. His outward life was as quiet 
and orderly as one would expect of a provincial judge with 
a sense of responsibility toward his work. Fortunately this 
work was not too demanding, and left ample leisure for the 
extraordinary inner life that flourished by l amplight in the 
silence of his study at night. 

He invented analytic geometry in 1629 and described his 
ideas in a short work that circulated in manuscript from early 
1637 on, but was not published in his lifetime. The credit 
for this achievement has usually been given to Descartes on 
the basis of his Geometry, which was published late in 1637 
as an appendix to his  Discourse on Method. However, noth
ing that we would recognize as analytic geometry can be 
found in Descartes's essay, except perhaps the idea of using 
algebra as a language for discussing geometric problems. 
Fermat had the same idea but did something important with 
it: He introduced perpendicular axes and found the general 
equations of straight lines and circles and the simplest equa
tions of parabolas, ellipses, and hyperbolas; and he further 
showed in a fairly complete and systematic way that every 
first- or second-degree equation can be reduced to one of 
these types. Descartes certainly knew some analytic geom
etry by the late 1 630s; but since he had possession of the 
original manuscript of Fermat's short essay (of which Fer
mat himself did not bother to keep a copy) several months 
before the publication of his own Geometry, it is likely that 
much of what he knew he learned from Fermat. 

The invention of calculus is usually credited to Newton 
and Leibniz, whose ideas and methods were not published 
until about 20 years after Fermat's death. However, if dif
ferential calculus is considered to be the mathematics of 
finding maxima and minima of functions and drawing tan
gents to curves, then Fermat was the true creator of this sub
ject as early as 1629, more than a decade before either New
ton or Leibniz was born. With his usual honesty in such 
matters, Newton stated-in a letter that was discovered only 
in 1 934-that his own early ideas about calculus came di
rectly from "Fermat's way of drawing tangents." 

Fermat was also the founder of mathematical optics and 
the joint founder (in correspondence with Blaise Pascal) of 
the theory of probability. But to him all these activities were 
of minor importance compared with the consuming passion 
of his life, the theory of numbers. It was here that his ge
nius shone most brilliantly, for his insight into the proper
ties of the familiar but mysterious positive integers has per
haps never been equaled. He was the sole and undisputed 
founder of the modern era in this important branch of pure 
mathematics, without any rivals and with few followers un
til the next century. 

To illustrate the nature of his achievement in number the
ory, we mention his profound and beautiful four squares the
orem: Every positive integer is either a square or the sum of 
two, three, or four squares. Like many of his discoveries, 
this was jotted down in the margin of one of his books, and 
his proof went unrecorded and was lost forever when he 
died. A proof was found at last in 1 772-more than a cen
tury after Fermat's death-as the culmination of 40 years 
of effort by one of the greatest mathematicians of the eigh
teenth century. As we see, mathematicians are people who 
are not only irresistibly attracted by truths of this kind but 
also cannot rest until they know why they are true. 

Without visibly trying, and as naturally as a hawk sus
tains itself on the wind, Fermat attained immortal fame 
among mathematicians. There are many reasons for this im
mortality, one of the most interesting being the legacy of 
what is now known as Fermat 's last theorem: If n > 2, then 
the equation x" + yn = zn has no positive integer solutions 
x, y, z. Again, he wrote this statement in the margin of a 
book he was studying, near a passage dealing with the fact 
that x2 + y2 = z2 has many solutions- 3, 4, 5 and 5, 1 2, 1 3, 
among others. He then added the tantalizing remark, "I have 
found a truly wonderful proof which this margin is too nar
row to contain." Unfortunately no proof has ever been dis
covered by anyone else, and Fermat's last theorem remains 
to this day one of the most baffling unsolved problems of 
mathematics.* 

*Late report from the cutting edge: It appears that Fermat's last the
orem may have been proved by Andrew Wiles of Princeton Uni
versity. This was announced on June 23, 1 993, in the last of three 
lectures Wiles gave at Cambridge University, in England. The proof 
is about 200 pages long and follows a tortuous, roundabout path 
through many tangled jungles of sophisticated pure mathematics. 
The careful checking of every line of this proof may take years to 
carry out. It is estimated that perhaps a tenth of l percent of math
ematicians could understand all details of the proof-and this def
initely does not include the present writer. If Wiles's proof checks 
out, the challenge will still remain of discovering a one- or two
page (or even a three- or four-page) proof of Fermat's one-sentence 
theorem. For further details, see Newsweek, July 5, 1 993, or Scien
tific American, September 1 993. 
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PROBLEMS 

1 Find the equation of the circle with the given point as 
center and the given number as radius: 
(a) (4, 6), 3 ; (b) (-3, 7), Vs; 
(c) (-5 ,  - 9), 7; (d) ( 1 ,  -6), \/2; 
(e) (a, 0), a; (f) (0, a), a. 

2 In each case find the equation of the circle determined 
by the given conditions :  
(a) Center (2, 3 )  and passes through (- ! ,  - 2). 
(b) The ends of a diameter are (-3, 2) and (5, - 8) .  
( c) Center ( 4, 5) and tangent to the x-axis. 
(d) Center ( -4, I) and tangent to the line x = 3 .  
(e) Center (-2, 3) and tangent to the line 4y - 3x  + 2 = 

0. 
(f) Center on the line x + y = I ,  passes through ( - 2, I )  

and ( -4, 3). 
(g) Center on the line y = 3x and tangent to the line x = 

2y at the point (2, 1 ). 
3 In each of the following, determine the nature of the 

graph of the given equation by completing the square: 
(a) x2 + y2 - 4x - 4y = 0. 
(b) x2 + y2 - 1 8x - 14y + 130 = 0. 
(c) x2 + y2 + 8x + I Oy + 40 = 0. 
(d) 4x2 + 4y2 + 12.x - 32y + 37 = 0. 
(e) x2 + y2 - 8x + 1 2y + 53 = 0. 
(f) x2 + y2 - v2x + \/2y + I = 0. 
(g) x2 + y2 - 16x + 6y - 48 = 0. 

4 Find the equation of the locus of a point P = (x, y) that 
moves in accordance with each of the following condi
tions, and sketch the graphs: 
(a) The sum of the squares of the distances from P to 

the points (a, 0) and (-a, 0) is 4b2, where b � 
a/Yl > 0. 

(b) The distance of P from the point (8, 0) is twice its 
distance from the point (0, 4). 

5 The quadratic formula for the roots of the quadratic equa
tion ax2 + bx + c = 0 is 

-b ::!:: Yb2 - 4ac 
x =  

2a 
Derive this formula from the equation by dividing 
through by a, moving the constant term to the right side, 

and completing the square. Under what circumstances 
does the equation have distinct real roots, equal real roots, 
and no real roots? 

6 At what points does the circle x2 + y2 - 8x - 6y -
1 1  = 0 intersect 
(a) the x-axis? (b) the y-axis? 
( c) the line x + y = l ?  
Sketch the figure, and use this picture to judge whether 
your answers are reasonable or not. 

7 Find the equations of all lines that are tangent to the cir
cle x2 + y2 = 2y and pass through the point (0, 4). Hint: 
The line y = m.x + 4 is tangent to the circle if it inter
sects the circle at only one point. 

8 Find the focus and directrix of each of the following 
parabolas, and sketch the curves: 
(a) y2 = 12.x; (b) y = 4x2; 
(c) 2.x2 + 5y = O; (d) 4x + 9y2 = O; 
(e) x = -2y2; (f) 12y = -x2; 
(g) !6y2 = x; (h) 24x2 = y; 
(i) y2 + 8y - 16x = 1 6; (j) x2 + 2x + 29 = 7y. 

9 Sketch the parabola and find its equation if it has 
(a) vertex (0, 0) and focus (-3,  O); 
(b) vertex (0, 0) and directrix y = - 1 ; 
(c) vertex (0, 0) and directrix x = -2; 
(d) vertex (0, 0)  and focus (0, -f); 
(e) directrix x = 2 and focus ( - 4, O); 
(f) focus (3, 3) and directrix y = - I . 

10 Find the focus and directrix of each of the following 
parabolas, and sketch the curves: 
(a) y = x2 + I ;  (b) y = (x - 1 )2; 
(c) y = (x - 1)2 + I ;  (d) y = x2 - x. 

1 1  Water squirting out of a horizontal nozzle held 4 ft above 
the ground describes a parabolic curve with the vertex at 
the nozzle. If the stream of water drops I ft in the first 
1 0  ft of horizontal motion, at what horizontal distance 
from the nozzle will it strike the ground? 

1 2  Show that there i s  exactly one line with given slope m 
which is tangent to the parabola x2 = 4py, and find its 
equation. 

1 3  Prove that the two tangents to a parabola from any point 
on the directrix are perpendicular. 

1 . 5 
THE CONCEPT OF 

A FUNCTION 

The most important concept i n  all of mathematics i s  that o f  a function. No mat
ter what branch of the subject we consider- algebra, geometry, number theory, 
probability, or any other- it almost always turns out that functions are the pri
mary objects of investigation. This is particularly true of calculus, in which most 
of our work will be concerned with constructing machinery for the study of func
tions and applying this machinery to problems in science and geometry. 
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What is a function? Briefly -and we expand on this below- if x and y are 
two variables that are related in such a way that whenever a permissible numer
ical value is assigned to x, there is determined one and only one corresponding 
numerical value for y, then y is called a function of x. 

Example I (a) If a rock is dropped from the edge of a cliff, and it falls s feet 
in t seconds, then s is a function of t. It is known from experiment that (approx
imately) s = 1 6t2. 

(b) The area A of a circle is a function of its radius r. It is known from geom
etry that A = 1Tr2. 

(c) If the manager of a bookstore buys n books from a publisher at $ 1 2  per 
copy and the shipping charges are $35, then his cost C for these books is a func
tion of n given by the formula C = 1 2n + 35 .  

We continue building our understanding of the concept of  a function by con
sidering an example directly related to our work in the preceding section. 

Example 2 We examine the equation 

y = x2 
and its corresponding graph, which we know is a parabola that opens upward 
and has its vertex at the origin (Fig. 1 .20). In Section l .4 we thought of this equa
tion as a relation between the variable coordinates of a point (x, y) moving along 
the curve. We now shift our point of view, and instead think of it as a formula 
that provides a mechanism for calculating the numerical value of y when the nu
merical value of x is given. Thus, y = l when x = 1, y = 4 when x = 2, y = ± 
when x = t, y = I when x = - 1 , and so on. The value of y is therefore said to 
depend on, or to be a function of, the value of x. This dependence can be ex
pressed in functional notation by writing 

Y = f(x) where f(x) = x2. 
The symbol f(x) is read "f of x," and the letter f represents the rule or process
squaring, in this particular case-which is applied to any number x to  yield the 
corresponding number y. The numerical examples just given can therefore be 
written as f( l )  = l , f(2) = 4, J(t) = ±. and f(- 1) = 1. The meaning of this no
tation can perhaps be further clarified by observing that 

f(x + I ) = (x + 1 )2 = x2 + 2x + I and f(x3) = (x3)2 = x6; 
that is, the rule f simply produces the square of whatever quantity follows it in 
parentheses. 

This example suggests the general concept of a function as we shall use it in 
most of our work. We formulate this concept as follows. 

Let D be a given set of real numbers. A function f defined on D is a formula, 
or rule, or law of correspondence that assigns a single real number y to each num
ber x in D. The set D of allowed values of x is called the domain (or domain of 
definition) of the function, and the set of corresponding values of y is called its 
range. The number y that is  assigned to x by the function! is usually writtenf(x) 
-so that y = f(x) -and is called the value off at x. It is customary to call x the 

2 3  

y 

y x2 

- I  x x 

Figure 1.20 
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independent variable because it is free to assume any value in the domain, and 
to call y the dependent variable because its numerical value depends on the choice 
of x. 

There is nothing illegal or immoral about using other letters than x and y to 
denote the variables. In Example 1, for instance, the independent variables are t, 
r, and n, and the dependent variables are s, A, and C. Also, as we see in the next 
example, there is nothing sacred about the letter f, and other letters can be used 
to designate functions. 

Example 3 (a) If a function f(x) is defined by the formula f(x) = x3 - 3x2 + 
5, then f(2) = 23 - 3 · 22 + 5 = 1 ,  f(O) = 5 ,  and f(- 2) = ( - 2)3 - 3(-2)2 + 
5 = - 1 5 .  

(b) I f  a function g(x) i s  defined by the formula g(x) = Vx, then g( I )  = VI = 

l , g(4) = v'4 = 2, and a calculator tells us that g( lO) = VlO = 3 . 1 62277660 1 7, 
approximately. In this case the only allowed values of x are those for which x � 
0, because square roots of negative numbers are not real numbers. 

(c) If a function h(x) is defined by the formula h(x) = 1 /(4 - x), then h( l )  = 
1 /(4 - 1 )  = }, h(2) = 1 /(4 - 2) = ±, and h(4) = 1 /(4 - 4) = � does not exist, 
because division by zero is not permitted in algebra. Thus, x = 4 is the only value 
of x that is not allowed. 

We point out that a function is not fully known until we know precisely which 
real numbers are permissible values for the independent variable x. The domain 
is therefore an indispensable part of the concept of a function. In practice, how
ever, most of the specific functions we deal with are defined only by formulas 
like the ones in Example 3, and nothing is said about the domain. Unless we state 
otherwise, the domain of such a function is understood to be the set of all real 
numbers x for which the formula makes sense. In part (a) of Example 3, this 
means all real numbers ; in (b), all real numbers x � O; and in (c), all real num
bers except x = 4. 

The reader is undoubtedly acquainted with the idea of the graph of a function 
f: If we imagine the domain D spread out on the x-axis in the coordinate plane 
(Fig. l .2 l a) ,  then to each number x in D there corresponds a number y = f(x), 
and the set of all the resulting points (x, y) in the plane is the graph. Graphs are 
pictures of functions that enable us to see these functions in their entirety, and 
we will examine many in the next section. 

Many people find it helpful to visualize a function by means of a machine di
agram, as shown in Fig. l .2 l b. Here a number x in the domain is fed into the 
machine, where it is acted upon by the specific instructions built into the func
tion f, and this action produces the resulting number f(x). The domain is the set 
of all permissible inputs x, and the range is the set of all outputs j(x). 

Another way to picture a function is by an arrow diagram, in which the do
main is thought of as a certain set of points on the page and the range as another 
set of points (Fig. 1 .2 l c) .  The arrow shows that x has j(x) corresponding to it, 
and the functionf is the complete collection of all these correspondences thought 
of as a mapping of the first set onto the second. 

We mention machine diagrams and arrow diagrams only to help students who 
may be having difficulty grasping the concept of a function. The basic tool for 
visualizing functions throughout our work will always be graphs. Also, we will 
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see in Section 2. 1 that graphs are essential for formulating the main purposes of 
calculus. 

Originally, the only functions mathematicians considered were those defined 
by formulas. This led to the useful intuitive idea that a function f "does some
thing" to each number x in its domain to "produce" the corresponding number Y = f(x). Thus, if 

y = f(x) = (x3 + 4)2, 
then y is the result of applying certain specific operations to x: Cube it, add 4, 
and square the sum. On the other hand, the following is also a perfectly legiti
mate function which is defined by a verbal prescription instead of a formula: 

Y = f(x) = g if x is a rational number, 
if x is an irrational number. 

All that is really required of a function is that y be uniquely determined- in any 
manner whatever- when x is specified; beyond this, nothing is said about the 
nature of the rule f In discussions that focus on ideas instead of specific func
tions, such broad generality is often an advantage. We will understand this bet
ter in Chapter 6, where one of our problems is to discover what conditions must 
be imposed on an arbitrary function to guarantee that its integral exists. 

An additional remark on usage is perhaps in order. Strictly speaking, the word 
"function" refers to the rule of correspondence f that assigns a unique number 
y = f(x) to each number x in the domain. Purists are fond of emphasizing the 
distinction between the function f and its value f(x) at x. However, once this dis
tinction is clearly understood, most people who work with mathematics prefer to 
use the word loosely and speak of "the function y = f(x)," or even "the function 
f(x)." 

The functions we work with in calculus are often composite (or compound) 
functions built up out of simpler ones. As an illustration of this idea, consider 
the two functions 

j(x) = x2 + 3x and g(x) = x2 - 1 .  

25 
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The single function that results from first applying g to x and then applying f to 
g(x) is 

f(g(x)) = f(x2 - I ) = (x2 - 1 )2 + 3(x2 - l ) 

= x4 + x2 - 2. 
Notice that f(x2 - 1 )  is obtained by replacing x by the entire quantity x2 - 1 in 
the formula/(x) = x2 + 3x. The symbol /(g(x)) is read "f of g of x" and is called 
a function of a function. If we apply the functions in the other order (first f, then 
g), we have 

g(f(x)) = g(x2 + 3x) = (x2 + 3x)2 - I 

= x4 + 6x3 + 9x2 - 1 ,  
so f(g(x)) and g(f(x)) are different. I n  special cases it can happen that f(g(x)) 
and g(f(x)) are the same function of x; for example, if f(x) = 2x - 3 and g(x) = 
-x + 6: 

f(g(x)) = f(-x + 6) = 2(-x + 6) - 3 = -2x + 9, 
g(f(x)) = g(2x - 3) = -(2x - 3) + 6 = -2x + 9. 

In each of these examples two given functions are combined into a single com
posite function. In most practical work we proceed in the other direction, and 
dissect composite functions into their simpler constituents. For example, if 

y = (x3 + 1 )7, 
we can introduce an auxiliary variable u by writing u = x3 + 1 and decompose 
the above function into the two simpler functions 

y = u7 and LI =  x3 + J .  
We shall see that decompositions of this kind are often useful in the problems of 
calculus. 

In practice, functions often arise from algebraic relations between variables. 
Thus, an equation involving x and y determines y as a function of x if the equa
tion is equivalent to one that expresses y uniquely in terms of x. For example, the 
equation 4x + 2y = 6 can be solved for y, y = 3 - 2x, and this second equation 
defines y as a function of x. However, in some cases it happens that the process 
of solving for y leads to more than one value of y. For example, if the equation 
is y2 = x, we get y = :±:Vx. Since this gives two values of y for each positive 
value of x, the equation y2 = x does not by itself determine y as a function of x. 
If we wish, we can split the formula y = :±:Vx into two separate formulas, y = 

Vx and y = - Vx. Each of these formulas defines y as a function of x, so that 
out of one equation we obtain two functions. 

The number of distinct individual functions is clearly unlimited. However, most 
of those appearing in this book are relatively simple and can be classified into a 
few convenient categories. It may help students to orient themselves if we give 
a rough description of these categories in order of increasing complexity. 

POLYNOMIALS 

The simplest functions are the powers of x with nonnegative integer exponents, 

l , x, x2, x3, . . .  , x11, • • • •  
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If a finite number of these are multiplied by constants and the results are added, 
we obtain a general polynomial, 

p(x) = ao + a,x + a2x2 + a3x3 + · · · + anxn. 
The degree of a polynomial is the largest exponent that occurs in it; if an i= 0, 
the degree of p(x) is n. The following are polynomials of degrees I ,  2, and 3 :  

y = 3x - 2 ,  y = I  - 2x + x2, y = x - x3. 
Polynomials can evidently be multiplied by constants, added, subtracted, and 
multiplied together, and the results are again polynomials. 

RATIONAL FUNCTIONS 

If division is also allowed, we pass beyond the polynomials into the more in
clusive class of rational functions, such as 

x 
x2 + I ' 

x + 2  
x - 2 ' 

x3 - 4x2 + x + 6 
x2 + x + I 

The general rational function is a quotient of polynomials, 

ao + a,x + a2x2 + · · · + a11x11 
bo + b,x + b2x2 + · · · + bmxm ' 

I x + -. x 

and a specific function is rational if it is (or can be expressed as) such a quo
tient. If the denominator here is a nonzero constant, this quotient is itself a poly
nomial. Thus, the polynomials are included among the rational functions. 

ALGEBRAIC FUNCTIONS 

If root extractions are also allowed, we pass beyond the rational functions into 
the larger class of algebraic functions, which will be properly defined in a later 
chapter. Some simple examples are 

y =  Vx, y = x + Vx2 + 1, y =  �· y = 4!x+l , v � 
If we replace the root symbols by fractional exponents in accordance with the 
rules of algebra, then these functions can be written 

y = x1 12 , y = x + (x2 + 1 ) 1 13, y = (1 _ x)- 112 , = (�) 1/4 y x - 1 . 

TRANSCENDENTAL FUNCTIONS 

Any function that is not algebraic is called transcendental. The transcendental 
functions studied in calculus are the trigonometric, inverse trigonometric, expo
nential, and logarithm functions. We do not assume that students have any pre
vious knowledge of these functions. All will be carefully explained later. 

We conclude this section with a brief review of some important functions aris
ing in geometry. A ready grasp of the geometric formulas given in Fig. 1 .22 is  

27 
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Circle 
A =  .,,.,2 

Sphere 
V =  '.!. rrrl 3 

T 
h 

- - - -, - - l 
.._ _ _ 

Cone 

Figure 1 .22 Geometric formulas. c = 2rrr A =  4rrr2 

Cylinder 
V = rrr2h 
A =  2rrrh 

V = � rrr2h 

A = rrrs 

PROBLEMS 

If f(x) = 5x2 - 3, find: 
(a) j( - 3) ;  
(c) j(O); 
(e) j(a + 3) ;  

x - 1 2 If g(x) = --
1 
, find: 

x + 
(a) g(3) ;  

(c) g(f ) ;  

(e) g(a + I ) ; 

(b) j(2); 

essential for coping with many examples and problems in the following chap
ters. These formulas-for the area and circumference of a circle, the volume and 
total surface area of a sphere, and the volume and lateral surface area of a cylin
der and a cone-should be understood if possible, but remembered in any event. 
Each of the first four formulas, those for the circle and the sphere, defines a func
tion of the independent variable r, in which a given positive value of r determines 
the corresponding value of the dependent variable. 

Most of our attention in this book will be directed at functions of a single in
dependent variable, as previously defined and discussed. Nevertheless, we point 
out that each of the last four formulas in Fig. 1 .22 defines a function of the two 
variables r and h; these variables are called independent (of each other) because 
the value assigned to either need not be related to the value assigned to the other. 
In special circumstances a function of this kind can be expressed as a function 
of one variable alone. For example, if the height of a cone is known to be twice 
the radius of its base so that h = 2r, then the formula for its volume can be writ
ten as a function of r or as a function of h: 

or I ( h )2 l 
v = ]7T 2 h = J27Th3. 

The formulas in Fig. 1 .22  also illustrate the custom of choosing letters for vari
ables that suggest the quantities under discussion, such as A for area, V for vol
ume, r for radius, h for height, and so on. 

In each of Problems 3-8, compute and simplify the quantity 
f(x + h) - f(x) 

(d) f(-V7); 
(f) j(St). 

h 
3 f(x) = Sx - 3. 4 f(x) = 3 - 2x. 

(b) g(- 3) ;  

(d) g (±} 
(f) g(t - 1 ). 

5 f(x) = x2. 6 f(x) = 2.x2 + x. 
I 3 

7 f(x) = -. 8 f(x) = -1- . 
x - x  

9 If f(x) = x3 - 3x2 + 4x - 2, compute j( I  ), f(2), j(3), 
f(O) , f( - 1 ), and f( - 2) .  

10 If f(x) = 2X, compute f( I ), j(3), j(5), f(O), and j(-2) .  
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1 1  Iff(x) = 4x - 3, show thatf(2.x) = 2f(x) + 3 .  
12 What are the domains of f(x) = l l(x - 8) and g(x) = x3? 

What is h(x) = f(g(x))? What is the domain of h(x)? 
13  Find the domain of each of  the following functions: 

(a) Vx; (b) �; 
(c) W; (d) '\1?"=4; 

1 1 
(e) x2 - 4 ; (f) 

x2 + 4 ; 
1 

(g) Y(x - l )(x + 2); (h) ---;::===::=-
Y(x - l )(x + 2) 

(i) Y3 - 2x - x2; (j) r-;-y �· 
14  Iff(x) = 1 - x ,  show thatf(f(x)) = x. 
1 5  If f(x) = xl(x - 1 ), compute f(O), f( l ), f(2), f(3), and 

f(f(3)). Show thatf(f(x)) = x. 
16 Iff(x) = (ax + b)l(x - a), show thatf(f(x)) = x. 
17 If f(x) = 1 /( 1  - x), compute f(O),f(l ) ,f(2),f(f(2)), and 

f(f(f(2))). Show thatf(f(f(x))) = x. 
1 8  lff(x) = ax, show thatf(x) + f( l - x) = f( l ). Also ver

ify thatf(x1 + x2) = f(x 1 ) + f(x2) for all x 1 and Xz. 
19 If f(x) = 2x, use functional notation to express the fact 

that 2x1 • 2xi = 2x,+x'. 
20 Find f(x) if f(x + 1 )  = x2 - 5x + 3. Hint: Let u = x + 

1 and find f(u). 
21 A linear function is  one that has the formf(x) = ax + b, 

where a and b are constants. If g(x) = ex + d is also lin
ear, is it always true thatf(g(x)) = g(f(x))? 

22 If f(x) = ax + b is a linear function with a * 0, show 
that there exists a linear function g(x) = ax + /3 such that 
f(g(x)) = x. • Also show that for these two functions it is 
true that f (g(x)) = g(f (x)) .  

23 A quadratic function is one that has the form f(x) = 
ax2 + bx + c, where a, b, c, are constants and a * 0. 
(a) Find the values of the coefficients a, b, c if f(O) = 3, 

f( l )  = 2, f(2) = 9. 
(b) Show that, no matter what values may be given to 

the coefficients, a, b, c, the range of a quadratic func
tion cannot be the set of all real numbers. 

24 In each case, decide whether or not the equation deter
mines y as a function of x, and if it does, find a formula 
for the function: 
(a) 3x2 + y2 =  l ;  (b) 3x2 + y =  l ; 

*The symbols a and {3 are letters of the Greek alphabet whose names 
are "alpha" and "beta." The letters of this alphabet (see the front end
paper) are used so frequently in mathematics and scienc.e that seri
ous students should learn them at the earhest opportunity. Among 
other benefits, this will avoid the annoyance of reading printed mat
ter containing symbols we don't know how to pronounce. 

Y + 1 1 
(c) -- = x; (d) x = y - -. 

y - 1 y 
25 Split the equation 2.x2 + 2xy + y2 = 3 into two equa-

tions, each of which determines y as a function of x. 

The following problems all involve geometry. In working on 
such a problem, always draw a sketch and use this sketch as 
a source of ideas. 
26 If an equilateral triangle has side x, express its area as a 

function of x. 
27 The equal sides of an isosceles triangle are 2. If x is the 

base, express the area as a function of x. 
28 If the edge of a cube is x, express its volume, its surface 

area, and its diagonal as functions of x. 
29 A rectangle whose base has length x is inscribed in a 

fixed circle of radius a. Express the area of the rectan
gle as a function of x. 

30 A string of length L is cut into two pieces, and these 
pieces are shaped into a circle and a square. If x is the 
side of the square, express the total enclosed area as a 
function of x. 

31 (a) Is  the area of a circle a function of its circumference? 
If so, what function? 

(b) Is the area of a square a function of its perimeter? If 
so, what function? 

(c) Is the area of a triangle a function of its perimeter? 
If so, what function? 

32 The volume of a sphere is a function of its surface area. 
Find a formula for this function. 

33 A cylinder is inscribed in a sphere with fixed radius a .  
I f  h is the height and r i s  the radius of the base o f  the 
cylinder, express its volume and total surface area as 
functions of r, and also as functions of h. 

34 A cylinder is circumscribed about a sphere. If their vol
umes are denoted by C and S, find C as a function of S. 

35 A cylinder has fixed volume V. Express its total surface 
area as a function of the radius r of its base. 

36 A fixed cone has height H and base radius R. If a cylin
der with base radius r is inscribed in the cone, express 
the volume of the cylinder as a function of r. 

37 (a) A farmer has 1 00 ft of fencing with which to build 
a rectangular chicken pen. If x is the length of one 
side of the pen, show that the enclosed area is 

A = 50x - x2 = 625 - (x - 25)2. 

Use this result to find the largest possible area and 
the lengths of the sides that yield this largest area. 

(b) Suppose the farmer in part (a) decides to build the 
pen against a side of the barn so that he will have to 
fence only three sides of it. If x is the length of a side 
perpendicular to the barn wall, find the enclosed area 
as a function of x. Also find the largest possible area 
and the lengths of the sides that yield this largest area. 
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In the previous section we discussed the concept of a function at some length. 
This discussion can be summarized in a few sentences, as follows. 

If x and y are two variables that are related in such a way that whenever a suit
able numerical value is assigned to x there is determined a single corresponding 
numerical value for y, then y is called a function of x and this is expressed by 
writing y = f(x). The letter f symbolizes the function itself, which is the opera
tion or rule of correspondence that yields y when applied to x. However, for prac
tical reasons we prefer to speak of "the function y = f(x)" instead of "the func
tion!" As a matter of principle, students should clearly understand that a function 
is not a formula and need not be specified by a formula-even though most of 
ours are. 

Now for graphs. 
The Chinese have a well-known proverb that can be interpreted as expressing 

a basic truth about the study of mathematics :  One picture is worth a thousand 
words. * For us, in our study of functions, this means draw graphs! Even more, 
cultivate the habit of thinking graphically, to the point where it becomes almost 
second nature. 

Before getting down to the details of specific functions, we emphasize that it 
is often possible to think of the graph of a function y = f(x) very concretely, as 
the path of a moving point (Fig. 1 .23). The independent variable x can be visu
alized as a point moving along the x-axis from left to right; each x determines a 
value of the dependent variable y, which is the height of the point (x, y) above 
the x-axis .  The graph of the function is simply the path of the point (x, y) as it 
moves across the coordinate plane, sometimes rising and sometimes falling, and 
in general varying in height according to the nature of the particular function un
der consideration. The graph as a whole is intended to provide a clear overall 
picture of this variation. The graph shown in Fig. 1 .23 happens to be a smooth 
curve with two high points and one low point, but many diverse phenomena are 
possible. 

We now discuss the graphs of a few representative examples of the types of 
functions described in Section 1 .5 .  

POLYNOMIALS 

We have seen that the simplest polynomials are the powers of x with nonnega
tive integral exponents, 

y = 1 ,  x, x2, x3, . . .  , xn ,  . . . .  

As we know, the graph of y = 1 is the horizontal straight line through the point 
(0, 1 ), and the graph of y = x is the straight line through the origin with slope 1 
(Fig. l .24a) .  For larger values of the exponent n, the graphs of y = xn are of two 
distinct types, depending on whether n is even or odd: 

and 

*See Bartlett's Familiar Quotations, 1 6th ed. (Little, Brown and Co., 1 992), fn. 8, p. 782. 
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y 
y = x" , n odd 
and n � 3 

(c) 

x 

These types are shown in parts b and c of Fig. 1 .24. As n increases, these curves 
become flatter near the origin and steeper outside the interval [ - 1 , 1 ] .  

We already know that the graphs of all first- and second-degree polynomials, 
such as 

y = 2.x - l 
and 

y = 3x2 - 2x + 1 ,  

are straight lines and parabolas. These graphs are easy to draw - without plot
ting points-on the basis of the ideas in Sections 1 .3 and 1 .4. 

For our next remark we need a bit of new terminology. A zero of a function 
y = f(x) is a root of the corresponding equation f(x) = 0. Geometrically, the ze
ros of this function (if it has any) are the values of x at which its graph crosses 
or touches the x-axis; they are the x-intercepts of this graph. 

Now consider the general second-degree polynomial 

y = a.x2 + bx + C, a -=F 0. ( 1 )  
A s  we know, the graph of this function is a parabola for all values of the coef
ficients. If we assume that a > 0, so that the parabola opens upward, then there 
are three possibilities for the zeros of ( 1 ), and these are shown in Fig. 1 .25. Since 
the roots of the quadratic equation ax2 + bx + c = 0 are given by the quadratic 
formula 

y 

Two 
distinct 

x =  

x 

-b ::!:: Yb2 - 4ac 
2a 

y 

x 

y 

x 

3 1  

Figure 1 .24 Graphs of y = x". 

Figure 1.25 
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it is clear that the three possibilities in Fig.  1 .25 correspond to the algebraic con
ditions b2 - 4ac > 0, b2 - 4ac = 0, b2 - 4ac < 0. 

The problem of graphing polynomials of degree n 2:: 3 is not easy. Our dis
cussion of the following example suggests several useful ideas. 

Example 1 The graph of 

y = x3 - 3x (2) 

is shown in Fig. 1 .26. At present we have no methods available for discover
ing such important features of this curve as the precise location of the indicated 
high and low points. This will come later. Nevertheless, a few observations 
can be made, and these provide at least some details and a good enough im
pression of the shape of the graph so that students should be able to sketch it for 
themselves. 

We begin by pointing out that if (2) is written in factored form, as 

y = x(x2 - 3) = x(x + \/3)(x - \/3), (3) 
then its zeros are obviously 0, -\/3, \13. These three numbers divide the x-axis 
into four intervals, as shown in Fig. 1 .27,  and a careful inspection of the factors 
of (3) tells us that in each interval y has the sign given in this figure. The details 
of this determination of the sign of y are important to understand, so we pause 
and carefully think it through, as follows: 

for x < -\/3, x is negative, 
x + \/3 is negative, and 
x - \/3 is negative, 
so their product y is negative; 

for -\/3 < x < 0, x is negative, 
x + \/3 is positive, and 
x - \/3 is negative, 
so their product y is positive; 

for 0 < x < \/3, x is positive, 
x + \/3 is positive, and 
x - \/3 is negative, 
so their product y is negative; 

for x > \/3, x is positive, 
x + \/3 is positive, and 
x - \/3 i s  positive, 
so their product y is positive. 

We therefore know, for each interval, whether the graph of (2) lies above or be
low the x-axis (see Fig. 1 .26). We have described this method of analysis in de
tail because it will often be useful in other problems of curve sketching. 

Our second observation relates to the behavior of the graph of (2) when x is 
numerically large, that i s ,  far to the right or far to the left in  Fig. 1 .26. If (2) is 
written in the form 

x =f. 0, 
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then for large positive or negative values of x the expression in parentheses is 
nearly 1 ,  so y is close to x3. In geometric language, when x is large, the graph of 
(2) is close to the graph of y = x3, as Fig. 1 .26 suggests. In particular, the graph 
of (2) rises on the far right and falls on the far left. 

Students will notice that they can always sketch a graph by laboriously plot
ting many points and joining these points by a reasonable curve. Nevertheless, 
this rather clumsy procedure should be adopted only as a last resort, when more 
imaginative methods fail .  The important features of functions and their graphs 
are much more clearly revealed by the qualitative approach to curve sketching 
that we have tried to suggest in Example 1 and will continue to emphasize. 

RATIONAL FUNCTIONS 

Example 2 The simplest rational function that is not a polynomial is 

I 
y = -. 

x 
(4) 

On examining (4), we notice the following facts: y is undefined when x = 0; y 
is positive when x is positive, and is small when x is large and large when x is 
near 0 on the right; y is negative when x is negative, and is small when x is large 
and large when x is near 0 on the left. The graph of (4) given in Fig. 1 .2 8  is a 
direct pictorial version of these statements. In this particular case the graph is 
also easy to sketch by plotting a few points, as shown in the figure. However, 
students will profit much more from simply visualizing the behavior of such a 
function on the various parts of its domain and drawing what they see in the 
mind's eye. 

A straight line is called an asymptote of a curve if, as a point moves out along 
an extremity of the curve, the distance from this point to the line approaches 0. 
It is clear that both the x-axis and the y-axis are asymptotes of the graph shown 

(4, �) 
-

x 
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Figure 1 .28 
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Figure l.29 
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in Fig. 1 .28. The behavior of the function (4) at and near the point x = 0, that 
is, the fact that y is undefined at x = 0 and "becomes infinite" near x = 0, is de
scribed by calling this point an infinite discontinuity of the function. 

Example 3 In the case of the function 

x 
y =

x - 1 ' (5) 

it is clear that the point x = 1 is particularly significant, since y is undefined at 
x = 1 and is large in absolute value when x is near 1 (x = 1 is an infinite dis
continuity). Also, y is near 1 and slightly greater than 1 when x is large and pos
itive, and is near 1 and slightly less than 1 when x is large and negative.* These 
observations suggest drawing the vertical and horizontal guidelines shown in Fig. 
l .29a. If we notice that y = 0 when x = 0, and use the method of Example 1 to 
find the sign of y in each of the intervals - oo < x < 0, 0 < x < 1 ,  and 1 < x, 
then the graph as given in Fig. l .29a is quite easy to sketch. The lines x = 1 and 
y = 1 are both asymptotes. 

Example 4 The function 

x x 
y = 

x2 - 3x + 2 
= 

(x - l )(x - 2) 
(6) 

is similar to (5) but somewhat more complicated. Here the factored form of the 
denominator reveals two infinite discontinuities, x = 1 and x = 2. Again, y = 0 
when x = 0, but this time y is small when x is large, since the degree of the de
nominator is greater than that of the numerator. If we combine these facts with 
the observable sign of y in each of the intervals -oo < x < 0, 0 < x < 1 ,  1 < 
x < 2, and 2 < x (think it through in the manner of Example 1 for each inter
val !), then it is fairly straightforward to sketch the graph as shown in Fig. l .29b. 
There is evidently a high point between 1 and 2, and a low point to the left of 
0, but at present we are unable to determine the precise location of these points 
(we shall see later that they occur at x = Y2 and x = -V2). 
•To see this, test with convenient specific values of x; thus, for example, y = 1§1- when x = 10 and 
y = -J¥ when x = - 10. 



Example 5 The function 

1 y = x  + x 
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(7) 

has an infinite discontinuity at x = 0, and i s  positive or negative according as x 
is positive or negative. For small positive x's, the first term on the right of (7) is  
negligible and the second term is large; and for large positive x's, the second term 
is negligible and y is approximately equal to x. We therefore sketch the part of 
the graph in the right half-plane as follows :  Draw the guideline y = x (Fig. 1 .30); 
insert the two extremities of the curve, approaching this guideline and the posi
tive y-axis, as suggested by the behavior previously stated; and connect these ex
tremities in a reasonable way in the middle, where this part of the graph has an 
obvious low point. The function behaves similarly-with a corresponding high 
point- for negative values of x. The y-axis and the line y = x are both asymp
totes. 

Example 6 The denominator of 

x 
y = 

x2 + 1 
(8) 

is  positive (in fact 2: 1) for all x, so y = 0 when x = 0, y is positive when x is 
positive, and y is negative when x is  negative. Also, y i s  small when x is large, 
because the degree of the denominator is greater than that of the numerator.* 

These properties of the function force the graph to have the shape shown in Fig. 
1 .3 1 ,  with one high point and one low point. 

Example 7 In considering the function 

Figure 1 .30 

x2 - I y = �, (9) Figure 1 .3 1  

it i s  natural to factor the numerator, obtaining 

y =  (x + l )(x - 1 )  
x - 1 

and then to cancel the common factor, which yields 

y = x + 1 .t 

*Notice that when the numerator x is large, the denominator x2 + I is enormous, so y is small. 

( 1 0) 

t A word of warning about a point of algebra. To "cancel" a common factor, as in the text, is OK: 

But "canceling" a common term, as in 

is WRONG. Try it: Is 

Of course not. 

a¢ E.. 
b¢ b 

if c * 0. 

a + ¢  a 
b + ¢ b '  

y 

3 5  

LL 
/ / / 

/ / / 

x 

x 
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Figure 1 .32 

Figure 1 .33 

Figure 1.34 
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This cancellation is valid except when x = 1 .  At this point the value of ( 1 0) is 2, 
but (9) has no value (y = 010, which is meaningless). To graph (9), we therefore 
draw the straight line ( 1 0) and delete the single point ( 1 ,  2), as shown in Fig. 
1 .32. 

Two functions y = f(x) and y = g(x) are said to be equal if they have the same 
domain and if f(x) = g(x) for every x in their common domain. Accordingly, the 
functions (9) and ( 1 0) are not equal, because they have different domains-the 
point x = 1 is in the domain of ( 1 0) but is not in the domain of (9). The fact that 
the graph of (9) has a gap (or hole) corresponding to x = 1 is expressed by say
ing that (9) is discontinuous at x = 1 ,  or has a discontinuity at this point. 

ALGEBRAIC FUNCTIONS 

Example 8 The functions 

y = Vx and ( 1 1 )  

can be obtained b y  solving the equations 

y2 = x and x2 + y2 = 25 ( 1 2) 

for y and choosing the positive square roots. We know that the graphs of equa
tions ( 1 2) are a parabola and a circle, as shown in Fig. 1 .33, so the graphs of 
( 1 1 )  are the parts of these curves that lie on or above the x-axis. 

y 

x 

\ ', y = - vx 
..... , .,.,, 

..... ..... 
_ _  

... _ _  

y 

\ I (5, 0) x 

\ I 
\ I 

\ I 
' / 

', /.\ ..... ,; "' - ;,:;-;----; _ _ _ _ _ ... 

y = - v25 - x2 

Example 9 The graph of the absolute value function 

Y = lxl 
is easy to draw (Fig. 1 .34). To see that this function is algebraic, we have only 
to notice the fact that Jx J = W for every value of x. 

As these examples show, many of the basic features of a function are made 
transparently clear by sketching its graph. We are i nterested less in sketches of 
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high accuracy than in those that display broad general features: where the graph 
is rising and where falling, the presence of gaps, the presence of high points and 
low points, and what its approximate shape is. Formulas are obviously important 
in the study of functions - indeed, they are indispensable whenever our purposes 
require exact calculations yielding quantitative results. But we should never for
get that the primary aim of mathematics is insight, and graphs are invaluable aids 
for gaining visual insight into the individual characteristics of functions. 

PROBLEMS 

� (f) y = y �· 
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1 Sketch the graphs of the following polynomials, paying 
special attention to the location of their zeros and their be
havior for large values of x: 
(a) y = x2 + x - 2; 

4 In each of the following, sketch the graphs of all three 
functions on a single coordinate system: 

(b) y = x3 - 3x2 + 2x; 
(c) y = ( 1  - x)(2 - x)(3 - x); 
(d) y = x4 - x2; 
(e) y = x4 - 5x2 + 4. 

2 Sketch the graphs of the following rational functions: 
1 l 

(a) y = 2; (b) y = 3; x x 
I 

(c) y = x2 + -; x 
I 

(e) y = x2 + I
; 

I 
(g) y = -2--] ; x -
. x2 (1) y = -2--1 ; x -

x3 - x2 
(k) y = --; x - l 

l 
(d) y = x2 + 2; x 

x2 
(f) y = x2 + 1 ; 

x 
(h) y = x2 - l ; 

x2 - 3x + 2 
(j) y = ; 2 - x  

(x + 2)(x - 5)(x2 + 2x - 8) 
(I) y = (x - 2)(x2 - 3x - 10) 

3 Sketch the graphs of the following algebraic functions: 

(a) y = Y(x - 1)(3 - x); 
I (b) y = ---;:::==== Y(x - 1 )(3 - x) 

(c) y = 
1 ; (d) y = r-;-; Vx-=! y )-=; 

(a) y = lxl ,  y = lxl + l ,  y = lxl - l ;  
(b) y = lxl , y = Ix +  l l , Y = Ix - l l ;  
(c) y = lxl , Y = 2 lxl , Y = -hlx-1 . 

5 Sketch the graphs of the following functions: 
lxl (a) Y = -; x 

(c) y = x + lxl; 
(e) y = x - lxl ; 
(g) y = lx2 - l I . 

(b) y = l2x + 3 1 ; 
(d) 
(f) 

y = 2x + lxl ; 
y = I +  x - lxl ; 

6 Considering only positive values of x, show that 

Y = 
l x + l l - l x - 1 1 

= {i O < x < l ,  

x x x � l , 

and sketch the graph. 
7 Are any of the following pairs of functions equal? 

x 
(a) f(x) = -, g(x) = l .  x 
(b) f(x) = x2 - 1 ,  g(x) = (x + l )(x - l ) . 
(c) f(x) = x, g(x) = W. 
(d) f(x) = x, g(x) = cv-:;:)2. 

Periodic phenomena are found everywhere in the world around us-vibrating 
springs, alternating currents, swinging pendulums, revolving planets, etc. - and 
scientists describe these phenomena by using trigonometric functions. For this 
and other reasons, students beginning the study of calculus are often expected to 
know something about trigonometry. 

1 . 7  
INTRODUCTORY 
TRIGONOMETRY. 
THE FUNCTIONS 
sin () AND cos () Although most users of this book have some familiarity with basic trigonom

etry, we nevertheless review a few of the fundamental ideas, especially the ra
dian measure of angles and the definitions and simpler properties of the very im-
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Figure 1 .35 

Figure 1 .36 
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portant functions sin (} and cos (}.* This review is continued in Section 9. 1 ,  where 
the discussion is broadened to include the other four trigonometric functions 
tan (}, cot (}, sec (}, csc {}-all of which are indispensable in Chapter 1 0  but will 
not be needed until then. 

In high school trigonometry courses the sine and cosine of an acute angle (} 
are first defined as ratios of sides in a right triangle, as follows (see Fig. 1 .35): 

sin 8 = 
opposite side 

= 
E_ 

hypotenuse h '  

cos 
8 

= 
adjacent side 

= 
.!!._, 

hypotenuse h 

Because similar triangles have proportional sides, the values of sin (} and cos (} 
depend only on the size of the acute angle (}, and not at all on the size of the 
right triangle whose sides are used to compute these values .  

Example 1 We know from geometry that in a 30°-60° right triangle, the side 
opposite the 30° angle is half the hypotenuse (see Problem 32 in Section 1 .2). 
This enables us to draw the familiar right triangles shown in Fig. 1 .36, and from 
these triangles we see that 

sin 30° = _!_ 
2 , 

V3 
cos 30° = --

2 ' 

sin 60° = \/3 2 ' 

I 
cos 60° = -

2 '  

sin 45° = -1-
V2 '  

I 
cos 45° = --

V2 '  

It i s  customary to rationalize the denominators o n  the right b y  writing 

_I_ = _1_ . Vl = _!_Vl 
V2 V2 V2 2 ' 

but for the moment we leave these values as they stand in order to emphasize the 
defining ratios. 

*The Greek letter e is pronounced "theta." 
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The ideas described here are part of what is called right triangle trigonome
try, in which angles are measured in degrees and sines and cosines are defined 
only for acute angles of right triangles. In the equivalent forms 

a =  h sin () and b = h cos (), 

these definitions have a number of applications in geometry and physics. This i s  
all right a s  far as  it goes. However, for the purposes of calculus the limitations 
of this approach are crippling. We therefore start all over again at the beginning 
and give a capsule development of analytic trigonometry, in which the trigono
metric functions are freed from their dependence on right triangles and are de
fined as real-valued functions of a real variable. As an example of what we mean 
by analytic trigonometry, Jet us consider the motion of an object oscillating up 

3 9  

and down at the end of a spring (Fig. 1 .37). If this motion i s  described by the L'./ WLL:�'.L'.L:U:L���WL'.L 
position function 

s = f(t) = cos t, 

which gives the position s as a function of the time t, then it makes little sense 
to think of t as an angle and measure its values in degrees. We must consider 
what cos t means when t is not an angle but a number-the number of seconds 
that have elapsed since the motion began when t = 0. 

Our treatment below is self-contained. Even a student who knows nothing of 
the subject will be able to learn everything that matters by reading with close at
tention and working through the problems at the end of the section. 

RADIAN MEASURE 

In elementary mathematics and daily life, angles are measured in degrees, with 
90° measuring a right angle. But the degree is an arbitrary measure inherited from 
the ancient Babylonian astronomers, and its use in calculus would make many 
of our formulas intolerably messy. In calculus we use a much more natural and 
convenient system called radian measure, which is defined in terms of how much 
arc an angle cuts off on a circle. 

In this system the unit of angle measurement is called the radian. One radian 
is the angle which, placed at the center of a circle, subtends (cuts off) an arc 
whose length equals the radius (Fig. 1 .38, left). More generally, the number of 
radians 8 i n  an arbitrary central angle (Fig. 1 .38, right) is  defined to be the ratio 
of the length s of the subtended arc to the radius r, 8 = sir, so that s = r8. We 

r r 

& = I radian e = ;- radians 

Figure 1 .37 

Figure 1 .38 

_ _  E_g_ui!_i�i�m- _ 

position 
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Figure 1 .39 

Figure l .40 
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360° = 2'7T 

note especially that in a unit  circle (r = 1 ) ,  a central angle of (} radians subtends 
an arc of length s = e. Since the circumference of a circle is c = 27Tr, a com
plete central angle of 360° is equivalent to 2wr/r = 27T radians. Thus, 

27T radians = 360° 
and it follows from this that 

I radian = 
1 80 

= 57.296°, 7T 

or 7T radians = 1 80°; 

1 °  = 1;0 = 0.0 1 75 radian. 

Further, 90° = 7T/2, 60° = 7T/3,  45° = 7T/4, and 30° = 7T/6, where we follow the 
convention of omitting the word "radian" in using radian measure. It is a good 
idea for students to memorize these common conversions with the aid of the cir
cle diagrams in Fig. 1 . 39. In addition to knowing the conversions in these dia
grams, it will help students feel more comfortable with radians if they also think 
through and verify the additional conversions in the following table. 

Degrees 30 45 60 90 120 1 35 1 50 1 80 2 1 0  225 240 270 300 3 1 5  330 360 

Radians '1T !!_ !!_ '1T 2'7T  3'7T  5'1T  7'7T 5'1T 4'1T 3'7T 5'1T 7'7T 1 1 '7T 
2'7T - - '1T - -

6 4 3 2 3 4 6 6 4 3 2 3 4 6 

The specific reason why radian measure for angles is preferred in calculus will 
appear in Section 3.4. In most of our work we will use radian measure routinely 
and mention degrees only in passing. 

DEFINITIONS OF sin e AND cos e 
We approach trigonometry by way of analytic geometry. Consider the unit cir
cle x2 + y2 = 1 in the xy-plane (Fig. 1 .40), and let (} be an arbitrary real num
ber. If (} is positive, let the radius OP start in the position OA and revolve coun
terclockwise through (} radians. Thus, (} = 7T produces half a revolution and (} = 

27T produces a complete revolution, both counterclockwise. If (} is negative, we 

( 1 ,  0) form the positive number - (} and let OP revolve clockwise through - e  radians. 
See Fig. 1 .4 1 .  In this way, each real number e (positive, negative, or zero) de
termines a unique position of the radius OP in Fig. 1 .40, and therefore a unique 
point P = (x, y) with the property that x2 + y2 = 1 .  

The sine and cosine o f  (} are now defined by 

sin () =  y and cos () =  x. 

The word "sine," sinus in Latin, is a corruption of an Arabic word meaning 
"chord" or "bowstring." Since sin and cos are the names of functions, the proper 
notation should be sin((}) and cos( 8), just as we write f( (}) when the function is  
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f However, in the case of trigonometric functions it is customary to omit the 
parentheses. It is evident from the definition that - 1  :5 sin 8 :5 1 ,  and similarly 
for cos 8. The algebraic signs of these quantities depend on which quadrant of 
the plane the point P happens to lie in (Fig. 1 .42). For values of 8 such that 0 < 
8 < 11'12, these definitions agree with the right triangle definitions given above, 
because in the triangle in Fig. 1 .40 we have sin 8 = y = yll = (opposite side)/ 
(hypotenuse) and cos 8 = x = xi i  = (adjacent side)/(hypotenuse). 

sin e >  0 
cos e > o 

IDENTITIES 

sin e >  0 
cos e < o 

If we compare the angles 8 and - 8 in Fig. 1 .43, we see at once that 

sin ( - 6) = -sin 6 and cos ( - 6) = cos 6. 

sin e <  0 
cos e < o 

( I )  

The equation x2 + y2 = 1 ,  or equivalently y2 + x2 = 1 ,  translates immediately 
into the important identity 

sin2 6 + cos2 6 = I .  (2) 

Figure 1 .4 1  

Figure 1 .42 

[The somewhat strange notation sin2 8 is the standard way of writing the square Figure 1 .43 

sin e <  0 
cos e > o 

4 1  
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of the number sin 8, that is, (sin 8)2; and similarly for cos2 8.] Problem 1 0  in 
Section 9 . 1  outlines a general proof of the addition formulas 

sin (8 + ¢) = sin 8 cos ¢ + cos 8 sin ¢, 
cos (8 + ¢) = cos 8 cos ¢ - sin 8 sin ¢. 

(3 ) 
(4) 

We give a proof of (3) below, in connection with Fig. 1 .44, for the restricted case 
in which {} and <P are both positive angles whose sum is less than 'TT/2. First, how
ever, we point out that if we put <P = {} in (3) and (4), we obtain the double
angle formulas 

sin 28 = 2 sin 8 cos 8, 
cos 28 = cos2 8 - sin2 8. 

And finally, if we write (2) and (6) together as 

cos2 8 + sin2 8 = 1 ,  
cos2 8 - sin2 8 = cos 28, 

then by adding and subtracting we get the half-angle formulas 

cos2 8 = t( l + cos 28), 
sin2 8 = tO - cos 28) . 

(5) 
(6) 

(7) 

(8) 

Now, to prove (3) for the restricted case mentioned above, we consult Fig. 1 .44 
and write 

sin ( 8 +¢) = PQ = PT + TQ OP OP 
PT + RS PT RS 
--- = - +-OP OP OP 
PT PR RS OR = - · - + - ·-PR OP OR OP 

= cos 8 sin <P + sin 8 cos ¢. 
A similar argument can be given for formula ( 4 ) . 

VALUES AND GRAPHS 

Example 1 provides several first-quadrant 8's for which exact values of sin 8 and 
cos {} are easy to find. These facts can also be obtained by looking carefully at 
the three parts of Fig. 1 .45 and remembering the Pythagorean theorem: 

. Tr I sm 6 = 2' 
Tr I , ;;;cos 6 = 2v 3, 

• 
'TT 

1 , ;;:;2 sm 4 = 2v L., 

Tr I , ;;:; cos 4 = 2v 2, 

• 'TT 1 , ;;;-3 sm 3 = 2vj, 
'TT l cos 3 = 2· 

Also, an inspection of Fig. 1 .40 with OP in various positions gives us similar in
formation for the cases {} = 0, 'TTl2, 'TT, 3 'TT/2, 2 'TT: 

sin 0 = 0, . 'TT sm 2 = I ,  sin Tr =  0, . 3Tr sm- =  - 1 2 , sin 2Tr = 0, 
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y 

a = hn x a =  iv2 x 

cos 0 = I ,  
1T 

cos 2 = 0, cos 1T = - 1 ,  
3 11'  

cos 2 = 0, cos 211' = I .  

Further, by drawing pictures and using the ideas i n  Fig. 1 .45 we can find the ex
act values of sin e and cos e for any value of e that represents an angle one-third, 
one-half, or two-thirds of the way through any quadrant. 

Example 2 To illustrate this remark, we point out (Fig.  1 .46) that 135° = 311'/4 
is halfway from 11'12 to 11', so the point P is in the second quadrant with coordi
nates ( -t v2, I V2), and consequently we have 

. 37T 1 .  � sm 4 = 2v 2, 

Similarly, 300° = 5 11'13 is one-third of the way from 311'/2 to 211', so P is in the 
fourth quadrant with coordinates ct, -tv'3) , and we have 

sin 
S7T 

= _ _!_v3 
3 2 

, 
511'  1 

cos 3 = 2· 

Of course, most 8's are beyond the scope of these methods, and in these cases 
the values of sin e and cos e can be found from trigonometric tables or a calcu
lator. The problem of how these values themselves are calculated is more diffi
cult, and will be discussed in Chapter 14 . 

For every 8, the numbers 8 and 8 + 211' clearly determine the same point P, so 

sin (8 + 27T) = sin 8 and cos (8 + 211') = cos fJ. 

This says that the values of sin 8 and cos 8 repeat when 8 increases by 211'. We 
express these properties of sin e and cos e by saying that these functions are pe
riodic with period 2 7T. 

The graph of sin 8 is easy to sketch by looking at Fig. 1 .40 and using imagi
nation to follow the way y varies as 8 increases from 0 to 211', that is, as the ra
dius swings around through one complete counterclockwise revolution. It is clear 
that sin 8 starts at 0, increases to 1 ,  decreases to 0, decreases further to - 1 , and 
increases to 0. This gives one complete cycle of sin 8 on the interval 0 :::; 8 :::; 
211', as shown on the left in Fig. 1 .47. By using the periodicity of sin 8, we see 

43 

y 

I x 2 
Figure 1 .45 

y 

x 

Figure 1.46 
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sin e 

Figure 1 .47 

cos 0 

- I 

Figure 1.48 

sin 20 

Figure 1 .49 
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sin e 

e 

that the complete graph (on the right in the figure) consists of infinitely many 
repetitions of this cycle, to the right and to the left. The graph of cos 8 can be 
sketched in essentially the same way (Fig. 1 .48). The main difference is that 
cos () starts at 1 when 8 = 0, decreases to 0, decreases further to - 1 , increases 
to 0, and increases further to 1 .  

cos 0 

On the other hand, the graph of sin 28 makes one complete cycle on the in
terval 0 :::; 8 :::; 7T, because 2 8  increases from 0 to 27T as 8 increases from 0 to 7T 

(Fig. 1 .49, left). This says that sin 28 oscillates twice as fast as sin 8. In the same 

sin !e 

47T 

e e 
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way we see that sin ±e oscillates half as fast as sin 8 (Fig. 1 .49, right). In gen
eral, both sin k8 and cos k8 make one complete cycle for 0 :s k8 :s 2 7T, or equiv
alently, on the interval 0 :s e :s 2 7T/k. 

Notice that degrees are almost entirely banished from this way of thinking 
about trigonometry. Trigonometric values can be written using degree measure 
or radian measure: either sin 30° or sin 7T/6; either cos 90° or cos 7T/2 .  But when
ever we think of trigonometric functions, as in writing y = sin 8 or f ( 8) = cos e, 
the independent variable e is always understood to be in radians. 

The functions sin e and cos 8 are the basic trigonometric functions, but there 
are four others that are also important though less fundamental: the tangent, cotan
gent, secant, and cosecant. These can be defined as follows: 

sin 0 
tan 0 = --

0
, 

cos 

cos 0 
cot 0 = -.-

0
, 

sm 

1 
sec 0 = --

0
, 

cos 

1 
csc 0 = ---o ·  

sm 

Even though we mention them here, these four functions will not be essential for 
our work until we reach Chapter 1 0. At that time we will review them thoroughly. 

PROBLEMS 

1 Convert the given angle from degrees to radians: 
(a) 15°; (b) 1 50°; 
(c) 1500°; (d) -36°; 
(e) - 1 10° ;  ( f )  7° .  

2 Convert the given angle from radians to degrees: 
(a) 7T/15 ;  (b) 7T/45 ; 

(a) sin (-i} 
) . l37T 

(c sm -6-; 
77T 

(e) cos 6; 

( . 7 7T  
b) sm 5; 

(d) cos (- ;} 
l 37T  

(f) cos -6-. 

45 

(c) -7T/36; (d) -3 ;  
( e )  ef.; (f) 30. 

3 Find the value of the given expression without using ta
bles or a calculator: 

7 Express each trigonometric function as a corresponding 
function of an angle in the first quadrant (0 � 0 � 7T/2)  
preceded by a + or - sign: 

(a) cos ( - 1 20°); 
. 177T 

(c) sm -3-; 
. l 97T 

(e) sm -6-; 

(b) sin 780°; 
(d) cos (- l�7T} 

997T 
(f) cos -

4
- .  

4 Is the given number positive, negative, or zero? 
(a) sin 5007T; (b) cos 7 ;  
(c) sin 90 1 ° ;  (d) cos 24. 

5 Verify the given identities :  
(a) sin 30  = 3 sin 0 - 4 sin3 8 (Hint: 30 = 20 + 0); 
(b) cos 30 = 4 cos3 0 - 3 cos 0. 

6 By sketching the angles in a unit circle and using the 
facts that sin 7T/6 = t, cos 7T/6 = VJ/2, find 

. 97T (a) sm 2; (b) sin 77T ;  

. ( 7 7T) (c) sm -3 ; 

(e) cos 107T; 

(g) cos ( -6
5
7T} 

( ' ) 
l l 7T 

I COS -3
-. 

. ( 87T) (d) sm -3 ; 
97T  

(f) cos 4; 

(h) sin ( - 1 � 7T} 
8 Replace </> by - </> in the addition formulas (3) and (4), 

and use the identities ( I ), to obtain the subtraction for
mulas: 
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sin (8 - </>) = sin 8 cos </> - cos 8 sin </>, 

cos (8 - </>) = cos 8 cos </> + sin 8 sin </>. 

9 By examining Fig. 1 .50, obtain the following identities: 
(a) sin ( 7T - 8) = sin 8, cos ( 7T - 8) = - cos 8; 

(b) sin (; - 8) = cos 8, cos (; - 8) = sin 8. 

Use similar arguments- based on appropriate pictures 
-to obtain identities (c) and (d): 
(c) sin (8 + 7T) = -sin 8, cos (8 + 7T) = - cos 8; 

(d) sin ( 8 + ;) = cos 8, cos ( 8 + ;) = - sin 8. 

10 Derive the identities in Problem 9 as special cases of the 
addition and subtraction formulas. 

1 1  The half-angle formulas (7) and (8) are called by this 
name because if we set 28 = a, they can be written as 

sin ta = ± J I -�os a
' 

cos ta = ± J 1 + �os a . 
Use these formulas to find the values of sin 15° and 
cos 15° . 

12 Apply the formulas in Problem 1 1  to find the values of 
sin 30° and cos 30° from the fact that cos 60° = t. 

13 Apply the half-angle formula for the cosine to find 
7T 37T 

(a) cos 4; (b) cos 4· 

Figure I .SO 

1 4  Apply the half-angle formula for the sine to find 

(a) sin ;; (b) sin (-;) . 
15 Use the appropriate addition or subtraction formula to 

find 
. 27T 27T 7T 

(a) sm 3 from 3 = 7T - 3; 
57T 57T 7T 

(b) cos - from - = 7T + -· 4 4 4 ' 
. 177T 177T 7T (c) sm -6- from -6- = 37T - 5· 

16 Use the method of the preceding problem to find 
197T l07T . 1 1 7T  

(a) cos -6-; (b) cos -3-; (c) sm -6-. 
17 Check the identity for sin(8 + </>) when 

7T 7T 
(a) 8 = 6 and </> = 3; 

7T 7T 
(b) 8 = 4 and </> =  4· 

18 Check the identity for cos(8 + ¢) when 
7T 7T 

(a) 8 = 6 and ¢ = 3; 
7T 7T 

(b) 8 = 4 and ¢ = 4· 
19  Find sin 57r/ l  2 by  using the fact that 57T/12 = 7T/4 + 7T/6. 
20 Find sin 7r/ l 2 by using the fact that 7r/l 2 = 7r/4 - 7T/6. 

Reconcile your answer here with the first answer in Prob
lem 1 1 . 

2 1  Establish the addition formula (4) for the cosine by the 
method suggested in the text, that is, by using Fig. 1 .44. 

CHAPTER 1 REVIEW: DEFINITIONS, CONCEPTS, METHODS 

Define, state, or think through the following. 
1 Rational and irrational numbers. 
2 Real line. 
3 Rules for inequalities. 

4 Absolute value of a number. 
S Closed and open intervals. 
6 Coordinate plane. 
7 Pythagorean theorem. 
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8 Distance formula. 
9 Midpoint formulas. 

10 Slope of a straight line. 
1 1  Point-slope equation of a line. 
1 2  Slope-intercept equation of  a line. 
13  Slope criterion for parallel lines. 
14  Slope criterion for perpendicular lines. 
15 Equation of a circle. 
16 Completing the square. 
1 7  Definition of a parabola. 
18 Equations of parabolas. 
19 Function. 
20 Domain and range of a function. 
2 1  Independent and dependent variables. 

ADDITIONAL PROBLEMS FOR CHAPTER 1 

SECTION 1 .2 
1 If a and b are positive numbers, prove the inequality 

\l7;b :S t(a + b) as Euclid did, by considering a right tri
angle inscribed in a semicircle (Fig. 1 . 5 1  ). 

Figure 1 .5 1  

2 If a and b are any two numbers, denote the larger by 
max (a, b) and the smaller by min (a, b). Show that 

max (a, b) = t(a + b + la - bl), 

and find a similar expression for min (a, b). 
3 Show that if a :S b and c :S d, then a + c :S b  + d. Use 

this fact to prove that la + bl :S lal + lb l . Hint: Begin by 
noticing that - lal :S a :S lal and - lbl :S b :S lb l . 

4 If a is a positive rational number, explain why the fol
lowing method for calculating the square root of a works. 
First, choose a rational number which is a reasonable 
guess at the value of Va, and call this initial approxi
mation x1 • Next, divide a by x1 and average the result 
with x1, thereby obtaining a second approximation x2. 
Next, divide a by x2 and average the result with x2, ob
taining a third approximation x3. This procedure is ex
pressed by the formula 

X11+ I  = ± (x11 + :) n = l , 2, 3, . . . .  

Hint: If x1 is reasonably close to Va but different from 
it, then Va lies between x1 and a!x1 (why?), and so the 

22 Polynomials. 
23 Rational functions. 
24 Algebraic functions. 
25 Transcendental functions. 
26 Graph of a function. 
27 Zero of a function. 
28 Asymptote of a curve. 
29 Infinite discontinuity of a function. 
30 Radian measure. 
31 Sine and cosine of e. 
32 Addition and subtraction formulas. 
33 Values and graphs of sin (} and cos e. 
34 Double-angle formulas. 
35 Half-angle formulas. 

average of x1 and a/x1 is likely to be even closer to Va; 
also note that 

Xn+ I - Va = ± (x11 - 2Va + :) = 2�11 (x11 -
Va)2. 

5 Use the method of Problem 4 to calculate Yi, first with x1 = 1 and then with x 1 = t· 
6 Use the method of Problem 4 to calculate \/3, first with x1 = 2 and then with x 1 = t· 
7 If a and b are real numbers with a < b, show that there 

exists at least one rational number c such that a < c < b, and hence infinitely many. In particular, between any 
two irrationals there exist an infinite number of rationals. 

8 If a is a nonzero rational number and b is irrational, show 
that a + b, a - b, ab, alb, and bla are all irrational. 

9 If a and b are irrational, is a + b necessarily irrational? 
Is ab? 

10 If a and b are real numbers with a < b, show that there 
exists at least one irrational number c such that a < c < b, and hence infinitely many. In particular, between any 
two rationals there exist an infinite number of irrationals .  

1 1  Give another proof of the Pythagorean theorem by using 
the equations 

a e 

c a and 
b d 
c b ' 

obtained from similar triangles in Fig. 1 .52.* 

n d I e 
c 

Figure 1 .52 

*Further proofs can be found in Section B. l of Simmons, Calculus 
Gems (McGraw-Hill, 1 992). 
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12 In each case place the figure in a convenient position rel
ative to the coordinate system and prove the statement 
algebraically: 
(a) The sum of the squares of the distances of any point 

from two opposite vertices of a rectangle equals the 
sum of the squares of its distances from the other two 
vertices. 

(b) In any triangle, 4 times the sum of the squares of the 
medians equals 3 times the sum of the squares of the 
sides. 

13 If Pi = (x i , Yi ) and P2 = (x2, y2) are distinct points, and 
if P = (x, y) is located on the segment joining them in 
such a position that the ratio of its distance from P1 to 
its distance from P2 is q/p, show that 

and y =  PY1 + qy2 p + q 
14 Find the point on the segment joining ( I ,  2) and (5 , 9) 

that is -\+ of the way from the first point to the second. 

SECTION 1 . 3 
15 If the line determined by two distinct points (x i ,  Y i ) and (x2, y2) is not vertical , and therefore has slope (Y2 - yi )I (x2 - xi ), show that the point-slope form of its equation 

is the same regardless of which point is used as the given 
point. 

16  Determine what each of the following statements implies 
about the constants A, B, C in the equation Ax + By + C =  0: 
(a) The line goes through the origin. 
(b) The line is parallel to the y-axis. 
(c) The l ine is perpendicular to the y-axis. 
(d) The line goes through ( 1 ,  I ) . 
(e) The l ine is parallel to Sx + 3y = 2. 
(f) The line is perpendicular to x + lOy = 3 . 

17 If the lines A ix + Biy + Ci =  0 and A2x + B2y + C2 = 

0 are not parallel and k is any constant, show that 

(A ix + B1y + Ci) + k (A2x + B2Y + C2) = 0 

is a line through the point of intersection of the given 
lines. When k is assigned various values, this equation 
represents various members of the family of all lines 
through the point of intersection. 

18  Given the lines x + 3y - 2 = 0 and 2x - y + 4 = 0, use 
Problem 1 7  to find the equation of the line through their 
point of intersection which 
(a) passes through (-2, I ) ; 
(b) is perpendicular to the l ine 3y + x = 2 1 ;  
(c) passes through the origin. 

19 The points (0, 0), (a, 0), and (b, c) are the vertices of an 
arbitrary triangle which is placed in a convenient posi
tion relative to the coordinate system. 
(a) Find the equation of the line through each vertex per

pendicular to the opposite side, and show alge-

braically that these three lines intersect at a single 
point. 

(b) Find the equation of the perpendicular bisector of 
each side, and show algebraically that these three 
lines intersect at a single point. Why is this fact geo
metrically obvious? 

(c) Find the equation of the line through each vertex and 
the midpoint of the opposite side, and show alge
braically that these three lines intersect at a single 
point. Also, verify that this point is two-thirds of the 
way from each vertex to the midpoint of the oppo
site side. 

20 Show that each of the following is the equation of a 
straight line: 
(a) x3 - x2y - 2x2 + 3x - 3y - 6 = 0. 
(b) 3xy2 + 5y2 - y3 - 4y + 1 2x + 20 = 0. 

21 Show that the distance from a point (x0, y0) to a line Ax + 
By + C = 0 is given by 

IAxo + Byo + Cl 
YA2 + 82 

22 Find the distance between the parallel lines 4x + 3y + 
1 2  = 0 and 4x + 3y - 38 = 0. 

23 If two intersecting straight lines are given, then it is easy 
to see that the bisectors of the angles formed by these 
lines are two other straight lines whose points are 
equidistant from the given lines. Use this fact to find the 
equations of the bisectors of the angles formed by the 
lines 
(a) 3x + 4y - I 0 = 0 and 4x - 3y - 5 = O; 
(b) y = 0 and y = x. 

24 Why is it geometrically obvious (without calculation) 
that the bisectors of the angles of any triangle intersect 
at a single point? 

SECTION 1 .4 
25 Find the values of b for which the line y = 3x + b in

tersects the circle x2 + y2 = 4. 
26 If the line y = mx + b is tangent to the circle x2 + y2 = 

?, find an equation relating m, b, and r. 
27 Find the equation of the locus of a point P = (x, y) that 

moves in such a way that 
(a) its distance from (0, 0) is twice its distance from 

(a, O); 
(b) the product of its distances from (a, 0) and ( -a, 0) 

is a2 (this curve is called a lemniscate). 
In each case, sketch the graph. 

28 A line segment of length 6 moves in such a way that its 
endpoints remain on the x-axis and y-axis. What is the 
equation of the locus of its midpoint? 

29 A point moves in such a way that the ratio of its dis
tances from two fixed points is a constant k i= I .  Show 
that the locus is a circle. 
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30 Find the equation of the line which is tangent to the cir
cle x2 + y2 + 8x + 6y + 8 = 0 at the point (-8, - 2). 

31 Find the equations of the lines that pass through the point 
( I ,  3) and are tangent to the circle x2 + y2 = 2. 

32 If two circles 

x2 + y2 + A 1x + B1y + C1 = 0 

and 

intersect in two points, and if k is a constant =I= - 1 ,  ex
plain why 

(x2 + y2 + A 1x + B1Y + C1 ) 

+ k(x2 + y2 + A2x + Bzy + C2) = 0 

is the equation of a circle through the points of intersec
tion. If k = - I ,  what does the equation represent? 

33 Use Problem 32 to find the equation of the line joining 
the points of intersection of the circles x2 + y2 = 4x + 
4y - 4 and x2 + y2 = 2y. Also find these points of in
tersection. 

34 Show that a parabola with focus at the origin, axis the 
x-axis, and opening to the right has an equation of the 
form y2 = 4p(x + p), where p > 0. 

35 Find the equation of the parabola with focus ( 1 ,  1 )  and 
directrix x + y = 0, and simplify this equation to a form 
without radicals. Hint: See Problem 2 1 .  

36 Let the vertex of the parabola x2 = 4py be joined to every 
other point of the parabola. Show that the midpoints of 
the resulting chords lie on another parabola. Find the fo
cus and directrix of this second parabola. 

37 Consider all chords with given slope m that have end
points on the parabola x2 = 4py. Prove that the locus of 
the midpoints of these chords is a straight line parallel 
to the y-axis . 

38 A focal chord of a parabola is the segment cut by the 
parabola from a straight line through the focus. 
(a) If A and B are the endpoints of a focal chord, and if 

the l ine through A and the vertex intersects the di
rectrix at a point C, show that the line through B and 
C is parallel to the axis of the parabola. 

(b) Show that the length of a focal chord is twice the dis
tance from its midpoint to the directrix. 

(c) Show that if the two tangents to a parabola are drawn 
from any point on the directrix, then the points of 
tangency are the endpoints of a focal chord. 

39 Given the two points A = (4p, 0) and B = (4p, 4p), di
vide the segments OA and AB into equal numbers of equal 
parts, number the points of division as shown in Fig. 1 .53, 
and join the points of division on AB to the origin by 
straight lines. Show that the points of intersection of each 
of these lines with the corresponding vertical lines lie on 
the parabola x2 = 4py. 

y 

Figure 1 .53 

SECTION 1 .5 

' / i ' / 1 / • 

4 

r / 3 

2 

x 

40 Find the domain of each of the following functions: 
x (a) 5 - x; (b) 

2x _ 3 ; 

(c) v'3x"=l; (d) �; 
x + 7  (e) x2 - 9 ; 

Cg) \/9 - 4x2; 

Ci) V7x2 + 5. 

(f) Vx; 
l (h) ' � ; 

vx + 3 

41 If f(x) = ax + b,  show that 

f ( X1 ; Xz ) = f(x1 ); f(x2) . 

Is this true for f(x) = x2? 
42 If f(x) = ( I  + x)/( l - x), find 

(a) f(-x); (b) f (�} 
(d) f(f(x)) .  

43 If f(x) = Vx, what function g(x) has the property that 
g(f(x)) = x? 

44 The perimeter of a right triangle is 6 and its hypotenuse 
is x. Express the area as a function of x. 

45 A cylinder has fixed total surface area A .  Express its vol
ume as a function of the radius r of its base. 

46 A cone is inscribed in a sphere with fixed radius a. If r 
is the radius of the base of the cone, express its volume 
as a function of r. 

47 A cone is circumscribed about a sphere with fixed radius 
a. If r is the radius of the base of the cone, express its 
volume as a function of r. 

48 If f(x) = (x - 3)/(x + 1 ), show thatf(.f(.f(x))) = x. 
49 Let a, b, c, d be given constants with the property that 

ad - be =I= 0. If f(x) = (ax + b)/(cx + d), show that 
there exists a function g(x) = (ax + /3)1( yx + o) such 
that f(g(x)) = x. Also show that for these two functions 
it is true that f(g(x)) = g(f(x)). 
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SECTION 1 .6 
50 Let p(x) = anx" + a11- 1x11- 1 + · · · + a ,x + ao be a 

polynomial of degree n 2: 1 ,  and prove the following 
statements: 
(a) If p(O) = 0, then p(x) = xq(x), where q(x) is a poly

nomial of degree n - 1 .  
(b) If a is any real number, the function f(x) defined by 

f(x) = p(x + a) is a polynomial of degree n. 
(c) If a is a real number for which p(a) = 0, that is, if a 

is a zero of p(x), then p(x) = (x - a)r(x), where r(x) 
is a polynomial of degree n - 1 .  Hint: Consider 
f(x) = p(x + a). 

(d) p(x) has at most n zeros. 
51  If n i s  any integer 2: 1 ,  show that there exists a polyno

mial of degree n with n zeros. If n is even, find a poly
nomial of degree n with no zeros; and if n is odd, find 
one with only one zero. 

52 Let p(x) = a11x
11 + a11- 1x11- 1 + · · · + a 1x + ao be a 

polynomial of degree n 2: I .  If p(x) has n zeros x1 , x2, 
. . . , x11, and is therefore expressible in the form 

p(x) = a11(x - X1)(x - x2) · · · (x - x11), 

show that 

(b) X1 + X2 + · · · + X11 = -
an- I . 
an 

53 A function f is said to be even if f( -x) = f(x) for every 
x in its domain, and it is said to be odd if f(-x) = -f(x) 
for every x in its domain (in each case, it is understood 
that -x is in the domain off whenever x is). Determine 
whether each of the following functions is even, odd, or 
neither: 
(a) f(x) = x3; 

(c) f(x) = lxl; 

I (e) f(x) = x2 + -; 
x 

(g) f(x) = x5 + l ;  

(b) f(x) = x(x3 + x); 
I 

(d) f(x) = x + -; 
x 

x3 + x 
(f) f(x) = 

x2 + I ; 

(h) f(x) = x(x + 1) .  
54 What is the distinguishing feature of the graph of an even 

function? Of an odd function? 
55 What can be said about 

(a) the product of two even functions? 
(b) the product of two odd functions? 
(c) the product of an even function and an odd function? 

56 If f(x) is an arbitrary function defined on an interval of 
the form [-a, a], show thatf(x) is expressible in one and 
only one way as the sum of an even function g(x) and an 
odd function h(x), f(x) = g(x) + h(x). Hint: f(-x) = 
g(x) - h(x). 

57 Write down a second-degree polynomial whose values 
at 1 ,  2, and 3 are 7T, \13, and 550. 

58 If a and b are positive constants, sketch the graph of 

b 
Y = 

2a 
<Ix + a l + Ix - a l - 2lxl). 

59 The symbol [x] (read "bracket x") is often used to de
note the greatest integer s a real number x. For exam
ple, [ I ] = I ,  [2. 1 ]  = 2, [ 7T] = 3, and ( - 1 .7] = -2. 
Sketch the graphs of the following functions: 
(a) y = [x] ; 
(b) y = x - [x]; 
(c) y = Vx- [x] ; 
(d) y = [x] + V x - [x]; 
(e) y = Vx - [Vx] ,  0 s x s 9. 

60 Express the number of squares s a positive number x in 
terms of the bracket function defined in Problem 59. Do 
the same for the number of cubes s x. 

6 1  I f  the symbol {x }  (read "brace x") denotes the distance 
from a real number x to the nearest integer, graph the fol
lowing functions: 
(a) y = {x } ;  
(c) y = { 4x ) ;  

SECTION 1 .7 

(b) y = { 2x } ;  
(d) y = t{4x} . 

62 Verify the given identities :  
(a) sin 4e = 8 sin e cos3 e - 4 sin e cos e; 
(b) cos 4e = 8 cos4 e - 8 cos2 e + I .  

63 Prove that 

sin me sin ne = t[cos (m - n)e - cos (m + n)e] ,  

sin me cos ne = t[sin (m + n)e + sin (m  - n)e], 
cos me cos ne = t[cos (m + n)e + cos (m - n)e] .  

64 Given a triangle with angles A, B, C and sides a, b, c op
posite these angles, prove the law of sines : 

a 
sin A 

b 
sin B 

c 
sin c· 

65 Show that the area of the triangle in the preceding prob
lem is 

tab sin C = tac sin B = the sin A. 

66 What is the area of an equilateral triangle whose side has 
length s? 

67 What is the area of an isosceles right triangle whose hy
potenuse has length h? 

68 Prove that the sine of an angle inscribed in a circle of 
unit diameter equals the length of the chord of the sub
tended arc. Hint: First consider the case in which one 
side of the angle is a diameter and use the fact that the 
resulting triangle is a right triangle; then use the fact that 
all inscribed angles subtending the same arc are equal. 
Deduce both of these facts from the theorem that any in
scribed angle is half the corresponding central angle, and 
prove this theorem. 



THE DERIVATIVE 
OF A FUNCTION 

We begin our study of calculus with a brief statement of what the subject is about 
and why it is important. Such a bird's-eye view of the road that lies ahead can 
help us attain a clarity of purpose and sense of direction that will serve us well 
among the many technical details that constitute the bulk of our work. 

Calculus is usually divided into two main parts, called differential calculus and 
integral calculus. Each of these parts has its own unfamiliar terminology, puz
zling notation, and specialized computational methods. Getting accustomed to all 
this takes time and practice, much like the process of learning a new language. 
Nevertheless, this fact should not prevent us from seeing at the beginning that 
the central problems of the subject are really quite simple and clear, with noth
ing strange or mysterious about them. 

Almost all the ideas and applications of calculus revolve around two geomet
ric problems that are very easy to understand. Both problems refer to the graph 
of a function y = f(x). We avoid complications by assuming that this graph lies 
entirely above the x-axis ,  as shown in Fig. 2. 1 .  

PROBLEM 1 The basic problem of differential calculus is the problem of tan
gents: Calculate the slope of the tangent line to the graph at a given point P. 

PROBLEM 2 The basic problem of integral calculus is the problem of areas: 
Calculate the area under the graph between the points x = a and x = b. 

Our work in the rest of this book will be focused on these two problems, on the 
ideas and techniques that have been developed for solving them, and on the ap
plications that arise from them.• 

At first sight these problems seem rather limited in scope. We expect them to 
shed significant light on geometry, and they do. What is very surprising is to find 

*For readers who are interested in the origins of words, a calculus in ancient Rome was a small stone 
or pebble used in counting and gambling, and the Latin verb calculare came to mean "to figure out," 
"to compute," "to calculate." Today a calculus is a method or system of methods for solving quanti
tative problems of a particular kind, as in calculus of probabilities, calculus of finite differences, ten
sor calculus, calculus of variations, calculus of residues, etc. Our calculus-the branch of math
ematics consisting of differential and integral calculus taken together- is sometimes called the 
calculus to distinguish it from all these other subordinate calculuses. 
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Figure 2.1 The essence of calculus. 
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that they also have many profound and far-reaching applications to the various 
sciences. Calculus pays its way in the great world outside of mathematics through 
these scientific applications, and one of our major purposes is to introduce the 
student to as wide a variety of them as possible. At the same time we will con
tinue to emphasize geometry and geometric applications, for this is the context 
in which the ideas of calculus are most easily understood. 

It is sometimes said that calculus was "invented" by those two great geniuses 
of the late seventeenth century, Newton and Leibniz. * In reality, calculus is the 
product of a long evolutionary process that began in ancient Greece and contin
ued into the nineteenth century. Newton and Leibniz were indeed remarkable 
men, and their contributions were of decisive importance, but the subject neither 
started nor ended with them. The problems stated above were much on the minds 
of many European scientists of the middle seventeenth century- most notably 
Fermat-and considerable progress was made on each of them by ingenious spe
cial methods. It was the great achievement of Newton and Leibniz to recognize 
and exploit the close connection between these problems, which no one else had 
fully understood. Specifically, they were the first to grasp the significance of the 
Fundamental Theorem of Calculus, which says, in effect, that the solution of the 
tangent problem can be used to solve the area problem. This theorem -certainly 
the most important in the whole of mathematics - was discovered by each man 
independently of the other, and they and their successors used it to weld the two 
halves of the subject together into a problem-solving art of astonishing power 
and versatility. 

As these remarks suggest, we begin our work by undertaking a fairly thorough 
study of the tangent problem in the next four chapters. Then, in Chapters 6 and 
7, we turn to the area problem. From there we push outward in a number of di
rections, extending our basic concepts and tools to broader classes of functions 
with a greater variety of significant applications. 

Before attempting to calculate the slope of a tangent line, we must first decide 
what a tangent line is, and this is not as easy as it seems. 

In the case of a circle there is no difficulty. A tangent to a circle ( Fig. 2.2, left) 
is a line that intersects the circle at only one point, called the point of tangency; 
lines that are not tangents either intersect the circle at two different points or miss 
it altogether. This situation reflects the clear intuitive idea most of us have that 
a tangent to a curve at a given point is a line that "just touches" the curve at that 

*The Latin spelling "Leibnitz" is sometimes used in order to suggest the correct pronunciation, which 
is "UBE-nits." 
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point.* It also suggests the possibility of defining a tangent to a curve as a line Y 

that intersects the curve at only one point. This definition was used successfully 
by the Greeks in dealing with circles and a few other special curves, but for curves 
in general it is wholly unsatisfactory. To understand why, consider the curve 
shown on the right in Fig. 2.2:  It has a perfectly acceptable tangent (the lower 
line) that this definition would reject, and an obvious nontangent (the upper line) 
that this definition would accept. 
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The modern concept of  a tangent line was originated by Fermat around 1630. x 
As students will come to see, this concept is not only a reasonable statement Figure l.3 Fermat's idea. 

about the geometric nature of tangents, it is also the key to a practical process 
for the construction of tangents. 

Briefly, the idea is this:  Consider a curve y = f(x), and let P be a given fixed 
point on this curve ( Fig. 2.3) .  Let Q be a second nearby point on the curve, and 
draw the secant line PQ. The tangent line at P can now be thought of as the lim
iting position of the variable secant as Q slides along the curve toward P We 
shall see in Section 2.2 how this qualitative idea leads at once to a quantitative 
method for calculating the exact slope of the tangent in terms of the given func
tion f(x). 

Let there be no misunderstanding. This way of thinking about tangents is not 
a minor technical point in the geometry of curves. On the contrary, it is one of 
the three or four most fruitful ideas that any mathematician has ever had, for 
without it there would have been no concept of velocity or acceleration or force 
in physics, no Newtonian dynamics or astronomy, no physical science of any 
kind except as the mere verbal description of phenomena, and certainly no mod
ern age of engineering and technology. 

General discussions have their place, but the time has come to get down to de
tails. 

Let P = (x0, y0) be an arbitrary fixed point on the parabola y = x2, as shown 
in Fig. 2.4. As our first illustration of the basic idea of this chapter, we calculate 
the slope of the tangent to this parabola at the given point P To begin the process, 
we choose a second nearby point Q = (xi , y1 ) on the curve. Next, we draw the 

*The Latin word tangere means "to touch," as in the English word "tangible." 
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secant line PQ which is  determined by these two points. The slope of this secant 
is evidently 

msec = slope of PQ = YI - Yo . X1 - XO ( l )  

Now for the crucial step: We let x1 approach x0, so that the variable point Q ap
proaches the fixed point P by sliding along the curve-much like a bead sliding 
along a curved wire. As this happens, the secant changes direction and visibly 
approaches the tangent at P as its limiting position. Also, it is  intuitively clear 
that the slope m of the tangent is the limiting value approached by the slope msec 
of the secant. If we use the standard symbol � to mean "approaches," then the 
last statement can be expressed in the concise and convenient form 

m = lim msec = Jim YI - Yo . Q->P x1 ->xo XI - Xo (2) 

The abbreviation "lim," with "x1 � x0" written below it, is read "the limit, as x1 
approaches x0, of . . . .  " 

We cannot calculate the limiting value m in (2) by simply setting x1 = x0, be
cause then Y I  = y0 and this would give the meaningless result 

Yo - Yo 0 
m = --- = -xo - xo o · 

We must think of x1 a s  coming very close to x0 but remaining distinct from it. 
However, as this happens, both y1 - y0 and x1 - x0 become arbitrarily small, and 
it isn't at all clear what l imiting value their quotient approaches. 

The way out of this difficulty is to use the equation of the curve. Since P and 
Q both lie on the curve, we have y0 = xo2 and YI = x1 2, so ( 1 )  can be written 

Yi - Yo x1 2 - xa2 msec = --- = (3) X1 - XO X1 - XO 

The reason this numerator becomes small is that it contains the denominator XI - x0 as a factor. If this common factor is canceled, we obtain 

Y1 - Yo x1 2 - xo2 (x1 - xo)(x1 + xo) msec = --- = = = X1 + Xo, 
and (2) becomes 

X1 - XO XI - XO X1 - XO 

l .  YI - Yo ) ' ( + ) m = 1m --- = 1m x1 xo . X1�x0 Xi - XQ X1 �x0 

It is now very easy to see what is happening: As x1 gets closer and closer to x0, 
x1 + x0 becomes more and more nearly equal to x0 + xo = 2xo. Accordingly, 

m = 2xo (4) 
is the slope of the tangent to the curve y = x2 at the point (x0, y0). 

Example 1 The points ( 1 ,  1 )  and ( -t , i) lie on the parabola y = x2 ( Fig. 2.5) .  
By formula (4), the slopes of the tangents at these points are m = 2 and m = - 1 . 
Using the point-slope form of the equation of a line, our two tangent lines clearly 
have equations 
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y - I -- = 2  x - I 

In exactly the same way, 

and 

y - Xo2 --- = 2x0 X - Xo 

I .  

is the equation of the tangent at a general point (x0, x02) on the curve. 

We now introduce a widely used piece of symbolism called the delta notation. 
The procedure just described begins by changing the independent variable x 

from a first value x0 to a second value x1 • The standard notation for the amount 
of such a change is Lix (read "delta x"), so that 

!1x = x i - xo (5) 

is the change in x in going from the first value to the second. We can also think 
of the second value as being obtained from the first by adding the change: 

x, = xo + !1x. (6) 

It is essential to understand that Lix is not the product of a number Li and a num
ber x, but a single number called an increment of x. An increment Lix can be ei
ther positive or negative. Thus, if x0 = 1 and x1 = 3, then Lix = 3 - 1 = 2; and 
if x0 = I and x1 = - 2, then Lix = - 2 - l = - 3 .  

The letter Li is the Greek d; when i t  i s  written in front of  a variable, it signi
fies the difference between two values of that variable. This simple notational 
device turns out to be extremely convenient and has spread into almost every part 
of mathematics and science. We illustrate its role in our present work by using 
it to reformulate the above calculations. 

In view of (5) and (6), formula (3) for the slope of the secant can be written 
in the form 

(7) 

This time, instead of factoring the numerator, we expand its first term and sim
plify the result, obtaining 

so (7) becomes 

(xo + /1x)2 - xo2 = xo2 + 2xo !1x + (11x)2 - xo2 
= 2xo !1x + (/1x)2 
= !1x(2xo + !1x), 

msec = 2xo + 11x. 
If we insert this in (2) and use the fact that x1 � x0 is equivalent to Lix � 0, we 
find that 

m = Jim (2xo + !1x) = 2xo. �x->0 
as before. Again it is very easy to see what is happening in the indicated limit 
process: as Lix gets closer and closer to zero, 2x0 + Lix becomes more and more 
nearly equal to 2xo. 
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Figure 2.6 
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This second method, using the delta notation, depends on expanding the square 
(x0 + Lix)2, whereas the first depends on factoring the expression x 12 - x02. In 
this particular case neither calculation is noticeably harder than the other. In gen
eral, however, expanding is easier than factoring, and for this reason we adopt 
the method of increments as our standard procedure. 

The calculation that we have just carried out for the parabola y = x2 can be 
described in principle for the graph of any function y = f(x) (Fig. 2 .6). We first 
compute the slope of the secant through the two points P and Q corresponding 
to x0 and xo + Lix, 

f(xo + �x) - f(xo) msec = �X 
We then calculate the limit of msec as Lix approaches zero, obtaining a number 
m that we interpret geometrically as the slope of the tangent to the curve at the 
point P: 

m = lim f(xo + �x) -f(xo) 
Ll.x->0 �X 

The value of this limit is usually denoted by the symbol f' (x0), read ''.f prime of 
x0," in order to emphasize its dependence on both the point x0 and the function 
f(x). Thus, by definition we have 

!' ( ) - r f(xo + �x) - f(xo) xo -a;�o �x (8) 

In this notation, the result of the calculation given above can be expressed as fol
lows: If f(x) = x2, then f' (xo) = 2xo. 

Example 2 Calculate f' (x0) if f(x) = 2x2 - 3x. 

Solution For this function, the numerator of the quotient in (8) is 

f(xo + �x) - f(xo) = [2(xo + �x)2 - 3(xo + �x)] - [2xo2 - 3xo] 
= 2xo2 + 4xo �x + 2(�x)2 - 3xo - 3�x -2xo2 + 3xo 

Xo x0 + tu x 
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= 4xo <ix + 2(iix)2 - 3ilx 

= iix(4x0 + 2iix - 3). 

The quotient in (8) is therefore 

and 

f(xo + <ix) - f(xo) 
<ix 

= 4x0 + 2iix - 3, 

f' (xo) = Jim (4xo + 2iix - 3) Ll.x--.o 

= 4x0 - 3. 

Figure 2.7 

We have assumed in the remarks leading to (8)  that the curve under discus
sion actually has a single definite tangent at the point P. This is a genuine as
sumption, because some curves do not have such a tangent at every point (Fig. 
2.7). However, when a tangent exists, it is clearly necessary for the secant PQ to 
approach the same limiting position whether Q approaches P from the right or 
from the left. These two modes of approach correspond, respectively, to <ix ap
proaching zero through only positive or only negative values. It is  therefore part 
of the meaning of (8) that for this limit to exist we must have the same limiting 
value for both directions of approach. 

PROBLEMS 

1 Find the equation of the tangent to the parabola y = x2 
(a) at the point (- 2, 4); 
(b) at the point where the slope is 8; 
(c) if the x-intercept of the tangent is 2. 

2 Show that the tangent to the parabola y = x2 at a point 
(x0, y0) other than the vertex always has x-intercept fx0. 

3 A straight line y = mx + b is presumably its own tan
gent line at any point. Verify this by using formula (8) 
to show that f' (x0) = m if f(x) = mx + b. 

4 Sketch the graph of y = x - x 2  on the interval - 2 ::s 
x ::5 3. 
(a) Use the method of increments to compute the slope 

of the tangent line at an arbitrary point (xo, Yo) on the 
curve. 

(b) What are the slopes of the tangent lines at the points 
( - 1 ,  -2), (0, 0), ( I ,  0), and (2, -2) on the curve? 
Use these slopes to draw the tangents at these points 
in your sketch. 

(c) At what point on the curve is the tangent horizontal? 
5 Use formula (8) to calculate f' (x0) ifj(x) is equal to 

(a) x2 - 4x - 5 ;  (b) x2  - 2 x  + I ;  
(c) 2x2 + I ;  (d) x2  - 4. 
The results of these calculations will be needed in Prob
lems 6-9. 

6 Sketch the given curve and the tangent line at the given 
point, and find the equation of this tangent line: 
(a) y = x2 - 4x - 5, (4,-5) .  
(b) y = x2 - 2x +  1 , ( - 1 , 4) .  

7 Find the equation of the tangent line to the curve y = 
2x2 + 1 that is parallel to the line 8x + y - 2 = 0. 

8 Find the equations of the two lines through the point 
(3, 1 )  that are tangent to the curve y = x2 - 4. Hint: Draw 
the graph, let (a, a2 - 4) be the point of tangency, and 
find a. 

9 Prove analytically (that is, without appealing to geomet
ric reasoning) that there is no line through the point 
( I ,  -2) that is tangent to the curve y = x2 - 4. 

10  One of  the two lines that pass through the point (2, 0) 
and are tangent to the parabola y = x2 is the x-axis. Find 
the equation of the other line. 

1 1  Find equations for the two lines through the point (3, 1 3) 
that are tangent to the parabola y = 6x - x2. 

1 2  Draw the graph of y = f(x) = Ix - 1 1 .  
(a) I s  there any point o n  the graph at which there i s  no 

tangent line? 
(b) Find f' (x0) if x0 > 1 .  If x0 < I .  What can be said 

about f' (x0) if xo = 1 ?  
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If we separate formula (8) in Section 2.2 from its geometric motivation, and also 
drop the subscript on x0, then we arrive at our basic definition: Given any func
tion f(x), its derivative f' (x) is the new function whose value at a point x is  de
fined by 

f'(x) = lim 
f(x + 6x) -f(x) 

Ll.x-->0 6x ( 1 )  

I n  calculating this limit, x i s  held fixed while Llx varies and approaches zero. 
The indicated limit may exist for some values of x and fail to exist for other 
values .  If the limit exists for x = a, then the function is said to be differentiable 
at a. A differentiable function is one that is differentiable at each point of 
its domain. Most of the specific functions considered in this book have this 
property. 

We know that the derivative f' (x) can be visualized in the way suggested by 
Fig. 2.8,  in which f(x) is  the variable height of a point P moving along the curve 
and f' (x) is the variable slope of the tangent at P. Strictly speaking, however, 
the above definition of the derivative does not depend in any way on geometric 
ideas. Our thoughts about Fig. 2.8 constitute a geometric interpretation, and 
important as this may be as an aid to understanding, it is not an essential 
part of the concept of the derivative. In the next section we will meet other 
equally important interpretations that have nothing to do with geometry. We 
must therefore be prepared to consider f' (x) purely as a function, and to rec
ognize that it has several interpretations but no necessary connection with any 
one of them. 

The process of actually forming the derivative f' (x) is called the differentia
tion of the given function f(x). This is the fundamental operation of calculus, 
upon which everything else depends. In principle, we merely follow the compu
tational instructions specified in ( ! ) .  These instructions can be arranged into a 
systematic procedure called the three-step rule. 

STEP 1 Write down the difference f(x + Lix) -f(x) for the particular function 
under consideration, and if possible simplify it to the point where Lix is a factor. 

STEP 2 Divide by Lix to form the difference quotient 

f(x + 6x) -f(x) 
6x 

and manipulate this to prepare the way for evaluating its limit as Lix � 0. In most 
of the examples and problems of the present chapter, this manipulation involves 
nothing more than canceling Lix from the numerator and denominator. 

STEP 3 Evaluate the limit of the difference quotient as Lix � 0. If Step 2 has 
accomplished its purpose, a simple inspection is usually all that is needed here. 

If we remember that the innocent-looking notation f(x) encompasses all con
ceivable functions, then we will understand that these steps are sometimes easy 
to carry out and sometimes very difficult. The following examples depend only 
on elementary algebra, but even this requires a little knowledge and ingenuity. 
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Example 1 Find f'(x) ifj(x) = x3 . 

STEP 1 :  

STEP 2 :  

STEP 3 :  

f(x + �x) -f(x) = (x + �x)3 -x3 
= x3 + 3x2 �x + 3x(�x)2 + (�x)3 - x3 
= 3x2 �x + 3x(�x)2 + (�x)3 
= �x[3x2 + 3x �x + (�x)2] .  

f(x + �x) -f(x) = 3x2 + 3x �x + (�x)2. �x 

f'(x) = lim [3x2 + 3x �x + (�x)2] = 3x2. 
Ax-;0 

Example 2 Find f'(x) ifj(x) = l lx. 

STEP 1 :  

STEP 2: 

STEP 3 :  

I I j(x + �x) -f(x) = -- - -x + �x x 
x - (x + �x) 

x(x + �x) x(x + �x) · 

f(x + �x) - j(x) 
�x 

- 1 
x(x + �x) · 

- I f'(x) = Jim ---
Ax->O x(x + �x) - x2 ' 

Let us briefly consider what the result of Example 2 can tell us about the graph 
of the function y = f(x) = llx. First, f' (x) = - l lx2 is clearly negative for all 
x * 0, and since this is the slope of the tangent, all tangent lines point down to 
the right. Further, when x is near O, f ' (x) is very large, which means that these 
tangent lines are steep; and when x is large, f' (x) is small, so these tangent lines 
are nearly horizontal. It is instructive to verify our observations by examining 
Fig. 1 .28. Generally speaking, derivatives are capable of telling us a great deal 
about the behavior of functions and the properties of their graphs, since the de
rivative at a point gives the slope of the tangent at that point. We explore this 
topic more fully in Chapter 4. 
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Example 3 Find f' (x) if f(x) = Vx. 
STEP 1 :  

STEP 2:  

f(x + �x) - f(x) = Vx + �x - Vx. 

f(x + �x) - f(x) 
�x 

This is not in a form that is convenient for canceling the Llx's, so we use an in
genious algebraic trick to remove the square roots from the numerator. We mul
tiply both numerator and denominator of the last fraction by V x + �x + Vx, 
which amounts to multiplying this fraction by 1 ,  and then we simplify the nu
merator by using the fact expressed in the algebraic identity (a - b)(a + b) = 
a2 -b2: 

f(x + �x) - J(x) 
�x 

� - Vx  � + Vx  
�x Vx + �x + Vx 

(x + �x) - x 
Vx + �x + Vx . 

Now the next step is easy. 

STEP 3:  
I f'(x) = lim = ----

t.x->O Yx + �x + Vx Vx + Vx 2Vx . 

REMARKS ON NOTATION 

There is a slightly disconcerting feature of calculus that we might as well con
front here. It is the fact that several different notations are in common use for 
derivatives, with preference shifting from one to another according to the cir
cumstances in which the symbols are being used. Some may ask, What does it 
matter which symbols are used? The fact is that it matters a great deal, for good 
notations can smooth the way and do much of our work for us, while bad ones 
create a swamp under our feet through which easy movement is difficult. 

The derivative of a function f(x) has been denoted above by f' (x). This nota
tion has the merit of emphasizing that the derivative of f(x) is another function 
of x which is associated in a certain way with the given function. If our function 
is given in the form y = f(x), with the dependent variable displayed, then the 
shorter symbol y' is often used in place off' (x) . 

The main disadvantage of this prime notation for derivatives is that it doesn't  
suggest the nature of the process by which f'  (x) is obtained from f(x). The no
tation devised by Leibniz for his version of calculus is better in this respect, and 
in other ways as well. 

To explain Leibniz's notation, we begin with a function y = f(x) and write the 
difference quotient 

f(x + �x) -f(x) 
�x 
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in the form 

where Ay = f(x + Ax) - f(x). Here Ay is not just any change in y; it is  the spe
cific change that results when the independent variable is changed from x to x + 
Ax. As we know, the difference quotient Ay/Ax can be interpreted as the ratio of 
the change in y to the change in x along the curve y = f(x), and this i s  the slope 
of the secant ( Fig. 2.9) .  Leibniz wrote the limit of this difference quotient, which 
of course is the derivative f' (x), in the form dy/dx (read "dy over dx") .  In this no
tation, the definition of the derivative becomes 

dy = lim !::..y 
dx Ll.x->0 !::..x ' (2) 

and this is the slope of the tangent in Fig. 2.9. Two slightly different equivalent 
forms of dy/dx are 

and d dx f(x). 

In the second of these, the symbol d!dx should be thought of as an operation 
which can be applied to the functionj(x) to yield its derivativef'(x), as suggested 
by the equation 

! f(x) = f'(x). 

The symbol d/dx can be read "the derivative with respect to x of . . .  " whatever 
function of x follows it. 

It is important to understand that dy/dx in (2) is a single indivisible symbol. 
In spite of the way it is written, it is not the quotient of two quantities dy and dx, 
because dy and dx have not been defined and have no independent existence. In 
Leibniz's notation, the formation of the limit on the right of (2) is symbolically 
expressed by replacing the letter A by the letter d. From this point of view, the 
symbol dy/dx for the derivative has the psychological advantage that it quickly 
reminds us of the whole process of forming the difference quotient Ay!Ax and 
calculating its limit as Ax � 0. There is also a practical advantage, for certain 
fundamental formulas developed in the next chapter are easier to remember and 
use when derivatives are written in the Leibniz notation. 

But good though it is, this notation is not perfect. For instance, suppose we 
wish to write down the numerical value of the derivative at a specific point, say 
x = 3 .  Since dy/dx doesn't display the variable x in the convenient way thatf'(x) 
does, we are forced into using some such clumsy notation as 

or 

The clear and concise symbol f' (3) is obviously superior to these awkward ex
pressions. 

As we have seen, each of the notations described above is good in its own way. 
All are widely used in the literature of science and mathematics, and to help the 
student become thoroughly familiar with them, we shall use them freely and in
terchangeably from now on. 

Slope = 
ily 
ilx 

Figure 2.9 

6 1  

Slope = 
dy 
dx 

\ 

x x + .:lx 
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PROBLEMS 

1 Use the three-step rule to show that iff(x) = ax2 + bx +  
c, then f' (x) = 2ax + b. 

Use the general rule in Problem I to write down the indicated 
derivatives in Problems 2-1 6. 

2 f(x) = 5x - 3; find f'(x). 
3 g(x) = 50 - 8x2; find g'(x). 
4 h(x) = x(50 - x); find h' (x). 
5 F(x) = 20 - 72x; find F' (x). 
6 G(x) = 3x2 + 5x - 7; find G' (x). 
7 H(x) = 5 - ! Ox +  15x2; find H' (x). 
8 y = 5x2 - 9x + 15 ;  find dyldx. 
9 x = 3y2 + 7y - 6; find dxldy. 

10 u = 7t2 - l l t  + 109; find du/dt. 
11 v = 7x(500 - x); find dvldx. 
12 w = -7z2 + 22z - 7 1 ;  find dw/dz. 
13 f(x) = 5x(x + 5); findf'(x). 
14 y = 5x - (x/ 1 0)2; find dyldx. 
15 g(x) = 3 - (4x + 5)2; find g ' (x). 
16 h(x) = (3x - 2)2 - Sx; find h ' (x). 

In Problems 1 7-22, find all points on the curve y = f(x) at 
which the tangent is horizontal. 
17 y = 6 - x2. 
18 y = 6x - x2. 
19 y = x2 - 6x + 9. 
20 y = x2 + x - 5. 
21 y = x(20 - x). 
22 y = x - (x/20)2. 

In Problems 23-38, use the three-step rule to calculate f' (x) 
if f(x) is equal to the given expression. 
23 5x - x3. 24 x3 + 2x2 - 5x. 
25 2x3 - 3x2 + 6x - 5.  26 x4. 

l 
27 x - -. 

x 

29 
x 

x + 1 · 
31 I 

2 . 
x 

28 3x + 2 · 
30 5 - 2x 

1 3  + x · 

32 
1 

-:0• 

33 34 
3 

x2 + I
. 2 + x2 · 

2x 
36 �. 

x2 - 1 · 35 

37 �. 38 2�. 
39 Consider the part of the curve y = 1 /x that lies in the first 

quadrant, and draw the tangent at an arbitrary point (x0, 
Yo) on this curve. 
(a) Show that the portion of the tangent which is cut off 

by the axes is bisected by the point of tangency. 
(b) Find the area of the triangle formed by the axes and 

the tangent, and verify that this area is independent 
of the location of the point of tangency. 

40 Find f'(x) iff(x) = x3 - 3x. Use this result to verify the 
positions of the high and low points on the curve y = 
x3 - 3x that are shown in Fig. 1 .26. Hint: At the high 
and low points the tangent is horizontal. 

41 Graph the function y = f(x) = lx l + x,  and prove that this 
function is not differentiable at x = 0. Hint: In formula 
( l  ) ,  first take t.x positive, obtaining one limiting value; 
then take t.x negative, obtaining a different limiting 
value. In a situation of this kind we say that the function 
has a right derivative and a left derivative, but not a de
rivative. 

42 Iff(x) = 2x2 - 5, findf' (2) and use it to write the equa
tion of the tangent line to the parabola y = 2x2 - 5 at 
the point (2, 3). 

43 If g(x) = 3 - 2x3, find g ' (O) and use it to write the equa
tion of the tangent line to the curve y = 3 - 2x3 at the 
point (0, 3) .  

44 If h(x) = \.lx+S", find h ' (4) and use it to write the equa
tion of the tangent line to the curve y = Vx+5 at the 
point (4, 3) .  

45 Find the point on the graph of y = x2 that is closest to 
the point (0, 3). Hint: Draw the graph, let (a, a2) be the 
point, and find a as a root of a certain cubic equation that 
can be solved by inspection. 

2 . 4  
VELOCITY AND RATES 

OF CHANGE. NEWTON 
AND LEIBNIZ 

The concept of the derivative is closely related to the problem of computing the 
velocity of a moving object. It was this fact that made calculus an essential tool 
of thought for Newton in his efforts to uncover the principles of dynamics and 
understand the motions of the planets. It might appear that only students of physics 
would find it worthwhile to concern themselves with precise ideas about veloc
ity. However, we shall see that these ideas provide a fairly easy introduction to 
the general concept of rate of change, and this concept is important in many other 
fields of study, including the biological and social sciences. 

In this section we consider a special case of the general velocity problem: that 
in which the object in question can be thought of as a point moving along a 
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straight line, so that the position of the point is determined by a single coordi
nate s ( Fig. 2. 10).  The motion is fully known if we know where the moving point 
is at each moment, that is, if we know the position s as a function of the time t, 

s = f(t). ( 1 )  

The time is usually measured from some convenient initial moment t = 0. 

Example 1 Consider a freely falling object, say a rock dropped from the edge 
of a cliff 400 ft high ( Fig. 2. 1 1 ) . It is known from many experiments that this 
rock falls 

s = 1 6t2 (2) 
feet in t seconds. We see that when t = 5, s = 400. The rock therefore hits 
the ground 5 seconds after it starts to fall, and formula (2) is valid only for 0 :5 
t :5 5 .  

Two basic questions can be asked about the motion described in this example. 
First, what is meant by the velocity of the falling rock at a given instant? And 
second, how can this velocity be computed from (2)? 

We are all familiar with the idea of velocity in its everyday sense, as a num
ber measuring the rate at which distance is being traversed. We speak of walk
ing 3 miles per hour (mi/h), driving 55 mi/h, and so on. We also speak of aver
age velocities, and these are the numbers we usually compute. If we drive a 
distance of 200 mi in 5 hours, then our average velocity is 40 mi/h, because 

In general, 

distance traveled = 200 mi = 40 mi/h. 
elapsed lime 5 h 

. distance traveled 
average velocity = 1 d . , e apse time 

and this is a formula almost everyone knows. 

Example 1 (continued) The position function for the falling rock, f(t) = 1 6t2, 
tells us that in the first second after the rock is released it falls f( l )  = 1 6  ft, in 
the first 2 seconds f(2) = 64 ft, in the first 3 seconds f(3) = 144 ft, and so on. 
The average velocities during each of the first 3 seconds of fall are therefore 

1 6  
I = 16 ftts, 

64 � 1 6  
= 48 ft/s, and 

1 44 � 64 = 80 ft/s. 

The rock is clearly falling faster and faster from moment to moment, but we still 
do not know exactly how fast it is falling at any given instant. 

To find the velocity v of the rock at a given instant t, we proceed as follows. 
In the time interval of length l:l.t between t and a slightly later instant t + !::.t, the 
rock falls a distance !::.s (see Fig. 2 . 1 1 ) .  The average velocity during this interval 
is the quotient !::.s!!::.t. When l:l.t is small, this average velocity is close to the ex
act velocity v at the beginning of the interval; that is, 

ds 
v = 

dt ' 

0 p .. . I I 
1-- s--I I I 

Figure 2. lO 
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where the symbol = is read "is approximately equal to." Further, as tit is made 
smaller and smaller, this approximation gets better and better, so we have 

. �s v =  hm --.---. dt--->0 u.t (3) 

Our point of view here is that the velocity v is a direct intuitive concept, and (3) 
shows us how to compute it. However, it is also possible to regard (3) as the def
inition of the velocity, with the preceding remarks serving as motivation. The 
limit in (3) is clearly the derivative ds/dt, and carrying out the details we have 

v = ds = lim �s dt dt--->0 �l 
. I 6(t + �t)2 - I 6t2 = hm ��-�---

ar--->O �t 
= lim (32t + lMt) = 321. dt--->0 

This formula tells us that the velocity of the rock after 1 ,  2, and 3 seconds of fall 
is 32, 64, and 96 ft/s, and also that the rock hits the ground at 1 60 ft/s. We no
tice that the velocity increases by 32 ft/s during each second of fall .  This fact is 
usually expressed by saying that the acceleration of the rock is 32 feet per sec
ond per second ( ft/s2), or, in the metric system, 9 .80 meters per second per sec
ond (m/s2) .  

The reasoning used in this example is valid for any motion along a straight 
line. For the general motion ( 1 ), we therefore calculate the velocity v at time t 
in exactly the same way; that is, we approximate v more and more closely by the 
average velocity over a shorter and shorter interval of time beginning at the in
stant t: 

. �s . f(t + �t) - f(t) v =  hm - = hm 
ar--->0 �t ar---;O �t 

We recognize this as the derivative of the function s = f(t), so the velocity of a 
point moving on a straight line is simply the derivative of its position function, 

ds v = di = J'(t). 

Sometimes this is called the instantaneous velocity, in order to emphasize that it 
is calculated at an instant t. However, once this point has been made, it is cus
tomary to omit the adjective. The words "velocity" and "speed" are used inter
changeably in everyday speech, but in mathematics and physics it is useful to 
distinguish them from one another. The speed of our point is defined to be the 
absolute value of the velocity, 

speed = !vi = I�� I = If' (t)i . 

The velocity may be positive or negative, depending on whether the point is mov
ing along the line in the positive or negative direction; but the speed, being the 
magnitude of the velocity, is always positive or zero. The concept of speed is 
particularly useful in studies of motion along curved paths, for it tells us how 
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fast the point is moving regardless of its direction. In our everyday experience, 
we learn the speed of a car at any moment by looking at the speedometer. 

ie- r  = 4, u = O 

/-..... , s = 256 
I \ I I 
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Example 2 Consider a projectile fired straight up from the ground with an ini
tial velocity of 1 2 8  ft/s. This projectile moves up and down along a straight line. 
However, the two parts of its path are shown slightly separated in Fig .  2. 1 2, for 
the sake of visual clarity. Let s = f(t) be the height in feet of the projectile t sec
onds after firing. If the force of gravity were absent, the projectile would con
tinue moving upward with a constant velocity of 1 28 ft/s, and we would have 
s = f(t) = 1 28t. However, the action of gravity causes it to slow down, stop mo
mentarily at the top of its flight, and then fall back to earth with increasing speed. 
Experimental evidence suggests that the height of the projectile during its flight 
is given by the formula 

I I 
I = 2, u = 64 • t l I l = 6, u = -64 

s = I 92 I I T s = I 92 I I 
I I I : I I I I -1--tr : I I I s I I I I I 

?W##///,;,r,;,r,;,r),;,w,,w/)//##//////#..0'/, 
s = f(t) = 1 281 - 1 6t2. (4) 

If we write this in the factored form s = 1 61(8 - t) , we see that s = 0 when 
t = 0 and when t = 8. The projectile therefore returns to earth 8 seconds after it 
starts up, and ( 4) is valid only for 0 :5 t :5 8. 

To learn more about the nature of this motion, it is necessary to know the ve
locity. If the general rule for computing derivatives of second-degree polynomi
als is applied to (4), we find that the velocity at time t i s 

ds v =  dt = 1 28 - 321. (5) 

At the top of its flight the projectile is momentarily at rest, and therefore v = 0. 
By (5), t = 4 when v = O; and by (4), s = 256 when t = 4. In this way we find 
the maximum height reached by the projectile and the time required to reach this 
height (see Fig. 2. 1 2). As t increases from 0 to 8, it is clear from (5) that v de
creases from 1 28 ft/s to - 1 28 ft/s ; in fact, v decreases by 32 ft/s during each 
second of flight, and this is expressed by saying that the acceleration is - 32 feet 
per second per second ( ft/s2). We notice explicitly that the velocity is positive 
from t = 0 to t = 4, when s is increasing; and it is negative from t = 4 to t = 8, 
when s is decreasing. In particular, it is easy to see from (5) that v = 64 ft/s when 
t = 2 and v = - 64 ft/s when t = 6 (the speed is 64 ft/s at both times). 

Figure 2. 12  

Velocity is an example of the concept of rate of change, which is basic for all Y 

the sciences. For any function y = f(x), the derivative dy/dx is called the rate of 
change of y with respect to x. Intuitively, this is the change in y that would be 
produced by an increase of one unit in  x if the rate of change remained constant 
( Fig. 2. 1 3). In this terminology, velocity is simply the rate of change of position 
with respect to time. When time is the independent variable, we often omit the 
phrase "with respect to time" and speak only of the "rate of change." 

Example 3 (a) We know that velocity is important in studying the motion of 
a point along a straight line, but the way the velocity changes is also i mportant. Figure 2.13 

By definition, the acceleration of a moving point is the rate of change of its ve-
locity v, 

dv a = dt. 

x 
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Figure 2.15 

THE DERIVATIVE OF A FUNCTION 

(b) Suppose that water is being pumped into the conical tank shown in Fig. 
2 . 14  at the rate of 5 ft3/min. If V denotes the volume of water in the tank at time 
t, then 

dV = 5 
dt 

. 

The rate of change of the depth x is the derivative dx/dt, and this is not constant. 
It is intuitively clear that this rate of change is large when the area of the surface 
of the water is small, and becomes smaller as this area increases. 

(c) In economics, the rate of change of a quantity Q with respect to a suit
able independent variable is usually called marginal Q. Thus we have marginal 
cost, marginal revenue, marginal profit, etc. If C(x) is the cost of manufacturing 
x pieces of a product, then the marginal cost is dC/dx. In most cases x is a large 
number, so 1 is small compared with x and dC/dx is approximately C(x + 1 ) -
C(x). For this reason, many economists describe marginal cost as "the cost of 
producing one more piece." In Section 4.7 we discuss in  some detail the appli
cations of calculus to economics. 

(d) We know that the area A of a circle in terms of its radius r is given by 
the formula A = 7Tr2, and the derivative of this function is easy to compute by 
the three-step rule: 

dA dr = 27Tr. (6) 

This says that the rate of change of the area of a circle with respect to its radius 
equals its circumference. To understand the geometric reason for this remarkable 
fact, let !::.r be an increment of the radius and M the corresponding increment 
of the area ( Fig. 2 . 15 ) .  It is clear that M is the area of the narrow band around 
the circle, and this is approximately the product of the circumference 2 7Tr and 
the width !::.r of the band. The difference quotient Ml !::.r is therefore close to 
27Tr, and by letting !::.r � 0 we obtain (6) by geometric reasoning. 

We have introduced two topics in this section: velocity, which is the rate of 
change of the position of a moving object, and rates of change in general, in
cluding acceleration, which is the rate of change of velocity. These are themes 
of major importance for calculus, and we shall return to them repeatedly through
out the rest of this book. 

NOTE ON NEWTON AND LEIBNIZ 
As we suggested earlier, the historical roots 

of calculus l ie deep in antiquity- in the mind of Archimedes 
(287-2 12  B.C.)-and also in several profound ideas of Fer
mat in the early seventeenth century. Nevertheless, the ac
tual discovery of calculus can be credited jointly to Isaac 
Newton ( 1 642-1727) in England and Gottfried Wilhelm 
Leibniz ( 1 646-17 16) in Germany. 

Newton's discovery is perhaps the only benefit that the 
Great Plague of London conferred upon humanity. This 
plague-which killed more than 75,000 people out of a total 
population of about 500,000- spread out from London into 
other parts of the country and forced the closing of Cam
bridge University in 1665. The young Newton left Trinity Col
lege and returned to his family  farm in northern England for 
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two years of rustic solitary meditation. During this enforced 
long vacation his genius burst into flame: He discovered the 
binomial series for negative and fractional exponents; dif
ferential and integral calculus; universal gravitation as the 
key to the mechanism of the solar system; and the resolu
tion of sunlight into the visual spectrum by means of a prism, 
with its implications for understanding the colors of the rain
bow and the nature of light in general. At the age of 22 to 
23, in this miraculous period of his youth, he began the life
work in which he virtually created modem physical science. 
From the perspective of more than 300 years we see that he 
had a deeper influence on the direction of civilized life than 
the rise and fall of nations. When Newton died, England 
went into national mourning, and the poet Alexander Pope 
wrote his epitaph as follows: "Nature and Nature's laws lay 
hid in night: God said, Let Newton be! and all was light." 
But our concern here is with his mathematics. Newton 

usually thought of functions in terms of motion, and what 
we refer to as "differential and integral calculus" he called 
"the direct and inverse method of fluxions." His treatise on 
these subjects was written in 1671 but remained unpublished 
until 1736, nine years after his death. His ideas became known 
in a limited way through correspondence and conversations 
with his friends, and were mentioned in vague general terms 
in his great treatise of 1 687 on the laws of motion and the 
astronomy of the solar system.

• 
Newton was pathologically 

secretive-as private as a snail in its shell. He had none of 
the itch to publish that afflicts the modem world, and most 
of his great works had to be dragged out of him by the ca
jolery and persistence of his friends. He was especially un
willing to publish anything about his mathematical discov
eries, and it is not surprising that Leibniz and other 
mathematicians on the Continent, though starting a few years 
later, soon caught up with Newton and passed beyond him. 
Mathematics and physics were only a small part of New

ton's intellectual life, and he left these occupations behind 
him at the age of about 45. Throughout his life he spent 
thousands of hours of thought on theology and alchemy, and 

• Philosophiae Natura/is Principia Mathematica (The Mathematical 
Principles of Natural Philosophy), usually called the Principia. When 
this work was published, it was immediately recognized as one of the 
supreme achievements of the human mind. It is still universally con, 
sidered to be the greatest contribution to science ever made by one man. 

PROBLEMS 

According to Problem I of Section 2.3, the general quadratic 
function 

s = f(t) = at2 + bt + c 

has derivative 

wrote bushels of manuscripts recording his studies of these 
subjects. In his later years he moved to London and became 
Master of the Mint. He was knighted for his sµccess in sta
bilizing the British currency by catching and executing many 
counterfeiters with relentless and ferocious efficiency. A 
very strange man, unlike any other, and the more we learn 
about him the stranger he seems. 
Newton's great rival Leibniz was a man of transcendent 

genius who made creative contributions across the entire 
spectrum of human knowledge. He is equally famous as 
mathematician and philosopher, and the graduate department 
of philosophy in every respectable university offers a course 
on Leibniz. He was also a lawyer, diplomat, historian, li
brarian, physicist, geologist, logician, theologian, landscape 
architect, economist, and much else. He spent most of his 
life in the service of the successive Dukes of Brunswick at 
Hanover in northern Germany, working as court historian 
and librarian. Without his researches as historian and ge
nealogist, his employer the Elector George Louis of Hanover 
could never have become George I, the first German King 
of England; and George's descendants, including Queen Vic
toria and the present royal family of Britain (known as the 
House of Windsor since 1 9 1 7) would never have been heard 
of. His ideas about the purposes and organization of schol
arly libraries were so farsighted that the Director and Prin
cipal Librarian of the British Museum from 1 959 to 1 968 
called him "the greatest librarian of his age." 
He founded the Berlin Academy of Sciences and also Acta 

Eruditorum, the most influential European journal of the 
time in science and mathematics, and he was its editor-in
chief for many years. In this journal he published the first 
accounts of his version of calculus, in 1 684 and 1 686. He 
had started his mathematical work in 1 673, eight years af
ter Newton, and in 1 675 he invented the basic notations dyldx 
and Jy dx.t His early publications had little effect in Ger
many or England, but in Switzerland the Bernoulli brothers 
eagerly absorbed Leibniz's ideas and methods and con
tributed many of their own. Calculus grew rapidly from 1 690 
on and reached roughly its present state around 1 800. How
ever, subtle difficulties in the theory of calculus were not 
fully settled until the twentieth century. 

tThe latter notation will be introduced in Section 5.3. 

ds dt = f'(t) = 2at + b. 
Each of the formulas in Problems 1-7 below describes the 
motion of a point along a horizontal line whose positive di
rection is to the right. In each case use the result stated here 
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to write down the velocity v = dsldt by inspection. Also, find (a) the times when the velocity is zero, so that the point is 
momentarily at rest; and (b) the times when the point i s  mov
ing to the right. 

1 s = 3t2 - 1 2t + 7. 
3 s = 2t2 + 28t - 6. 
5 s = 7t2 + 2. 
7 s = (2t - 6)2. 

2 s = I - 6t - t2. 
4 s = - 19 + l Ot - 5t2. 
6 s = 2 + 7t. 

8 Two points start from the origin on the s-axis at time t = 
0 and move along this axis in accordance with the for
mulas 

S 1 = t2 - 6t and 

where s 1 and s2 are measured in feet and t in seconds. 
(a) When will the two points have the same speed? 
(b) What are the velocities of the two points at the times 

when they have the same position? 
9 A camera is accidentally knocked off a ledge on the 

World Trade Center in New York City and falls to the 
ground below. The ledge is 784 ft above the ground. The 
camera fal l s  a distance of s = I 6t2 feet in t seconds. 
(a) How long does the camera fall before it hits the 

ground? 
(b) What is the average velocity at which the camera falls 

during the first 3 seconds? 
(c) What is the average velocity at which the camera falls 

during the last 3 seconds? 
(d) What is the instantaneous velocity of the camera 

when it hits the ground? 
10 A point moves along a straight line in such a way that 

after t seconds its distance from the origin is s = 6t2 + 
2t feet. 
(a) Find the average velocity between t = 3 and t = 6. 
(b) Find the instantaneous velocity when t = 3. 
(c) Find the instantaneous velocity when t = 6. 

11 Consider the function y = 3x2 + 4. 
(a) Find the average rate of change of y with respect to 

x between the points x = I and x = 3. 
(b) Find the instantaneous rate of change of y with re

spect to x at the point x = I .  

(c) Find the instantaneous rate of change of y with re
spect to x at the point x = 3 . 

1 2  Consider the function y = -2-
1

- (see Problem 33 in 
Section 2.3). x + 1 

(a) Find the average rate of change of y with respect to 
x between the points x = - 1 and x = I .  

(b) Find the instantaneous rate of change of y with re
spect to x at the point x = - l .  

(c) Find the instantaneous rate of change of y with re
spect to x at the point x = 1 .  

J 3  Starting from rest, a certain car moves s feet i n  t seconds 
where s = 4.4t2. How long does it take the car to reach 
the velocity of 60 mi/h ( =  88 ft/s)? 

14  Assume that a projectile fired straight up  from the ground 
with an initial velocity of v0 ftls reaches a height of s 
feet in t seconds, where 

S = Vat - J 6t2. 
(a) Find the velocity v at time t. 
(b) How much time is required for the projectile to reach 

its maximum height? 
(c) What is the maximum height? 
(d) What is the velocity when the projectile hits the 

ground? 
(e) What must the initial velocity be for the projectile to 

hit the ground 1 5 seconds after firing? 
15 An oil tank is to be drained for cleaning. If there are V 

gallons of oil left in the tank t minutes after the draining 
begins, where V = 40(50 - t)2, find 
(a) the average rate at which oil drains out of the tank 

during the first 20 minutes; 
(b) the rate at which oil is flowing out of the tank 20 

minutes after the draining begins. 
1 6  Consider a square of  area A and side s, so  that A = s2. 

If x = fs, use the idea of Example 3d to make a conjec
ture about the value of dA/dx. Verify your conjecture by 
calculation. 

1 7  Suppose a balloon of volume V and radius r i s  being in
flated, so that V and r are both functions of the time t. If 
dV/dt is constant, what can be said (without calculation) 
about the behavior of dr/dt as r increases? 

2 . 5 
THE CONCEPT OF 

A LIMIT. TWO 
TRIGONOMETRIC 

LIMITS 

It is evident from the preceding sections that the definition of the derivative rests 
on the concept of the limit of a function, which we have freely used with only 
the briefest explanation. Now that we understand the purpose of this concept, the 
time has come to examine its meaning with somewhat more care and attention. 

Let us consider a function f(x) that is defined for all values of x near a point 
a on the x-axis but not necessarily at a itself. Suppose there exists a real num
ber L with the property that f(x) gets closer and closer to L as x gets closer and 
closer to a ( Fig. 2 . 1 6) .  Under these circumstances we say that L is the limit of 
f(x) as x approaches a, and we express this symbolically by writing 
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Jim f(x) = L. 
x->a 

( l )  

If there is no real number L with this property, we say that f(x) has no limit as 
x approaches a, or that 1imx___,af(x) does not exist. Another widely used notation 
equivalent to ( I )  is 

J - ·· ·· ;� l �.-f(x) � L as x � a, 

which is read "f(x) approaches L as x approaches a." In thinking about the mean
ing of ( l ), it is essential to understand that it does not matter what happens tof(x) 
when x equals a ;  all that matters is the behavior of f(x) for x's that are near a. 

These informal descriptions of the meaning of ( I )  are helpful to the intuition 
and are adequate for most practical purposes. Nevertheless, they are too loose 
and imprecise to be acceptable as definitions, because of the vagueness of such 
expressions as "closer and closer" and "approaches." The exact meaning of ( 1 )  
is  too important to b e  left mainly to the student's imagination, and at the risk of 
being overly technical, we will try to give a satisfactory definition as briefly and 
clearly as possible. For the next few paragraphs we ask students to read even 
more carefully and thoughtfully than usual, and to suspend their natural impa
tience with what appears to be excessive, nit-picking precision. 

We begin by analyzing a specific example with the hope of extracting the 
essence of the general situation: 

2 2 + 
lim � = l . 
x->0 X 

Here the function we must examine is 

2x2 + x 
y = f(x) = --. 

x 

This function is not defined for x = 0, and for x * 0 its values are given by the 
simpler expression 

f(x) = 
x(2x + I )  

= 2x + 1 . x 

If we examine the graph ( Fig. 2 . 1 7) ,  it is clear that f(x) is close to 1 when x is  
close to 0. In order to give a quantitative description of this qualitative behavior, 
we need a formula for the difference between f(x) and the limiting value 1 :  

f(x) - l = (2x + I )  - I = 2x. 

We see from this formula that f(x) can be made as close as we please to 1 ,  that 
is, this difference can be made as small as we please, by taking x sufficiently 
close to 0. Thus, 

f(x) - 1 = 1bo 
f(x) - 1 = 1doo 

when 

when 

I x = 200, 

I x = 2000 , 

Figure 2.16 

and so on. More generally, let E (epsilon) be any positive number given in ad- Figure 2.17 

vance, no matter how small, and define 8 (delta) by 8 = ±t:. Then the distance 
from f(x) to 1 will be smaller than E, provided only that the distance from x to 
0 is smaller than 8; that is, 

if lxl < o = �E then lf(x) - J I = 2lxl < E. 

This assertion is much more precise than the vague statement thatf(x) is "close" 

x a 

y = I 

x 
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Figure 2.18 The epsilon-delta defini
tion. 
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to 1 when x is "close" to 0. It tells us exactly how close x must be to 0 in order 
to guarantee thatf(x) will attain a previously specified degree of closeness to 1 .  
Of course, x is not permitted to equal 0 here, because f(x) has no meaning for 
x = 0. 

The so-called epsilon-delta definition of the meaning of ( 1 )  should now be 
easy to grasp. The defining condition is this :  

For each positive number E there exists a positive number 8 with the property that 

IJ(x) - LI < E 

for any number x * a that satisfies the inequality 

Ix - al < 8. 

In words: If E > 0 is given, then 8 > 0 can be found with the property thatf(x) 
will be "E-close" to L whenever x is "8-close" to a. As usual, we are concerned 
only with the behavior of f(x) near the point x = a, and not at all with what hap
pens at x = a. 

It may be helpful to students if we interpret these ideas in terms of the graph 
of the function y = f(x), as shown in Fig. 2 . 1 8. In this figure 2E is the width of 
the horizontal strip centered on the line y = L, 28 is the width of the vertical strip 
centered on the line x = a, and the defining condition stated above can be ex
pressed this way: 

For each horizontal strip, no matter how narrow, there exists a vertical strip such that 
if x * a is confined to the vertical strip, then the corresponding part of the graph will 
be confined to the horizontal strip. 

Students should read the precise definition of the meaning of ( 1 )  very carefully 
and be aware of its crucial role in the theory of calculus. However, an intuitive 
understanding of limits is quite enough for our purposes, and from this point of 
view the following examples should present no difficulties. 

Example 1 First, 

Jim (3x + 4) = 10. x-->2 

Here it i s  clear that as x approaches 2, 3x approaches 6 and 3x + 4 approaches 
6 + 4 = 1 0. Next, 

Jim 
x2 

- l = lim 
(x + l )(x - I ) = lim (x + 1 )  = 2. x-->1 X - l x-->1 X - 1 x-->1 

The first thing we notice here is that the function (x2 - l )/(x - 1 )  is undefined 
at x = 1 ,  since both numerator and denominator equal 0. But this fact is irrele
vant, since all that matters is the behavior of the function for x's that are near 1 

but different from 1 ,  and for all such x's the indicated cancellation is valid, the 
function equals x + 1 ,  and this is near 2.  

Example 2 It is illuminating to consider a few limits that do not exist, for in
stance, 
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2.5 THE CONCEPT OF A LIMIT. TWO TRIGONOMETRIC LIMITS 

Jim _
l
x
l
' 

x->0 X 
I . I 1m 
x---tO x ' and 

. 1 hm 2. 
x->0 X 

_) 

The behavior of these limits is most easily understood by looking at the graphs 
of the functions x!Jx J , l lx, and l /x2 ( Fig. 2 . 1 9) .  In the first case the function equals 
1 when x is positive and - 1  when x is negative (and is undefined for x = 0), so 
there is no single number that the values of the function approach as x approaches 
0 without regard to sign. We can be a bit more specific about the way this limit 
fails to exist, by writing 

and 
. x lim -1 1  = - J . 

x->0- X 

The notations x � O+ and x � 0- are intended to suggest that the variable x 
approaches 0 from the positive side (the right) and from the negative side (the 
left), respectively. The other two limits fail to exist because in each case the val
ues of the function become arbitrarily large in absolute value as x approaches 0. 
In symbols, 

]. 1 
lffi - = 00, 

x->0+ X 

]. 1 
Im - = - oo 

x---tO- X 
' and I . I 1m 2 = =. 

x->0 X 

Remember: The number L in ( 1 )  must be a real number; L = oo does not qual
ify. 

The main rules for calculating with limits are exactly what we would expect. 
For instance, 

and if c is a constant, then 

lim x = a; 
x->a 

Jim c = c. 
x->a 

Also, if limx-.a f(x) = L and limx-.a g(x) = M, then 

Jim [.f(x) + g(x)] = L + M, 
x->a 

and 

Jim [.f(x) - g(x)] = L - M, 
x->a 

lim f(x)g(x) = LM, 
x->a 

Jim f(x) = !::.._ 
x->a g(x) M 

(if M "fa 0). 

7 1  

Figure 2.1 9  
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THE DERIVATIVE OF A FUNCTION 

In words, the limit of a sum is the sum of the limits, with similar statements for 
differences, products, and quotients. These are called the limit laws, or limit the
orems. 

We remarked earlier that calculus is a problem-solving art and not a branch of 
logic. It has more to do with insight nourished by intuitive understanding than it 
does with careful deductive reasoning. Naturally, we will try to convince the 
reader of the truth of our statements and the legitimacy of our procedures. How
ever, these efforts will be brief and rather informal, in order to avoid clogging 
the text with massive indigestible chunks of theoretical material. Those who wish 
to devote more attention to the purely mathematical side of the subject will find 
logically rigorous proofs of the major theorems in Appendix A at the back of the 
book. In particular, the properties of limits stated here are proved in Appendix 
A.2. 

Before leaving these topics, we discuss two specific trigonometric limits that 
will be of crucial importance in the next chapter. The first is 

I
. sin 8 1m --

6-->0 8 (8 in radians) .  (2) 

We cannot simply set 8 = 0 here, because the result is the meaningless quotient 
010. We notice how different this is from an algebraic limit like 

lim 3x2 + 2x = Jim x(3x + 2) = lim (3x + 2) = 2, 
x-->0 X x-->0 X x-->0 

because there is no apparent way to cancel 8 from sin 8. To get an impression 
of what is happening in (2), let us calculate the numerical value of the ratio for 
several small values of 8. We begin by observing that if we replace 8 by - 8 in 
the ratio, then we have 

sin(- 8) -sin  8 sin 8 
- 8  - 8  8 ' 

so we can restrict our attention to positive B's . Using a calculator set to the ra
dians mode, we can easily construct the adjoining table of values correct to eight 
decimal places. This numerical evidence strongly suggests (but does not prove ! )  
that 

r sin 8 - l e1!!6 8 - . (3) 

We now establish (3) by a simple geometric argument. Let P and Q be two 
nearby points on a unit circle ( Fig. 2.20), and let PQ and PQ denote the lengths 
of the chord and the arc connecting these points. Then the ratio of the chord 
length to the arc length evidently approaches 1 as the two points move together: 

chord length PQ 
� ---> I 

arc length PQ as PQ ---> 0. 

With the notation in the figure, this geometric statement is equivalent to 

2 sin 8 
= 

sin 8 ___, 1 
28 8 

and this is (3) .  

as 28 ---> 0 or 8 ---> 0, 



2.5 THE CONCEPT OF A L IM IT. TWO TRIGONOMETRIC LIMITS 

The second limit necessary for our work in the next chapter is 

r i - cos e _ 0 
8
� (} - . (4) 

This follows from (3) by an ingenious use of the trigonometric identity sin2 (J + 
cos2 (J = 1 :  

Jim 1 - cos (} = Jim ( 1 - cos (} . 1 + cos (}) 
8-->0 (} 8-->0 (} I + cos (} 

. I - cos2 (} = hm -----
8-->0 (}( 1 + cos (}) 

. 2 (} = lim Sill 
8-->0 (}( 1 + cos (}) 

_ 1. ( sin (} sin (} ) - im -- · 
8-->0 (} 1 + cos (} (I . sin (})(i ·  s in (} ) = 1m -- 1m 

8-->0 (} 8-->0 1 + cos (} 
0 = l · -- = O  1 + 1 . 

The end of this calculation uses the facts that sin (J ---'? 0 and cos (J � 1 as (J ---'? 
0, which are easily verified by examining the geometric meaning of sin (J and 
cos 8 in Fig. 2.20. 

PROBLEMS 

7 3  

Some of the following limits exist, and others d o  not. Evalu-
ate those that do. 

17 If limx-->af(x) = 4, limx-+a g(x) = -2, and liffix_,a h(x) = 
0, evaluate the following limits: 

1 

3 

5 

7 

9 

11 

12 

13 

15 

Jim (7x - 6). 
x-->3 

r 
s im --. 

x-->0 X - 1 
r 

3x - 9 im ---. x-->3 X - 3 
Jim x - 3 - 2x2 

1 + 3x x-->5 

Im -- + -- .  r ( 4x 1 2  ) 
x-->- 3 X + 3 X + 3 

x2 + x - 56 Jim 2 . 
x-->7 x - 1 lx + 28 

2 

4 

6 

8 

10 

Jim (x + 2)(x2 - x + 3) 
x--> -2 x2 + x - 2 

x2 
14 Jim TT x-->0 X 

x - 4  Jim 
x-->4 X - Vx - 2 

16 

I " 
JO 1m --. 

x-->2 3 + X 

I " 
6 1m ---. x-->2 2x - 4 

x2 + 3x lim 2 . 
x-->3 X - X + 3 
r 

4x 1m --. 
x-->-3 X + 3 

x Jim -. 
x-->0.001 lxl 

Jim x - 4  
Vx - 2 . 

x-->4 

w+l6 - s  Jim x2 - 3x x-->3 

18 

(a) lim [f(x) - g(x)] ; (b) J im [g(x)]2; 
x-M x--+a 

. f(x) . h(x) (c) hm -( ) 
; (d ) hm f( ) ; x-->a g X x-->a X 

. f(x) 1 (e) hm h( )
; (f) Jim [f( ) ( )]2 . 

x-->a X x-->a X + g X 
In many situations we are interested in the behavior of 
f(x) when x is large and positive. If there exists a real 
number L with the property that f(x) gets closer and 
closer to L as x gets larger and larger ( Fig. 2.21 ), then 

y = L 

X --? 

Figure 2.21 
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we say that L is the limit of f(x) as x approaches infin
ity, and we symbo1 • 7e this by writing limx_,�f(x) = L. 
Evaluate the follo1 ,1,g limits: 

(a) J� �; (b) }irn { 2 + l�O} 
. 5x + 3 * 2x2 + x - 5 (c) hm -2 7 ; (d) Jim 3 2 7 + 2 ; 

x---too x - x�oo x - x 

) . x (e hm -2
--

1 ; 
x-->� X + 

x2 - 2x + 5 
(f) lim 3 + 7 2 + 2 l . x�oo x x x -

19 Evaluate the following limits: 

( ) I' sin 5e . (b) I' sin e . a 81.!Ib e ' 81£6 28 ' 

) . . 1 (c hm sm -; 
X---t00 x 

( ) I . 500 e tm cos --; 
x---too X 

( ) I' sin 2x g x1.!Ib sin 3x · 

(d) Jim x sin _!_; 
x�oo X . 2 

(f) lim sm x ; 
x-->0 3x2 

20 Evaluate the following limits: 

( ) I. sin x a 1m --· x-->0 3Vx ' 
x2 

(c) lim , 
x-->O 1 -cos2 x 

( ) ) . 3x + sin x e !ID ; 
x-->0 X 

. 3x2 + 4x (g) hm . 2 . 
x-->0 sm x 

. 2 
(b) Jim sm x ; 

x-->0 X 

(d) Jim __J_IJ; 
8-->0 cos 

82 - 2 sin e (f) lim 8 8-->0 

Each of the following problems requires the use of a calcula
tor. Hereafter, problems of this kind will be signaled by the 

_ symbol EJ. 
[� bt Verify the limit (4) numerically by using a calculator to 

construct a table of values of ( 1  - cos IJ)llJ correspond
ing to the same IJ's used in the text. 

*Hint: Notice that dividing both numerator and denominator of this 
quotient by x gives 

5x + 3 
2x - 7 

s + l  
x 

2 - 2 · 
x 

What becomes of the expression on the right as x -->  oo ? 

� 22 Consider the limit 

)' 1 - cos (} 
81£6 82 

(a) Use a calculator to construct a table of values of the 
function for small e's, and thereby form a conjecture 
about the value of this limit. 

(b) Prove your conjecture. 

� 23 The limit (3) says that si� e = 1 or sin e = e for small 

e. Test this approximation by using a calculator to find 
the value of sin e for 
(a) e = O. I ;  (b) e = 0.0 1 ;  (c) e = 0.00 1 .  
Give a geometric explanation for the fact that each sin e 
is slightly less than its corresponding e. � 24 Using the trigonometric identity cos 2a = 1 - 2 sin2 a 
with 2a = e, and the approximation sin e = (} for small 
e, show that for these e we have 

cos e = 1 - t1J2. 

Use a calculator to test this approximation for 

1-1 
(a) e = 0. 1 ;  (b) (} = 0.0 1 ;  (c) e = 0.001 .  

� 25 Consider the limit 

1-126 � 

lim r. 
x-->0+ 

(a) Use a calculator to construct a table of values of r 
for x = 1 ,  0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 ,  0.2, 0. 1 ,  
0.05, O.Q l ,  0.005, 0.00 1 .  Use this evidence to form 
a conjecture about the value of the limit. 

(b) Use the information in (a) to sketch the graph of y = 
r for 0 < x < 1 .  Estimate the location of the low
est point. 

The existence of the limit 

Jim (1 + x)llx 
x-->0 

will be established later, in Chapter 8 and Appendix A.8.t 
Estimate the value of this limit to five decimal places by 
using a calculator to find the value of the function for 
x = 1 ,  0. 1 ,  O.Q l ,  0.00 1 ,  0.0001 ,  0.00001 ,  0.000001 ,  
0.0000001 ,  0.00000001 ,  0.000000001 .  

tThis number defines the constant e, which is the most important con
stant in mathematics after 'IT. 

2 . 6  
CONTINUOUS 

FUNCTIONS . THE 
MEAN VALUE 

THEOREM AND 
OTHER THEOREM S  

As we penetrate further into our subject, it will often be important for u s  to know 
what is meant by a continuous function. In everyday speech a "continuous" 
process is one that proceeds without gaps or interruptions or sudden changes. 
Roughly speaking, a function y = f(x) is continuous if it displays similar behav
ior, that is, if a small change in x produces a small change in the corresponding 
value f(x). The function shown in Fig. 2.22 is continuous at the point a because 
f(x) is close to f(a) when x is close to a, or more precisely, because f(x) can be 
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made as close as we please to f(a) by taking x sufficiently close to a. In the lan
guage of limits this says that 

l im /(x) = f(a). x->a ( 1 )  

Up to this stage our remarks about continuity have been rather loose and in
tuitive, and intended more to explain than to define. We now adopt equation ( 1 )  
as  the definition of  the statement that f(x) i s  continuous a t  a .  The reader should 
observe that the continuity of f(x) at a requires three things to happen: a must 
be in the domain ofj(x), so thatf(a) exists ;f(x) must have a limit as x approaches 
a ;  and this limit must equalf(a). We can understand these ideas more clearly by 
examining Fig. 2.22, in which the function is discontinuous in different ways at 
the points b, c, and d: At the point b, limx---b f(x) exists but f(b) does not; at c, 
f(c) exists but limx_.cf(x) does not; and at d,f(d) and limx-->df(x) both exist but 
have different values. The graph of this function therefore has "gaps" or "holes" 
of three different kinds. 

The definition given here tells us what it means for a function to be continu
ous at a particular point in its domain. A function is called a continuous function 
if it is continuous at every point in its domain. In particular, by the properties of 
limits this is easily seen to be true for all polynomials and rational functions; and 
by looking at their graphs, we see that the functions Vx, sin x, and cos x are also 
continuous. We will be especially interested in functions that are continuous on 
closed intervals. These functions are often described as those whose graphs can 
be drawn without lifting the pencil from the paper. 

With a slight change of notation, we can express the continuity of our func
tion f(x) at a point x (instead of a) in either of the equivalent forms 

Jim f(x + .:ix) = f(x) Ax->0 or Jim [f(x + .:ix) - f(x)] = O; Ax->0 

and if we write Liy = f(x + i:lx) - f(x), then this condition becomes 

lim .:iy = 0. Ax->0 

The purpose of this reformulation is to make it possible to give a very short proof 
of a fact that we will need in the next chapter, namely, that a function which is 
differentiable at a point is continuous at that point. The proof occupies only a 
single line: 

lim .:iy = Jim �y · .:ix = [ Jim �y ] [ Jim .:ix] = dx
dy 

· 0 = 0. Ax->0 Ax->0 L.lX Ax->0 L.lX Ax->0 

The converse of this statement is not true, since a function can easily be contin
uous at a point without being differentiable there ( for example, see the point a 
in Fig. 2 .22). 

There are several other facts in the theory of calculus that will be needed in 
the next few chapters to convert plausible reasoning into solid proof. Students 
should be aware of these facts but not smothered by them. We state them in the 
form of three basic theorems, which we present without proof but with a few 
comments on each that we hope will illuminate their meaning. Proofs are not 
given here because a careful examination of the theoretical foundations of cal
culus does not belong in a first course. All three theorems are extremely plausi
ble-what some might call "intuitively obvious." Part of the difficulty they cause 

Figure 2.22 
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for beginning students lies in the effort required to doubt them in the face of their 
compelling believability: 

The Mean Value Theorem Let y = f(x) be a function with the following two 
properties: 

f(x) is continuous on the closed interval [a, b] ; and 
f(x) is differentiable on the open interval (a, b). 

Then there exists at least one point c in the open interval (a, b) such that 

f' (c) = f(b� =fda) , 

or equivalently, 

f(b) - /(a) = f'(c)(b - a). 

COMMENTS ON THE MEAN VALUE THEOREM (MVT) 

(2) 

(3) 

We see that the statement is reasonable by looking at its geometric meaning as 
shown in Fig. 2.23.  The right side of equation (2) is the slope of the chord join
ing the endpoints A and B of the graph, and the left side is the slope of the tan
gent line at the point on the graph corresponding to x = c; and the MVT says 
that for at least one intermediate point on the graph the tangent is parallel to the 
chord. In Fig. 2 .24 there are two such points, corresponding to x = c1 and x = 
c2. But this is perfectly all right, because the phrase "at least one point c" allows 
for the possibility of two such points, or three, or any number whatever. 

The conclusion of the MVT is crucially dependent on its hypotheses, because 
this conclusion does not follow if the hypotheses are weakened ever so slightly. 
We see this by considering the example of the function y = lxl defined on the 
closed interval [ - 1 ,  1 ] .  This function ( Fig. 2.25) is continuous on the closed in
terval [ - 1 , l ]  and is differentiable on the open interval ( - 1 ,  1 ), except at the 
single point x = 0, where the derivative does not exist. The conclusion fails, be
cause the chord joining A and B is horizontal and clearly the graph has no hor
izontal tangent. 

To understand the significance of the Mean Value Theorem, we briefly and in
formally consider three simple consequences that we will need in Chapters 4 and 

y 

A 

I 
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I 

a 
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y 
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Figure 2.26 
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c d b x 

5. In each case we have a property of the derivative that implies a property of 
the function, and the MVT is the link between the two properties. 

1 .  If f'(x) > 0 on an interval, then f(x) is increasing on that interval ["in
creasing" means that a <  b impliesf(a) < f(b)]. Our geometric intuition as
sures us that this is true, because f'(x) > 0 means that the tangent points up 
to the right everywhere ( Fig. 2.26). For a more explicit argument based on 
the MVT, we point out that in this situation the right side of (3) is positive, 
so the left side is also positive, and this means that f(a) < f(b). 

2 .  Similarly, if f'(x) < 0 on an interval, then f(x) is decreasing on that inter
val ["decreasing" means that a <  b implies f(a) > f(b)] . 

3. If f'(x) = 0 on an interval, then f(x) is constant on that interval. To show 
this we assume the contrary, namely, that the function is not constant. Then 
there exist two points a and b with a < b at which the function has differ
ent values f(a) andf(b). But this implies that the left side of (3) is not equal 
to 0, whereas the right side must equal 0. This contradiction shows that our 
assumption-that the function is not constant-cannot be true. 

The Extreme Value Theorem If y = f(x) is a function that is defined and con
tinuous on a closed interval [a, b], then this function attains  both a maximum 
value and a minimum value at points of the i nterval; that is, there exist points 
c and d in [a, b] such that f(c) � f(x) � f(d) for all x in [a, b] . *  

COMMENTS ON THE EXTREME VALUE THEOREM (EVT) 

Informally, this theorem asserts that the graph of a continuous function on a closed 
interval always has both a high point and a low point. If we think of the graph 
as drawn by moving a pencil across the paper from the point A to the point B (see 
Fig. 2.27), then the statement is so visibly true that we wonder how anyone could 
doubt it. However, it is difficult to prove in a fully rigorous manner, because it de
pends on a subtle property of the real line (completeness, meaning that no points 
are "missing" from the line) that is normally discussed only in advanced courses. 

Also, just as in  the case of the Mean Value Theorem, the conclusion here is 
crucially dependent on the hypotheses that the function is continuous and the in
terval is closed. For example, the function in Fig. 2.28 is continuous on the in-

*Maximum values and minimum values are known collectively as extreme values. 
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terval [O, 1 ) ,  but this interval is not closed because it lacks the right endpoint. 
We see that this function attains no maximum value at any point of [0, 1), be
cause the only possible candidate for a maximum value is 1 at x = 1, butf( l )  is 
not defined. On the other hand, in Fig. 2.29 the interval [0,  2] is closed and the 
function is continuous at every point of this interval except for the single point 
x = 0, and again the function attains no maximum value at any point of the in
terval. 

There is a further important fact about extreme values that is known as Fer
mat 's theorem: If a continuous function f(x) on a closed interval [a, b] attains 
its maximum or minimum value at an interior point c of [a, b] ,  and iff(x) is dif
ferentiable at c, then f'(c) = 0. In later chapters we will often be trying to locate 
extreme values of continuous functions on closed intervals. Fermat's theorem 
tells us that we must seek such points either at the endpoints of the interval or 
at those interior points where f'(x) = 0 or f'(x) does not exist. 

The Intermediate Value Theorem If y = f(x) is a function that is defined and 
continuous on a closed interval [a, b ], then this function assumes every value 
between f(a) and f(b); that is, if K is any number strictly between f(a) and 
f(b), then there exists at least one point c in (a, b) such that f(c) = K. 

COMMENTS ON THE INTERMEDIATE VALUE THEOREM (IVT) 

In the language of graphs ( Fig. 2.30), every horizontal line of height K intersects 
the graph of y = f(x) if K is betweenf(a) and f(b) . 

The most vivid form of the IVT says that if y = f(x) is continuous on [a, b] 
and f(a) and f(b) have opposite signs, then f(c) = 0 for at least one point c in 
(a, b). In other words, the graph cannot get from one side of the x-axis to the 
other without actually crossing this axis ( Fig. 2.3 1) .  This may seem to be very 
obvious indeed, but the statement can be false if the function fails to be contin
uous at even a single point. We see this by considering the function defined on 
[0, 2 ]  by { - 1  

y = f(x) = 1 if 0 :S x < 1 , if 1 :S x ::S 2. 

It is clear that for this function ( Fig. 2.32) we have f(O) < 0 and f(2) > 0, and 



2.6 CONTINUOUS FUNCTIONS. THE MEAN VALUE THEOREM AND OTHER THEOREMS 

yet-because of the discontinuity at the single point x = I -there does not ex
ist any point c in (0, 2) for which f(c) = 0. 

The practical significance of the IVT can best be understood by means of an 
example. We observe that the equation 

x3 + 2x - 4 = 0 (4) 

is not easy to solve by factoring, because the left side has no obvious factors. 
However, the continuous function f(x) = x3 + 2x - 4 is negative at x = 1 and 
positive at x = 2 [f( l )  = - 1  and f(2) = 8] .  The IVT therefore guarantees that 
f(x) has a zero at some point in ( 1 ,  2), so equation (4) has a solution in this in
terval. Further, f'(x) = 3x2 + 2 > 0 for all x, so f(x) has only one zero and ( 4) 
has only one solution. This follows from the fact that if there were two zeros, 
then the Mean Value Theorem would imply thatf'(c) = 0 for some intermediate 
point c, which cannot happen. In Section 4.6 we develop a method for calculat
ing this solution of (4) to any desired degree of accuracy. 

Remark Most students of calculus are impatient with the theory of the subject, 
and rightly so, because the essence of calculus does not lie in theorems and how 
to prove them but rather in tools and how to use them. A moderate dose of rig
orous thinking in mathematics-rigidly correct, leakproof thinking that can with
stand the closest skeptical scrutiny-is a good thing; but like virtue, it can be 
overdone, and in calculus courses it often is. This preoccupation with the tech
niques and fine points of proof, rather than with the central ideas of the subject, 
can make a forbidding mystery out of concepts that are essentially simple and 
clear. We mention these issues to point out that even though most of our discus
sions in this book involve plausibility arguments intended to be reasonably con
vincing to reasonable people, full and rigorous proofs of all theorems are avail
able in Appendix A for those who may wish to examine them. 

PROBLEMS 

1 Find the points of discontinuity of the following func
tions: 

x (a) x2 + 1
; 

x2 - 1 (c) --; x - 1  

x (b) x2 - 1
; 

4 f(x) = x3 + 1 ,  [ l ,  2]. 
5 f(x) = x2 -4x + 6, [2, 4] . 
6 f(x) = x2 + x, [-2, 8]. 
7 f(x) = �. [O, 3]. 
8 f(x) = Y25 -x2, [-5, 5] .  
9 f(x) = 1 /x, [t, 2]. 
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1 (e) Vx ; 
1 (g) x2 + x - 12

; 

(d) Vx; 

<O W; 
1 (h) x2 + 4x + 5 · 

10 If f(x) is an arbitrary quadratic polynomial, that is, if 
f(x) = Ax2 + Bx + C (A * 0), show that the point c 
whose existence is guaranteed by the Mean Value Theo
rem is the midpoint of the interval [a, b]. 

In Problems 2-9, verify that the function/(x) satisfies the hy
potheses of the Mean Value Theorem on the given interval, 
and find all points c whose existence is guaranteed by the 
theorem. 
2 f(x) = sin x, [0, 27T]. 
3 f(x) = x2 + 1, [ l , 2] . 

I I If /(x) = l lx and g(x) = l /x + x!lxl, show that these 
functions have identical derivatives, so that [f(x) -
g(x)] ' = 0. However, their difference is not constant. Ex
plain how this is possible in view of consequence 3 of 
the Mean Value Theorem. 

1 2  A car starts from rest and travels 4 mi along a straight 
road in 6 minutes. Use the Mean Value Theorem to show 
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that at some moment during the trip its speed was ex
actly 40 mi/h. 

13 If f' (x) = c, a constant, for all x, show thatf(x) = ex + 
d for some constant d. 

14 If f(x) and g(x) are two functions with equal derivatives 
on an interval, what can be said about their difference 
f(x) - g(x)? 

15 For each of the given intervals, find the maximum value 
of sin x on that interval, and also find the value of x at 
which it occurs: 

(a) [ 0, ; J (b) [ 0, : J (c) [0, 7T]. 

16 For each of the given intervals, find the maximum value 
of cos x on that interval, and also find the value of x at 
which it occurs: 

(a) [ 0, ; J (b) [ ;, 7Tl (c) [0, 27T]. 

x3 - x5 17 Does the function have 
l + 9x4 + 5x6 

(a) a maximum value on [5, 8]? 
(b) a minimum value on [5 ,  8 ]?  

18 Does the function x3  have a maximum value on 
(a) [ 1 ,  5] ; (b) [-5, 2]; (c) (3, 4)? 
If so, where? 

19 Does the function x4 have a minimum value on 
(a) [-3 ,  5 ] ;  (b) ( -4, 2); 
(c) (2, 3) ;  (d) ( - 1 ,  5)? 
If so, where? 

20 Does the function 4 - x2 have 
(a) a maximum value on ( - 2, 2)? 
(b) a minimum value on ( - 2, 2)? 
If so, where? 

21 Does the function 4 + x2 have 
(a) a maximum value on ( - 2, 2)? 
(b) a minimum value on ( - 2, 2)? 
If so, where? 

In Problems 22-29, find the maximum and minimum values 
attained by the given function on the given interval. 
22 l lx, (0, l ). 
23 l /x, (0, l ] .  
24 1 - x2, (0, 1 ) .  
25 1 - x2, [0, 1 ). 
26 1 - x2, [0, l ] . 
27 1 - x2, [ - 3, -2]. 
28 l3x - 41 , [ l ,  2] . 
29 2 + l2x - 3 1 ,  (0, 2). 

In each of Problems 30-33, apply the Intermediate Value The
orem to show that the given equation has a solution in the 
given interval. 

30 x3 + 2x  + 5 = 0, [ - 2, - 1 ] .  
31 x4 + 3x - 5 = 0, [ 1 , 2 ] .  
32 x5 - 4x3 + 127 = 0, [ - 3, -2]. 
33 x6 - 3x + l = O, [ - 1 , l ] .  
34 Show that the equation x3 - 5x + 1 = 0 has three dis

tinct roots by calculating the value of f(x) = x3 - 5x + 
1 at the points x = -3 ,  - 2, - 1 ,  0, 1 ,  2, 3 .  State the in
tervals in which the roots lie. 

35 If p(x) is a polynomial of odd degree, show that the equa
tion p(x) = 0 has at least one solution. 

36 If A and B are positive constants, show that the equation 

_A_ + _
B_ = O 

x - l x - 2  

has a solution in the interval ( 1 ,  2). 
37 If f(x) and g(x) are continuous on [a, b], and if 

f(a) < g(a) and f(b) > g(b), show that the equation 
f(x) = g(x) has at least one solution in (a, b). 

38 Assume for a moment that the rational numbers are the 
only numbers that exist. Under this assumption, show 
that the Intermediate Value Theorem is false by consid
ering the function y = f(x) = x2 - 2 on the interval 
[ 1 ,  2] .  This example shows that the truth of the Inter
mediate Value Theorem depends on the profound fact 
that no points are "missing" from the real line. 

39 Let y = f(x) be a continuous function defined on the 
closed interval [O, b] with the property that 0 < f(x) < b 
for all x in [O, b]. Show that there exists a point c in 
(0, b) with the property thatf(c) = c. Hint: Consider the 
function g(x) = f(x) - x. 

40 The rectangle in Fig. 2 .33 represents the floor of a room, 
and AB a straight piece of string lying on the floor whose 
ends touch the opposite walls W1 and W2. The tangle rep
resents the same piece of string wadded up and thrown 
back down on the floor. Show that there is at least one 
point of the wadded string whose distances from the two 
wal ls  are exactly the same as they were before. Hint: See 
the preceding problem. 

A 1-----------t B 

Figure 2.33 



ADDITIONAL PROBLEMS FOR CHAPTER 2 8 1  

CHAPTER 2 REVIEW: DEFINITIONS, CONCEPTS, METHODS 

Define, state, or think through the following. 

1 Tangent line according to Fermat. 
2 Delta notation. 
3 Derivative of a function. 
4 Differentiable function. 
5 Three-step rule (or process) . 
6 Leibniz notation. 
7 Derivative of f(x) = ax2 + bx + c. 

8 Average and instantaneous velocity. 
9 Speed. 
10 Rate of change. 
1 1  Acceleration. 

ADDITIONAL PROBLEMS FOR CHAPTER 2 

SECTION 2.2 
1 For what value of b does the graph of y = x2 + bx + 1 

have a horizontal tangent at x = 3? 
2 Find the two points on the curve y = x - �x2 at which 

the tangent passes through the point ct 0). 
3 Let P = (xo, Yo) be a point on the parabola y = x2. Show 

that a nonvertical line passing through P which does not 
intersect the curve at any other point is necessarily the 
tangent at P; that is, show that if the line 

y - Yo = m(x - x0) 

intersects y = x2 only at (xo, Yo), then m = 2xo. 
4 If (x1 , y1 ) and (x2, y2) are distinct points on the parabola 

y = x2, at what point on the curve is the tangent paral
lel to the chord joining these two given points? 

5 The curve y = x2 is a particular parabola, but if a is an 
unspecified positive constant, y = f(x) = ax2 is a com
pletely general parabola located in a convenient position. 
(a) Show that f'(xo) = 2axo. 
(b) Show that the tangent at a point P = (x0, y0) other 

than the vertex has y-intercept -yo, and use this fact 
to formulate a geometric method for constructing the 
tangent at P. 

SECTION 2.3 
6 Use the three-step rule to calculate f' (x) if f(x) is equal 

to 

(a) 
x + 

1 
(b) 

3 - 2x
; 

x x - 2 
(c) Y3x + 2; (d) �-

7 Sketch the graph of each of the following functions and 
state where it is not differentiable: 
(a) �; 
(c) l2x - 3 1 ; 

(b) lx2 - 41 ; 
(d) xlxl . 

1 2  
13  

1 4 

1 5 
16 
1 7  
1 8  
19 
20 
21 

8 

9 

10 

1 1  

1 2  

1 3  

Jim f(x) = L. 
x->a 
Limit laws. 
r sin () - 1 
e� () - . 

Jim 8--->0 
1 - cos () 

() 
= 0. 

Continuity of /(x) at x = a. 
Continuous function. 
Differentiability implies continuity. 
Mean Value Theorem. 
Extreme Value Theorem. 
Intermediate Value Theorem. 

Letf(x) be a function with the property thatf(x1 + x2) = 
f(x1 )f(x2) for all x1 and x2. Iff(O) = 

1 
andf'(O) = ! , show 

thatf'(x) = f(x) for all x. 
If the derivativef'(x) exists, then it can be calculated from 
the formula 

, . f(x + .:ix) -f(x - .:ix) 
f (x) = ll�o 2.:ix 

· 

Verify this statement for the special case f(x) = x2, and 
then prove it in general. [To understand the statement, let 
P, Q, R be the points on the curve y = f(x) that corre
spond to x, x + .:ix, x - .:ix, and write the slope of the 
secant through Q and R; and to prove it, notice that 
f(x + .:ix) - f(x - .:ix) = f(x + .:ix) - f(x) + f(x) -
f(x - .:ix).] 
Show that the following function is differentiable at x = 
0: {x2 

f(x) = 0 
if x is rational, 
if x is irrational. 

Show that the following function is not differentiable at 
x = 0: 

f(x) = { � if x is rational, 
if x is irrational. 

If f(x) is a function with the property that lf(x) I ::s x2 for 
all x, prove thatf(x) is differentiable at x = 0. 
Consider the function f(x) defined by { x2 

f(x) = 
mx + b 

if x ::s a, 
if x > a, 

where a, b, m are constants. Find what values m and b 
must have (in terms of a) in order for this function to be 
differentiable at all points. 
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SECTION 2.4 
14 On a certain bicycle trip, the first half of the distance was 

covered at 30 mi/h and the second half at 20 mifh. What 
was the average velocity? (It was not 25 mi/h . )  

15 A silver dollar i s  thrown straight up from the roof of a 
200-ft building. After t seconds, it is 

s = 200 + 24t - l 6t2 
feet above the ground. When does the dollar begin to fall? 
What is its speed when it has fallen 1 ft? 

16 A capacitor (or condenser) in an electric circuit is a de
vice for storing electric charge. lf the amount of charge 
on a given capacitor at time t is Q = 3t2 + St + 2 

coulombs, find the current I = dQ/dt in the circuit when 
t = 3. 

17 Use the three-step rule to show that the rate of change 
of the volume of a sphere with respect to its radius equals 
the surface area. 

SECTION 2.5 

Evaluate the following limits . 
. 2x - x2 18 hm ---. 

x->2 2 - X 
19 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

. x2 - 6x + 9 hm x->3 X - 3 

. x2(1 - x) hm 3 . x->0 X 

I
. x + 2 
1m ---. 

x->1 x2 - 4 
. 2x2 + 3 !Jm . 

x->3 X + 4 

. x2 - 6x + 8 !Jm 2 . 
x->2 x - Sx + 6 
. (x2 + 3x - 4)2 hm x-> I x2 - 7 x + 6 

21 

23 

25 

27 

29 

31 
2x2 + x - 6 Jim 33 x->-2 X + 2 

r x - 3 35 x!.�
4 x2 + x - 12 · 

. x2 - x - 6 hm 2 . 37 
x->4 x - 7x + 1 2 

x3 - 6x2 + 3x + 2 * 

Jim 39 
x-> I x3 

+ x2 - 3x + 1 
. x3 - 64 hm . 41 

x->4 X - 4 

Jim (x + 2-). 
x--.0 X 

. 4x2 - Sx hm 
x--.o x 
r x( l - x) 
x� 3 x2 

I
. x + 2 

x� x2 - 4 · 

2 - 3Yx 
lim . x--.o I + 9Yx 

x2 - 2x - 3 
lim x--.- 1 x2 - 1 
. 2x2 + x - 6 hm 

x--.O X + 2 

]' x - 3 
x� x2 + x - 1 2 '  
. x 2  - x - 6 l� x2 - 7x + 1 2 · 

I' x + Vx - 2 

x� x3 - 1 
x3 - 4x Jim 3 2 · x->2 x - 3x + 2x -

x3 - a3 
lim 2 2 -x-M x - a 

*If x = a is a zero of a polynomial p(x), then x - a is a factor of p(x) 
and the other factor can be found by long division (see Additional 
Problem 50 at the end of Chapter 1 ) . 

42 

44 

46 

x4 - a4 Jim ---. x->-a x3 + a
3 

Jim 2-x'
_ 

x->0 
2 11x2 + 1 lim 211 ' 1 · x�O x -

x 

43 

45 

47 

l im 2- llx'
_ x->0 

2 1/x + 1 
ETo 211x - 1

· 

48 Jim 
x->= � · 49 J im __ 

x __ . 
x->= Vx+J 

2x3 - x2 + 7x - 3 50 lim 51 
x--.= 2 - x + 5x2 - 4x3 · 

9x45 - x9 + 2 

}i_,°2, 3x45 + x29 - 1 9  · 

x->= 

54 Jim 211x. 55 Jim (Vx+i - Yx). 
56 

58 

59 

60 

6 1  

62 

Vx+1 
Jim . � . 
x->= v9x + 1 

x->= 

Consider the function f(x) defined for x * 0 by f(x) = 
[ l lx], where [ ! Ix] denotes the greatest integer ::5 llx, as 
in Additional Problem 59 at the end of Chapter 1 .  Sketch 
the graph of this function for ± ::5 x ::5 2, and also for 
-2 ::5 x ::5 -±. How doesf(x) behave as x approaches 0 
from the positive side? From the negative side? Does 
lirnx_,0 f(x) exist? 
Follow the directions in Problem 58 for the function 
f(x) = (- l )l l/xl . 

Follow the directions in Problem 5 8  for the function 
f(x) = lxl (- l ) l l/x] . 
Consider the function f(x) defined by 

f(x) = {� if x is rational, 
if x is irrational. 

For every a, l imx->a f(x) does not exist. Why? 
Define a function f(x) by 

if x is irrational, 
if x is a rational number min 
in lowest terms with n > 0. 

Show thatf(x) is continuous at irrational points and dis
continuous at rational points. 
The slope of the tangent line to the graph of the expo
nential function y = 2x at the point (0, 1 )  is 

_ 
2x - I hm ---. 

x->0 X 

Estimate this slope to three decimal places by using a 
calculator to find the value of (2x - l )/x for x = 1 ,  0.5, 
0.1, 0.05, 0.0 1 ,  0.005, 0.00 1 ,  0.0005, 0.0001 .  
Same as Problem 63  for the function y = 3x and its tan
gent line at the point (0, 1 ). 



THE 
COMPUTATION 

OF DERIVATIVES 

Differential calculus-the calculus of derivatives-takes its special flavor and 
importance from its many applications to the physical, biological, and social sci
ences. It would be pleasant to plunge into these applications immediately and get 
to the heart of the matter without any further delay. However, from the point of 
view of overall efficiency it is better to postpone this to the next chapter, and in
stead take a little time now to learn how to calculate derivatives with speed and 
accuracy. 

As we know, the process of finding the derivative of a function is called dif
ferentiation. In Chapter 2 this process was based directly on the limit definition 
of the derivative, 

or equivalently, 

!' ( ) = I' 
f(x + LU) -f(x) 

x J�o LU ' 

We have seen that this approach is rather slow and clumsy. Our purpose in the 
present chapter is to develop a small number of formal rules that will enable us  
to differentiate large classes of  functions quickly, by pure_ly mechanical proce
dures. In this section we learn how to write down the derivative of any polyno
mial by inspection, without having to think about limits at all; and by the end of 
the chapter we will be able to cope quite easily with messy algebraic functions 
like 

x [x + Vx+1]113' 
x - Vx+l 

and V1 + V1 + �. 

We will also learn how to differentiate many trigonometric functions. Our goal 
in this phase of our work is computational skill, and needless to say, such skill 
comes only with practice. No one learns how to spell, or ski, or play a musical 
instrument, without constant practice accompanied by constant self-correction, 
and differentiation is no exception to this rule. 

Students will recall that a polynomial in x is a sum of constant multiples of 
powers of x in which each exponent is zero or a positive integer: 

P(x) = anxn + an- 1Xn- I + · · · + a1x + ao. 

83 

3 . 1 
DERIVATIVES OF 
POLYNOMIALS 
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The way a polynomial is put together out of simpler pieces suggests the differ
entiation rules that we now discuss. 

The derivative of a constant is zero, 

d dx c = 0. 

The geometric meaning of this statement is that a horizontal straight line y = 
f(x) = c has zero slope. To prove the statement from the definition, we notice 
that Liy = f(x + .:ix) - f(x) = c - c = 0, so 

dy 
= lim �y = lim _Q_ = Jim 0 = 0. dx t..x-.o � iu-.o � t..x-.o 

2 If n is a positive integer, then 

d 
dx xn = n.xn- l . 

In words, the derivative of xn is obtained by bringing the exponent n down in 
front as a coefficient, then subtracting 1 from it to form the new exponent 
n - 1 .  We already know three special cases of this rule from Chapter 2: 

d - x2 = 2x dx ' 
d - x3 = 3x2 dx ' and d - x4 = 4x3 dx · 

To prove this rule in general, we write y = f(x) = xn and use the binomial the
orem* to obtain 

Liy = f(x + �) -f(x) = (x + �)n - xn 

This yields 

= [x" + nx:"- 1 � + 
n(n; I ) xn-2 (.:ix)2 + . . . + (�)n] - x" 

= nxn-1 � + n(n; I ) xn-2 (�)2 + . . .  + (�)n. 

dy 
= lim �y dx t..x-.o � 

= ltm nxn- l + ___ xn-2 � + . . .  + (�)n- l . [ n(n - 1 )  ] t..x-.o 2 

because .:ix is a factor of each term in brackets beyond the first. 

*For students who have forgotten the details of the binomial theorem, we state it as follows: If n is 
a positive integer, then 

n(n - 1) n(n - 1 )  · · · (n - k + 1 )  
(a + b)" = a" +  na"- 1b  + --- a"-2b2 + · · · + a"-kbk + · · · + b". 

2 I · 2 · · · k 

The precise form of this expansion can be understood without too much difficulty by simply think
ing about the n-factor product 

(a + b)" = (a + b)(a + b) · · · (a + b). 

To multiply these factors out, we begin by choosing a from each factor, which gives the term a". If 
we next choose b from one factor and a from all the others, this can be done in n ways, so we get 
ba"-1  n times, or na"- 1b. Similarly, n(n - 1 )12 is the number of ways b can be chosen from two fac
tors and a from all the others, etc. The "etc." is explained more fully in Appendix B. l .  
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Our rule remains true when the exponent is a negative integer or a fraction. 
However, it is convenient to postpone giving a proof of this to a later part of the 
chapter. 

3 If c is a constant and u = f(x) is a differentiable function of x, then 

d du 
dx (cu) = c dx . 

That is, the derivative of a constant times a function equals the constant times 
the derivative of the function.* To prove this, we write y = cu = cf(x) and ob
serve that �y = cf(x + �) - cf(x) = c[f(x + �) - f(x)] = c �u, so 

dy = lim 
'1y = lim c '1u = c l im '1u = c du . dx Lil->0 ,1x Lil->0 ,1x Lil->0 fu dx 

Combining rules 2 and 3, we see that 

d 
- CX11 = cnxn- l 
dx 

for any constant c and any positive integer n. 

Example I We are now in a position to calculate the following derivatives as 
fast as we can write: 

_!!.__ 3x7 = 2 lx6 _!!.__ (-l_ x'2) = -6x1 1 , _!!._ 22x101 = 2222x100, dx ' dx 2 dx 

_!!.__ 55x = 5 5x0 = 55 _!!.__ ( 1 0\/2 + log , o  1T )999 = 0. dx ' dx \/i9 + 1024 

4 If u = f(x) and v = g(x) are functions of x, then 

d du dv 
dx (u + v) = dx + dx · 

That is, the derivative of the sum of two functions equals the sum of the indi
vidual derivatives .  The proof is routine: lf we write y = u + v = f(x) + g(x), then 
�y = [f(x + �) + g(x + �)] - [f(x) + g(x)] = [f(x + �) - f(x)] + [g(x + 
�) - g(x)] = fl.u + fl.v, and therefore 

dy = Jim '1y = lim '1u + '1v = l im [ '1u + '1v] dx Llx->0 ,1x <lx->0 ,1x <lx->0 fu ,1x 

. '1u . '1v du dv = !tm 
A 
-- + hm 

A -- = dx + dx. Llx->0 L.U <lx->0 L.U 

In essentially the same way we can show that the derivative of a difference equals 
the difference of the derivatives, 

d du du dx (u - v) = dx - dx · 

•From now on we assume that every function we deal with is differentiable unless a specific state
ment is made to the contrary. 

85 
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Further, these results can be extended without difficulty to any finite number of 
terms, as in 

d du dv dw - (u - v + w) = - - - + -fil fil fil fil "  

Example 2 It is now easy to differentiate any polynomial. For instance, 

d d d d d d - ( 1 5x4 + 9x3 -7x2 - 3x + 5) = - 1 5x4 + - 9x3 - - 7x2 - - 3x + - 5 fil fil fil dx fil fil 

= 60x3 + 27x2 - 1 4x - 3. 

With a little practice we can omit the middle step and write down the final re
sult immediately by inspection. 

Example 3 The function y = (3x - 2)4 is a polynomial but is not in standard 
polynomial form. None of the rules established so far apply to this function di
rectly, though later we will prove a formula that can be used here. Meanwhile 
we must first expand by the binomial theorem. This gives 

so 

y = (3x - 2)4 = [3x + (-2)]4 

= (3x)4 + 4(3x)3(-2) + 4 � 3 (3x)2(-2)2 + � : � : � (3x)(-2)3 + (-2 )4 

= 8 lx4 - 2 1 6x3 + 2 1 6x2 - 96x + 1 6, 

�� = 324x3 - 648x2 + 432x - 96. 

Example 4 Even though the letters x and y are often used for the independent 
and dependent variables, there is obviously nothing to prevent us from using any 
letters we please, and the calculations work in just the same way. Thus, 

s = 1 3t3 - I l t2 + 25 
is a polynomial in t; and by the rules developed in this section, its derivative is 
clearly 

ds 
dt = 39t2 - 22t. 

Example 5 An object moves on a straight line in such a way that its position s 
at time t is given by 

s = t3 + 5t2 - 8t. 
What is its acceleration when it is at rest? 

The velocity v and acceleration a are 

ds v = - = 3t2 + l Ot - 8 dt and dv a = dt = 6t + 10. 
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The object is at rest when v = 0 or 

3t2 + lOt - 8 = (3t - 2)(t + 4) = 0, 

that is, when t = t, -4. The corresponding values of the acceleration are a = 
14, - 14. 

PROBLEMS 

1 Find the derivative of each function: 
(a) 6x9; 
(b) 7T5; 
(c) - 15x4; 
(d) 3x500 + 1 5x100; 
(e) (x - 3)2; 
(f) txs + ±x4 + tx3 + tx2 + x; 
(g) x4 + x3 + x2 + x + 1 ;  
(h) (x - 2)5; 
(i) x1 2 + 2x6 - 4x3 -6x2; 
(j) (2x - 1 )(3x2 + 2). 

2 Differentiate each of the following functions: 
(a) f(x) = x200 - l OOx + 50; 
(b) g(x) = ( 10x)4; 
(c) h(t) = t10 + 7t8 - 9t3 + St; 
(d ) F(y) = (y2 - 1 )(3y - 5); 
(e) G(x) = (x2 + 3)(x2 + x + 1 ) ;  
(f )  H(t) = ( I  + t2) ( 1  + t2 + t3); 
(g) f(x) = (3x3 - 2x2)( 15x4 - 2x + 5); 
(h) g(x) = x(2x + 1 )(2x - l ); 
(i) h(t) = (3t - 5)2; 
(j) y = 2x(3x2 + l )(x2 - x + 2); 
(k) y = (3x + 2)(2x - 3); 
(I) y = (2x2 + 3)(3x3 - 4). 

3 If s is the position at time t of an object moving on a 
straight line, find the velocity v and the acceleration· a: 
(a) s = 1 2  - 6t + 3t2; 
(b) s = 13 - 9t + 6t3; 
(c) s = (3t - 2)2. 

4 Find a function of x whose derivative is the given func-
tion: 
(a) 3x2; 
(b) 4x2; 
(c) 3x2 + 2x - 5. 

5 Find the line tangent to the curve y = 3x2 - Sx + 2 at 
the point (2, 4). 

6 Find the points on the curve y = 4x3 + 6x2 - 24x + 10 
at  which the tangent is horizontal. 

7 At what points on the curve y = x3 -x2 - x - 1 is the 
tangent horizontal? 

8 At what points on the curve y = 2x3 -3x2 + 6x - 39 is 
the tangent horizontal? 

9 

10 

1 1  

1 2 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Show that the curve y = 4x3 + 4x - 2 has  no tangent 
line with slope 3. 
Show that the curve y = 2x5 + 3x has no horizontal tan-
gent line. What is the smallest slope a tangent line can 
have? 
The line x = a intersects the curve y = tx3 + 4x + 2 at 
a point P and the curve y = 2x2 + x at a point Q. For 
what value (or values) of a are the tangents to these 
curves at P and Q parallel? 
Find the vertex of the parabola y = x2 - 8x + 1 8 .  Hint: 
The tangent at the vertex is horizontal . 
Find the vertex of the parabola y = ax2 + bx + e by the 
method of Problem 12 . 
What values must the constants a, b, e have if the two 
curves y = x2 + ax + b and y = ex - x2 have the same 
tangent at the point (3, 3)? 
State conditions on the coefficients a, b , e ,  d so that the 
graph of the polynomial y = ax3 + bx2 + ex + d has 
precisely 
(a) two horizontal tangents; 
(b) one horizontal tangent; 
( c) no horizontal tangent. 
Show that any two tangent lines to the parabola y = ax2 
intersect at a point that lies on the vertical line halfway 
between the points of tangency. 
Find the equation of the tangent to the curve y = x3 at 
the point (a, a3). For what values of a does this tangent 
intersect the curve at another point? 
Find the tangent to the curve y = x3 that passes through 
the point (0, 2) . 
There are two lines through the point (2, 8) that are tan-
gent to the curve y = x3. Find them. 
Sketch the curves y = x2 and y = -x2 + 2x  - 2 on a 
single coordinate system, and use the sketch to decide 
whether there are any lines that are simultaneously tan-
gent to both curves. If there are any, find their equations. 
Let p be a positive constant and consider the parabola 
x2 = 4py with vertex at the origin and focus at the point 
(0, p), as shown on the left in Fig. 3 . 1 .  Let (xo, Yo) be a 
point on this parabola other than the vertex. 
(a) Show that the tangent at (xo, y0) has y-intercept -yo. 
(b) Show that the triangle with vertices (xo, Yo), (0, -yo), 
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I I I 
Figure 3.1 A parabolic reflector. 

(0, -yo ) 

and (0, p) is isosceles. Hint: Use the distance for
mula. 

(c) Suppose that a source of light is p laced at the focus, 
and assume that each ray of light leaving the focus 
is reflected off the parabola in such a way that i t  
makes equal angles with the tangent line at the point 
of reflection (the angle of incidence equals the angle 
of reflection) .  Use (b) to show that after reflection 
each ray points vertically upward, parallel to the axis 
( Fig. 3 . 1 ,  center).* 

22 The line through a point on a curve which is perpendic
ular to the tangent at that point is called the normal to 

•This is called the reflection property of parabolas. To form a three
dimensional idea of the way this property is used in the design of 
searchlights and automobile headlights, we have only to imagine a 

the curve at that point. Find the normal to the curve 4y + 
x2 = 5 at the point ( 1 ,  1 ) . 

23 Consider the normal to the curve y = x - x2 at the point 
( 1 ,  0). Where does this line intersect the curve a second 
time? 

24 Find the normal to the curve y = 1 - x2 at the point 
(3, - 8) . 

mirror constructed by rotating a parabola about its axis and silvering 
the inside of the resulting surface. Such a parabolic reflector can also 
be used in reverse ( Fig. 3 . 1 ,  right), to gather faint incoming rays par
allel to the axis and concentrate them at the focus. This is the basic 
principle of radar antennas, radio telescopes, and reflecting optical 
telescopes. The great telescope on Palomar Mountain in California 
has a 15-ton glass reflector that is 200 in (almost 1 7  ft) in diameter, 
and the accurate grinding of this enormous mirror required 1 1  years 
of work. 

3 . 2 
In Section 3. 1 we learned how to differentiate sums, differences, and constant 
multiples of functions. We now consider 

THE PRODUCT AND 
QUOTIENT RULES 

products u v  and . u 
quotients -, 

v 

where u and v are understood to be differentiable functions of x. 
Since the derivative of a sum is the sum of the derivatives, it is natural to guess 

that the derivative of a product might equal the product of the derivatives. How
ever, it is quite easy to construct examples showing that this is not true. For in
stance, the product of x3 and x4 is x7, so the derivative of the product is 7x6, but 
the product of the individual derivatives is 3x2 • 4x3 = 12x5. This shows that our 
preliminary guess about the derivative of a product is incorrect. The correct for
mula for differentiating products is rather surprising. 

5* The product rule: 
d dv du d.x (uv) = u d.x + v d.x .  ( 1 )  

Students may wish to  keep in mind the following verbal statement of  this rule: 
The derivative of the product of two functions is the first times the derivative of 

·we continue the numbering started in Section 3 . 1 .  
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the second plus the second times the derivative of the first. To prove this, we 
write y = uv  and let the independent variable x be changed by an amount Ax, to 
x + Ax. This produces corresponding changes flu, flv, fly in the variables u, v, 
y, and we have 

y + Liy = (u + �u)(v + �v) = uv  + u �v + v �u + �u �v, 
�y = (y + �y) - y = u Liv + v �u + �u Liv, 
�y � v  �u � v  
!ix = u !ix + v !ix + �u !ix .  

Taking limits as Ax � 0 yields 

dy 
= u dv + v du + 0 . dv 

dx dx dx dx'  

which i s  equivalent to ( 1 ) . We have used the fact that !::..u � 0 as Ax � 0. This 
is due to the continuity of u, which follows from the differentiability by the ar
gument given in Section 2.6. 

Example 1 We first test formula ( 1 )  on the factors x3 and x4, whose product we 
already know has derivative 7x6. We get 

d d d 
- (x3 . x4) = x3 - x4 + x4 - x3 dx dx dx 

= x3 · 4x3 + x4  · 3x2 = 7x6, 

as we should. As a more complicated example, we apply our formula to the func
tion y = (x3 - 4x)(3x4 + 2) :  

2 = (x3 - 4x) ! (3x4 + 2) + (3x4 + 2) ! (x3 - 4x) 

= (x3 - 4x)( 1 2x3) + (3x4 + 2)(3x2 - 4) 

= 1 2x6 - 48x4 + 9x6 - 1 2x4  + 6x2 - 8 

= 2 lx6 - 60x4 + 6x2 - 8 .  

Notice that we can also proceed by multiplying the two factors at the beginning 
and then differentiating. This gives 

so 

y = 3x7 - 12x5 + 2x3 - 8x, 

dy 
- = 2 lx6 - 60x4 + 6x2 - 8 dx , 

as we expect. Since we can solve this problem without using the product rule, it 
may appear that this rule is unnecessary. This is indeed true when both factors 
are polynomials, because the product of two polynomials is also a polynomial. 
However, in the more complex situations that lie ahead- in which the factors 
are often different types of functions-it will be clear that the product rule is in
dispensable. 
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6 The quotient rule: 

!!__ (.!!:..) 
= 

v du/dx -u  dtidx 
dx v v2 

at all values of x where v * 0. 

(2) 

Most people find it easier to remember the working instructions given by (2) in 
words rather than symbols: The derivative of a quotient is the denominator times 
the derivative of the numerator minus the numerator times the derivative of the 
denominator, all divided by the denominator squared. To prove this, we write 
y = ulv and let x change by an amount Lix. As before, this produces changes t.u, 
l:::. v, t.y in the variables u, v, y, and we have 

u + Au y + Ay = --A-, v + 1.>. V 
uv + v Au - uv - u A v  

Ay = v(v + Av) 
v Au - u Av  
v(v + Av) ' 

Ay v Au/Ax - u Av/Ax 
Ax v(v + Av) 

If we now take limits as t.x � 0 we obtain formula (2), 

dy v du/dx - u dvldx 
dx = v2 

since t.v� 0 as l:::.x � 0, by the continuity of v (recall that v is continuous be
cause it is differentiable). 

Example 2 To differentiate the quotient y = (3x2 - 2)/(x2 + 1 ), we follow the 
verbal prescription, 

dy (x2 + l )(d/dx)(3x2 - 2) - (3x2 - 2)(dldx)(x2 + 1 )  
dx = (x2 + 1 )2 

(x2 + 1 )(6x) - (3x2 -2)(2x) 
(x2 + 1 )2 

6x3 + 6x - 6x3 + 4x l Ox 
�2 + lf �2 + l f '  

With practice, calculations like this can be performed very quickly. For instance, 

d 
dx x2 + 1 

d 3x 
dx x2 + 1 

(x2 + 1 )(0) - 1 (2x) 
(x2 + 1 )2 

(x2 + 1 )(3) - 3x(2x) 
(x2 + 1 )2 

- 2x 
(x2 + 1 )2 , 

3 - 3x2 
(x2 + 1 )2 , 

!!__ 2x + 1 (3x - 1 )(2) - (2x + 1 )(3) -5 
dx 3x - 1 (3x - 1 )2 (3x - 1 )2 ' 

The quotient rule enables us to extend rule 2 of Section 3 . 1 ,  

d - xn = nxn- 1 
dx . , (3) 
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to the case in which n is a negative integer. To make the negative character of n 
more visible, we write n = - m, where m is a positive integer. Now, using (2) 
and the fact that (3) is known to be valid for positive integer exponents, we have 

d d d 1 xm(O) - l (mxm- I ) 
dx xn = dx x-111 = dx xm = (xm)2 

-m.xm- l 
--- = - mx-m- l = nxn- l 

x2m ' 

which proves our statement. Thus, for example, 

etc. 

Since (3) is clearly true for n = 0, we now know that it is valid for all integer 
exponents. 

Example 3 To differentiate 

we write it as 

Then 

which can be rewritten as 

2 
y = 3x2 - 3, x 

y = 3x2 - 2x-3. 

dy 
= 6x + 6x-4 dx ' 

if positive exponents are preferred. 

We urge students to memorize the product and quotient rules, and to anchor 
them in their minds by conscientious practice. 

PROBLEMS 

9 1  

In Problems 1-8, differentiate each function two ways, and 
verify that your answers agree. 

In Problems 9-28, differentiate each function and simplify 
your answer as much as possible. 

1 (x - l )(x + l ). 
2 (2x - 6)(3x2 + 9). 
3 (3x2 + l )(x3 + 6x). 
4 (x - l )(x4 + x3 + x2 + x + 1 ) . 
5 (3x - 1 )(2x2 + x). 
6 (x3 - 3x)(x2 + 5). 
7 (4x5 + x)(3x + 1 ). 
8 (x4 + l )(x4 - 1) .  

9 x + 1 
x - l '  

1 1  

13  

2x3 + 1 
x + 2  · 

3x 
1 + 2x2 · 
1 - x2 15 
l + x2 · 

10 x2 + 2 · 
3x + 4 12 
7x + 8 . 

4x - x4 
14 x3 + 2 . 

16 2x + 1 
1 - x2 " 
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17 -- - --
x - I x + 1 · 

I 
18 4x5 - 3. 

x 
37 Sketch the graph of the curve y = xl(x + I ). How many 

tangent lines pass through the point ( I ,  3)? Find the x
coordinates of the points of tangency of these lines. 19 

21 

23 

25 

I 
3 · 

2 - -
x 

x - 1 
x2 + 2x + 1 · 

3 
x x2 
5 7 

2x2 
5 

4x - -
6x4 

20 
3x 

-
4x2 · 

22 

24 

3x3 + 2x2 - 3x + 7 
2x - 3  

4x 26 
x3 + Sx - 3 · 

In Problems 38-43, find the equations of the stated lines. 
6 38 The tangent and normal to y =  --

2 
at ( ! ,  2). 

x + 

39 The tangent and normal to y = 
x2 

� 
1 

at x = 2. 

x3 + x 40 The tangent to y = � at (2, 10) .  

41 I - 2x + 3x2 
The normal to y = 1 2 at (0, I ) . 

+ x  
I I 42 The tangent and normal to y = -

2
-- at (2, 3} 
x - l 

2x  x + 2 27 -- - --
x - I 2x 

I 28 x4 - ---. x2 - I 
x - 2  43 The tangent and normal to y = --1 at (2, 0). 
x +  

In Problems 29-34, find the derivative in two ways, first by 
dividing and then by using the quotient rule, and show that 
your answers agree. 

44 Show that the tangents to the curves y = (x2 + 45)/x2 
and y = (x2 - 4)/(x2 + I )  at x = 3 are perpendicular to 
each other. 

45 Let P be a point on the first-quadrant part of the curve 
y = l lx. Show that the triangle determined by the x-axis, 
the tangent at P, and the line from P to the origin is 
isosceles, and find its area. 

4x + 4 29 

30 

31 

32 

33 

34 

x 
2x + 6x4 -2x6 

x 5 
I +  x4 

x2 
3x4 - 4x3 + Sx -4 

x2 
x + 15  

x2 
6 - 3x2 + x6 

x4 

46 Use the product rule to verify rule 3 of Section 3 . 1 :  If c 
is a constant and u is a function of x, then 

d du 
dx (cu) = c dx · 

47 Sketch the curve y = 2/( 1 + x2), and find the points on 
it at which the normal passes through the origin. 

48 Verify the location of the high and low points on the 
graph of 

35 Find all points on the curve y = 6/x where the tangent is 
parallel to the line 2x + 3y + I = 0. y =  

x 
x2 - 3x + 2 36 Find the equations of the tangent lines to the curve y = 

(x - 1 )/(x + I )  that are parallel to the line x -2y = I .  as stated in Example 4 of Section 1 .6 .  

3 . 3 
COMPOSITE 

FUNCTIONS AND 
THE CHAIN RULE 

Let us consider the problem of differentiating the function 

y = (x3 + 2)5 . ( I )  
We can do this with the tools we now have by using the binomial theorem to ex
pand the function into the polynomial 

y = x 1 5 + 10x1 2 + 40x9 + 80x6 + 80x3 + 32. 

It now follows at once that 

dy 
= 1 5x14 + I 20x1 1 + 360x8 + 480x5 + 240x2 � . 

(2) 

(3) 

In this case the work of expansion is bothersome but not too difficult. However, 
few of us would willingly attempt to carry out the same procedure for the func-
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tion y = (x3 + 2)100. It is much better to develop the chain rule, which enables 
us to differentiate both functions with equal ease-and a host of others as well. 

For this purpose it is important to understand the structure of the function ( 1 ) .  
We accomplish this by introducing an auxiliary variable u = x3 + 2, so that ( 1 )  
can be  decomposed into simpler pieces as  follows: 

y = us where u = x3 + 2. (4) 

Working in the other direction, we can reconstruct ( 1 )  out of these pieces by sub
stituting the expression for u into y = u5. Such a function is called a composite 
function, or often a function of a function. We have already encountered this idea 
in Section 1 .5 . In general, suppose that y is a function of u, where u in tum is a 
function of x, say 

y = f(u) where u = g(x). (5) 

The corresponding composite function is the single function 

Y = f(g(x)), (6) 

obtained by substituting u = g(x) into y = f(u). 
Our position now is this. We assume we are confronted by the composite func

tion (6), and we wish to learn how to differentiate it by decomposing it into the 
simpler functions (5) and using the presumably simpler derivatives of these func
tions. This is what the chain rule is all about. 

7 The chain rule: Under the circumstances described above, we have 

(7) 

As we see, in this form the chain rule has the appearance of a trivial algebraic 
identity; it is easily remembered because the Leibniz fractional notation for 
derivatives suggests that du can be canceled from the two "fractions" on the 
right. Its intuitive content is easy to grasp if we think of derivatives as rates 
of change: 

If y changes a times as fast as u 
and u changes b times as fast as x, 
then y changes ab times as fast as x. 

Or, in everyday terms, if a car travels twice as fast as a bicycle and the bicycle 
is four times as fast as a walking man, then the car travels 2 · 4 = 8 times as fast 
as the man. 

Before looking into the proof of the chain rule, let us see how it applies to the 
problem just discussed, in which ( 1 )  is the given function and (4) is its decom
position. Formula (7) gives 

dy = dy . du = 5u4 .  3x2 = 1 5x2(x3 + 2)4 dx du dx ' (8) 

where the auxiliary variable u is replaced by x3 + 2 in the last step. It is not im
mediately obvious that this result is the same as (3), but the equivalence is easy 
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to establish.* Further, the derivative of y = (x3 + 2) 100 can be computed just as 
easily in just the same way: We write 

and use (7) to obtain 

y = ulOO where u = x3 + 2 

dy dy du - = - · - = 100u99 • 3x2 dx du dx 

= 300x2(x3 + 2)99. 

As these examples show, the chain rule is a very powerful tool. 
We begin the proof of (7) with the usual change ii.x in the independent vari

able x; this produces a change 6.u in the variable u, and this in turn produces a 
change 6.y in the variable y. We know that differentiability implies continuity, so 
6.u � 0 as ii.x � 0. If we look at the definitions of the three derivatives we are 
trying to link together, 

dy = Jim 6.y 
dx a.x-.o 6.x ' 

dy = Jim 6.y 
du t.u->0 6.u ' 

du 
= Jim 

6.u 
dx a.x-.o 6.x' (9) 

then it is natural to try to complete the proof as follows :  By simple algebra we 
have 

so 

6.y 6.y 6.u 

6.x 
= 

6.u 
. 

6.x ' 

dy 
= Jim 

6.y 
= Jim 

6.y 
· 

6.u = [ Jim 6.y ][ um 
6.u ] dx a.x-.o 6.x a.x-.o 6.u 6.x t.x->O 6.u a.x-.o 6.x 

= [ J im 
6.y ][ um 

6.u ] = dy . du 
t.u->0 6.u t.x->0 6.x du dx 

( 10) 

( l  J ) 

This reasoning is almost correct, but not quite. The difficulty centers on a pos
sible division by zero. In computing dyldx from the definition in (9), we know 
that it is part of the meaning of this formula that the increment 6.x is small and 
approaches zero but is never equal to zero. On the other hand, it can happen that 
ii.x induces no actual change in u, so that 6.u = 0, and this possibility invalidates 
( 1 0) and ( 1 1 ). This flaw can be patched up by an ingenious bit of mathematical 
trickery. We give the argument in the footnote below for students who wish to 
examine it. t 

It will become clear as we proceed that the chain rule is indispensable for 
almost all differentiations above the simplest level. An important special case 

*We hope students did not accept the expansion in (2) - and similarly will not accept the stated equiv
alence of (8) and (3) - without checking the details for themselves. Total skepticism is the recom
mended state of mind for studying this (or any similar) book: Take nothing on faith; verify all omit
ted calculations; believe nothing unless you have seen and understood it for yourself. 
twe begin with the definition of the derivative dy/du, which is 

This is equivalent to 

dy = Jim �Y .  
du liu-+0 �u 
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has been illustrated in connection with finding the derivatives of (x3 + 2)5 and 
(x3 + 2) 100. The general principle here is expressed by the formula 

d d 
dx ( )n = n( r l dx ( ) , 

where any differentiable function of x can be inserted in the parentheses. If we 
denote the function by u, the formula can be written as follows. 

8 The power rule: 

( 1 2) 

At this stage of our work we know that the exponent n is allowed to be any pos
itive or negative integer (or zero) .  In Section 3 .5  we will see that ( 1 2) is also 
valid for all fractional exponents. 

Example I To differentiate y = (3x4 + 1 )7, we make a routine application of 
( 12) : 

2 = 7(3x4 + 1 )6 ! (3x4 + 1 )  = 7(3x4 + 1 )6 · 12x3. 

But to differentiate y = [(3x4 + 1 )7 + 1 ]5, we apply ( 1 2) twice in succession: 

dy = 5 [(3x4 + 1 )7 + 1 )4 .!!__ [(3x4 + 1 )7 + I ]  dx dx 

= 5 [(3x4 + 1 )7 + 1 )4 · 7(3x4 + 1 )6 _!:__ (3x4 + 1 )  dx 

= 5[(3x4 + 1 )7 + 1 ]4 · 7(3x4 + 1 )6 · 1 2x3. 
After this procedure becomes familiar and more or less automatic, it is often pos
sible to skip the intermediate steps and write down the answer at once. For the 
sake of clarity, in  these calculations we have left the various factors in exactly 
the positions where they appear in the successive steps of the work. Normally, 
of course, we tidy things up a bit, and write the first answer, for example, in the 
more compact form 84x3(3x4 + 1 )6. 

Example 2 If y = [( l - 2x)/( 1 + 2x)]4, then by ( 12) and the quotient rule we 
have 

or 

tl.y = dy + € 
tl.u du 

tl.y = :� tl.u + E tl.u, 

where e -->  0 as tl.u � 0. It is assumed in these equations that tl.u is a nonzero increment in u, but 
the last equation is valid even when tl.u = 0. Dividing this by a nonzero increment tl.x yields 

tl.y = dy tl.u + E 
tl.u 

tl.x du tl.x tl.x ' 

and on letting tl.x � 0 we obtain the chain rule (7), since e -->  0. 
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dy = 4 ( I -
2x )3 _!!:.___ ( I - 2x ) 

dx I + 2x dx I + 2x 

= ( I - 2x )3
. 

( I  + 2x)(-2) - ( I  - 2x)(2) 4 I + 2x ( I  + 2x)2 

- 16( 1 -
2x)3 

( I  + 2x)5 

Example 3 If y = (x2 - 1 )3(x2 + 1 )-2, then by combining ( 1 2) with the product 
rule we have 

dy = (x2 - 1 )3 _!!:.___ (x2 
+ 1 )-2 

+ (x2 + 1 )-2 _!!:.___ (x2 - 1 )3 
dx dx dx 

= (x2 - 1 )3 · (-2)(x2 
+ l )-3(2x) + (x2 

+ 1 )-2 
· 3(x2 - 1 )2(2x) . 

To simplify this, we take out the factor 2x(x2 - 1 )2, get rid of the negative ex
ponents, and reduce to a common denominator: 

dy [ -2(x2 - I )  3 ] dx 
= 2x(x2 - 1 )2 

(x2 
+ 1 )3 + (x2 

+ 1 )2 

_ 2 _ 2 [ -2(x2 
- I ) + 3(x2 

+ I ) ] -
2x(x2 - 1 )2(x2 

+ 5 )  
- 2x(x I )  (x2 + l )3 - (x2 + 1 )3 

In Chapter 4 we will be using derivatives as tools in many concrete problems of 
science and geometry, and it will then be clear that it is worth a little extra ef
fort to put the derivatives we calculate into their simplest possible forms. 

There are a few concluding remarks that ought to be made. We have not yet 
explained why the expression "chain rule" is appropriate. The reason is this. In 
(7) we are dealing with three variables y, u, and x that are linked together step 
by step in a chain in such a way that each is dependent on the next. We can sug
gest this relation by writing 

The formula 

y depends on u depends on x. 

dy = dy . du 
dx du dx 

tells us how to differentiate the first variable with respect to the last by taking 
into account each individual link in the chain. This formula can easily be ex
tended to more variables. For instance, if x depends in turn on z, then 

dy dy du dx 
dz 

= du 
· 

dx 
· dz ; 

if z depends on w, then 

dy dy du dx dz 
dw 

= du 
. dx . dz 

. dw ; 

and so on. Each new variable adds a new link to the chain and a new derivative 
to the formula. 
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PROBLEMS 

Find dy/dx in Problems 1-10. 
1 1 y = (2 - 5x)2 · 

2 y = (4 + 5x)4. 
3 y = (x2 + 4x - 1 )3. 
4 x - 2  y = (3x + 5)3 ' 
5 y = (5 - x)3 (4 + x)5. 
6 y = [ l  + ( 1  + x)5]6. 
7 1 y = (3x + 1 )4 · 
8 y = (5 - 7x4)-5. 
9 y = (1 - 6x)6. 
10 2 - x  y = (3 - x)4 ' 
In Problems 1 1-1 6, express dyldx in terms of x. 

l 1 1  y = ( 1  - u)4, u = 3. x 
1 1 12 y = -;;z - --;}"• u = 3x - 1 .  

1 3  y = ( 1  + u2)2, u = (2x + 1 )2. 
- 7 _ _ l_ 14 y - u , u - 3 _ 4x . 

1 15 y = u( l - u)4, u = 5· x 
u x 16 y = 1 + u '  u = 1 + x . 

In Problems 17-32, find dy!dx. 
17 y = (x5 - 3x)4. 
18 y = (x2 - 2)500. 
1 9 y = (x + x2 - 2x5)6. 
20 y = ( 1  - 3x)- 1 •  
21 y = ( l 2 - x2)-2. 
22 y = [ l  - (3x - 2)3]4. 
23 y = (x2 + 3x - 5)7. 
24 y = (x3 - 7x)5. 
25 y = (3x2 - 5x + 2)-6. 

1 26 y = (x3 - 5x + 1 )5 . 
27 y = (5x + 3)4(4x - 3)7. 
28 y = (x2 - 2)5(x2 + 2) 10. 
29 y = x2 (9 - x2)-2. 
30 y = ( 1  - 2x)-4(x2 - x)2. 
31 y = (2x - 3)8(3x2 - x + 2)1 0. 
32 y = (5x2 + 6)3(x3 - 3)4. 

In Problems 33-36, find ds/dt. 
(2t - 1 )3 33 s = (t2 + 3)2 . 

1 34 s = (2t - 1 )2 . 
6 35 s = (5 - 4t)3 . 

t4 - 10t2 36 s = (t2 - 6)2 . 

In Problems 37-39, find dy/dx by two methods, and verify 
that your answers agree. 
37 y = (2x - 1 )5(x + 3)5 = (2x2 + 5x - 3)5. 

1 38 y = ( 1  - 2x2)3 = ( 1  - 2x2)-3 . 

39 = (3x + 1 )4 = ( 3x + 1 )4 y (1 - 2x)4 1 - 2x · 

In Problems 40-42, find dy/dx as a function of x in two ways, 
first w ithout the power rule and then using the power rule. 
40 y = u2, u = x2 - 3x + 2. 
4 1  y = u2 - 3u + 2 ,  u = 7 - 5x. 

1 42 y = u3, u = x - -. x 
In Problems 43 and 44, find the equation of the tangent line 
to the given curve at the given point. 
43 y = (x3 - x2 + x)8, ( 1 ,  1 ). 

x 44 y = (8 - x2)5 ' (3, - 3) . 
45 If u is a function of x, express each of the following in 

terms of u and duldx: 
d 

(a) dx u3; 
d 

(b) dx (2u - 1 )2 ;  
d 

(c) dx (u2 -2)2 . 
46 Find a function y = f(x) for which 

(a) 2 = 2(x2 - 1 )  · 2x; 

(b) 2 = 4(x2 - 1 )2 · 2x; 

(c) 2 = 2(x3 - 2) · 3x2; 
dy 

(d )  dx = 3(x3 - 2)2 · 3x2. 
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3 . 4  
SOME TRIGONOMETRIC 

DERIVATIVES 

THE COMPUTATION OF DERIVATIVES 

So far, the only truly fundamental functions we have learned how to differenti
ate are the simple power functions xn: 

d - xn = nx n - I 
dx . 

All other functions have been constructed from these by addition, subtraction, 
multiplication, division and by forming a function of a function, and our general 
rules have allowed us to find the derivatives of these combinations. We now ex
pand our kit of tools beyond elementary algebra by learning how to differentiate 
the basic trigonometric functions sin x and cos x: 

and 

d . 
dx sm x = cos x 

d . 
dx COS X = - Sill X. 

( 1 )  

(2) 

To obtain these formulas we go back to the definition of the derivative of an 
arbitrary function f(x), 

.!!:._/( ) = r fix + Ax) -fix) dx x �E!o Ax · 

When we apply this definition to the function f(x) = sin x, and use the addition 
formula for the sine [identity (3) in Section 1 .7] ,  we obtain 

!!.._ . _ r sin (x + Ax) - sin x 
dx Sill x -iJE!o Ax 

sin x cos Ax + cos x sin Ax - sin x 
= Jim (3) Lix-.o Ax 

An algebraic rearrangement of (3) gives 

d . . [ ( sin Ax) . ( I - cos Ax )] dx sm x = �E!o cos x � - Sill x Ax [ r sin Ax ] . [ r 1 - cos Ax ] = cos x iJE:o � - sill x �E!o Ax , (4) 

since cos x and sin x are constants with respect to this limit operation. The lim
its in brackets here are precisely the limits (3) and (4) in Section 2.5, with 8 re
placed by � x: 

I
. sin Ax 

1 1m -- = 
IU--+O Ax and I . 

1 - cos Ax 0 1m = . Lix-.o Ax 
These facts enable us to write (4) as 

which is ( 1 ) . 

d . . 0 - Sill x = cos x · 1 - sm x · dx 
= cos x, 

The proof of (2) is similar, with the difference that we use the addition for
mula for the cosine [identity (4) in Section 1 .7 ] :  
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d r dx cos x = J�o 
cos (x + .:ix) - cos x 

.:ix 

This establishes (2). 

cos x cos .:ix - sin x sin .:ix - cos x 
= l im 

Lix--->0 Llx 

1. [ . ( sin .:ix ) ( 1 - cos .:ix )] = 1m -sm x -- - cos x 
Lix--->O .:ix .:ix 

. [ r sin .:ix ] [ r 1 - cos .:ix ] = -sm x iJ�o � - cos x iJ�o .:ix 

= -sin x · 1 - cos x · 0 = -sin x. 

When ( 1 )  and (2) are combined with the chain rule, we have the main tools 
of this section, 

and 

d . du dx sm u = cos u dx 

d . du dx cos u = - sm u dx '  

(5) 

(6) 

where u = u(x) is understood to be any differentiable function of x. Students must 
learn to use these formulas in combination with all previous rules of differenti
ation. 

Example 1 Find dy/dx if y = sin (5 + 4x3). Here u = 5 + 4x3, so by (5), 

dy d dx = cos (5 + 4x3) dx (5 + 4x3) = 12x2 cos (5 + 4x3) . 

Example 2 Find dy/dx if y = cos (sin x). Here u = sin x, so by (6) and ( 1 ), 

: = - sin (sin x) ! (sin x) = -cos x · sin (sin x). 

Example 3 Find dy/dx if y = sin [ ( 1  - x2)/(1 + x2)]. Here u = ( 1  - x2)! 
( 1  + x2) ,  so by (5) and the quotient rule, 

dy 
= 

(�) !!__ (�) dx cos 1 + x2 dx 1 + x2 

( 1 - x2 ) ( 1  + x2)(-2x) - ( 1  - x2)2x = cos 1 + x2 . ( 1  + x2)2 
-4x ( 1 - x2 ) = ( 1  + x2)2 cos 1 + x2 . 

Example 4 Find dy/dx if y = cos ( 1  + sin 5x). Here u = 1 + sin 5x, so finding 
du/dx requires an application of the chain rule, and we have 
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dy . . d 
1 . 5 ) dx = -sm ( 1  + sm 5x) dx ( + sm x 

= -sin ( 1  + sin 5x) · cos 5x · ! (5x) 

= -5 cos 5x · sin ( 1  + sin 5x). 

In these examples the chain rule acquires additional scope by being used in 
ways not covered by the ideas of the preceding section. 

We remind the reader of the standard notational convention for powers of the 
trigonometric functions :  In general sinnx means (sin x)n . However, it must not be 
forgotten that (sin x)- 1 is never written sin- 1x. The reason for this is that the lat
ter notation is reserved for the inverse sine function, which will not play any part 
in our work until Chapter 9 but will be in regular use from that point on. 

Example 5 Find dy/dx if y = sin5 7x2 . Here we let w = sin 7x2. Then y = w5 
and 

dy dw d - = 5w4 - = 5w4 • cos 7x2 · - (7x2) dx dx dx 
= 5w4 · cos 7x2 · 14x 

= 70x sin 4 7x2 • cos 7x2. 

In Section 1 .7 we stated that in calculus it is preferred to use radian measure 
for angles instead of degree measure. We are now able to explain the reason for 
this. Let sin x0 and cos x0 denote the sine and cosine of an angle of x degrees. 
Since an angle of x degrees has radian measure 7T.X/l 80, we have 

Then 

so 

• 0 • 1TX 
sm x = sm 

1 80
. 

d . 0 _  7TX d ( 7TX ) - 1T 7TX 
dx sm x - cos 

1 80 dx 180 - 1 80 
cos 180' 

d · o _ 7T o 

dx sm x - 180 cos x . 

If we insist on using degrees to measure angles, then we are forced to use this 
formula instead of the simpler formula ( 1 ). We therefore use radian measure to 
prevent our calculations from being cluttered up by the repeated occurrence of 
the unwelcome factor 7T/l 80. 

The remaining four trigonometric functions can be defined in terms of sin x 
and cos x, as at the end of Section 1 .7, and their derivatives are calculated from 
these definitions. Here are the definitions again:  

sin x 
tan x = --, 

cos x 

cos x ( 1 ) 
cot x = 

sin x 
= 

tan x ' 

(7) 
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1 
sec x = --, 

cos x 

I 
csc x = -.-. 

sm x 

These are the tangent, cotangent, secant, and cosecant functions. All four of these 
functions will be thoroughly developed in Chapter 9 and used extensively there
after, but for the present we confine our attention to the tangent function and its 
derivative, 

d 
dx 

tan x = sec2 x. (8) 

To establish this formula we refer to (7) and use the quotient rule: 

d d sin x cos x · cos x - sin x · (-sin x) 
- tan x = - -- = 
dx dx cos x cos2x 

cos2 x + sin2 x l 2 = -- = sec x. 
cos2 x cos2 x 

The chain rule extension of (8) is 

d du - tan u = sec2 u -. 
dx dx 

(9) 

Example 6 Find dy/dx if y = tan5 (3x2 + 1) .  If we put w = tan (3x2 + 1 ) , then 
y = w5 and by (9), 

dy = 5w4 dw 
= 5w4 • sec2 (3x2 + I) · _.!!:_ (3x2 + 1 )  

dx dx dx 

= 5w4 · sec2 (3x2 + 1 )  · 6x 

= 30x · tan4 (3x2 + 1 )  · sec2 (3x2 + I ) . 

PROBLEMS 

In Problems 1-32, find dyldx. 25 1 y = sin (Sx - 2). 2 y = cos (x5 + 1 ). 
3 y = sin (cos x). 4 y = sin [sin (sin x)]. 
5 y = sin3 x. 6 y = sin2 (4x - 1 )3 .  27 

7 sin x 8 y = cos3 4x. 
29 

y = 
1 + cos x · 31 

cos x 
y = -- . 

x 

3 
. I 

y = x  sm 2. 
x 

y = (2 - cos2 x)3. 
y = sin (tan x). 

1 0 1  

26 y = sin x - x cos x. 

28 y = sin 2x cos 3x. 

30 y = sin2 x + cos2 x. 
32 y = tan2 ( l  - sin3 x). 

9 y = sin x3. 10 y = (1 + sin2 x)4. 33 Derive formula (2) in another way, by using the identi-
1 1  y = tan Sx. 12 y = tan2 3x. ties 
13 y = tan (sin x). 14 y = tan3 x4. 

cos x = sin ( ; - x) sin x = cos ( ; - x) . 15 y = ( 1  + tan2 x2)2. 16 y = 1 - cos 3x. and 
17 y = 5 sin 3x - 3 cos Sx. 18 y = 3 sin (4x - 5) .  
19 y = cos 3(5x - 3)3 .  20 y = cos7 2x. 34 Find the values of x for which the graph of y = x + 

21 sin x 22 y = sin x cos2 x. 2 sin x has a horizontal tangent. y =  
1 - sin x 35 Same as Problem 34 for y = (cos x)/(2 + sin x). 

23 1 - cos 3x 24 y = x sin x. 
36 By differentiating the first of the following double-angle 

y =  
sin 3x formulas, obtain the second: 
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sin 2x = 2 sin x cos x, cos 2x = cos2 x - sin2 x. the double-angle formulas in Problem 36 and the half-angle 
formulas in Problem 1 1  of Section 1 .7. Show that each of the 
following derivatives can be expressed in the given form. 

37 An object moving on a straight line has position s = 
A cos kt at time t, where A and k are constants. 
(a) Describe the motion, giving physical meaning to the 

constants A and k. 38 _!}__ (lx - _!_ sin 2ax) = sin2 ax dx 2 4a · 

(b) Find the velocity v. 
(c) Show that v2 + k2s2 has the same value at all times. 39 _!}__ (lx + _!_ sin 2ax) = cos2 ax dx 2 4a · 

Give a physical interpretation. 
(d ) Find the acceleration a and show that a is propor

tional to s but oppositely directed. 40 - - sm ax -- sm ax = cos ax. 
d ( I . I . 3 ) 3 

dx a 3a 
Trigonometric identities are often useful in simplifying the 
form of functions or their derivatives. We mention particularly 

41 - -- cos ax -- sm ax sm ax = sm ax. 
d ( 2 I .  

2 . ) · 3 
dx 3a 6a 

3 . 5 
IMPLICIT FUNCTIONS 

AND FRACTIONAL 
EXPONENTS 

Figure 3.2 
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Most of the functions we have met so far have been of the form y = f(x), in which 
y is expressed directly-or explicitly- in terms of x. In contrast to this, it often 
happens that y is defined as a function of x by means of an equation 

F(x, y) = 0, ( I )  

which i s  not solved for y but in which x and y are more or less entangled with 
each other. When x is given a suitable numerical value, the resulting equation 
usually determines one or more corresponding values of y. In such a case we say 
that equation ( 1 )  determines y as one or more implicit functions of x. 

Example 1 (a) The very simple equation xy = 1 determines one implicit func
tion of x, which can be written explicitly as 

I y = �. 
(b) The equation x2 + y2 = 25 determines two implicit functions of x, which 

can be written explicitly as 

y = v'2s - x2 and y = -Y25 - x2. 

As we know, the graphs of these two functions are the upper and lower halves 
of the circle of radius 5 shown in Fig. 3.2. 

(c) The equation 2x2 - 2xy = 5 - y2 also determines two implicit functions. 
If we use the quadratic formula to solve for y, we find that these functions are 

y = x + �  and y = x - �. 
(d ) The equation x3 + y3 = 3axy (a > 0) determines several implicit func

tions, but the problem of solving this equation for y is so forbidding that we might 
as well forget it. 

It is rather surprising that we can often calculate the derivative dyldx of an im
plicit function without first solving the given equation for y. We start the process 
by differentiating the given equation through with respect to x, using the chain 
rule (or power rule) and consciously thinking of y as a function of x wherever it 
appears. Thus, for example, y3 is treated as the cube of a function of x and its 
derivative is 
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!!:__ y3 = 3y2 
dy . 

dx dx ' 

and x3y4 is thought of as the product of two functions of x and its derivative is 

d dy 
dx (x3y4) = x3 . 4y3 dx 

+ y4 . 3xz. 

To complete the process, we solve the resulting equation for dy/dx as the un
known. This method is called implicit differentiation. We show how it works by 
applying it to the equations in Example 1 .  

Example 2 (a) We can think of the equation xy = 1 as stating that two func
tions of x (namely, xy and 1 )  are equal. It follows that the derivatives of these 
functions are equal, so 

x
dy

+ y = O  
dx 

or 
dy _l. 
dx x 

In this case it is possible to solve the original equation for y and check our re
sult: Since y = l /x, the formula we have just obtained becomes 

dy y 1 1 1 1 
dx 

= -� = -� 
. y = -� 

. 
� = -

x2 ; 

and differentiating y = l lx directly also yields 

dy = 
dx x2 · 

(b) From the equation x2 + y2 = 25 we get 

2x + 2y 
dy 

= O 
dx 

or 

This gives the correct result whichever of the two implicit functions we are think
ing about. Thus, at the point (4, 3) on the upper curve in Fig. 3.2, the value of 
dy/dx is -}-, and at (4, - 3) on the lower curve, its value is }- . 

(c) If we apply this process of implicit differentiation to the equation 2x2 -
2xy = 5 - y2, we obtain 

dy dy 
4x - 2x - - 2y = -2y -

dx dx or 
dy = 2x - y 
dx x - y  

(d ) In Example l (d )  the derivative dy/dx is clearly beyond direct calculation. 
However, it is easily found by our present method: Since x3 + y3 = 3axy, we 
have 

3x2 + 3y2 dy 
= 3ax 

dy 
+ 3ay 

dx dx 
or 

dy ay - x2 
dx =

y2 - ax "  

It is apparent that implicit differentiation usually gives an expression for dyldx 
in terms of both x and y, instead of in terms of x alone. However, in many cases 
this is not a real disadvantage. For instance, if we want the slope of the tangent 
to the graph of the equation at a point (x0, y0), all we have to do is substitute x0 
and y0 for x and y in the formula for dyldx. This is illustrated in Example 2(b) 
for the points (4, 3) and (4, - 3). 

1 03 
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We now use implicit differentiation to show that the vital formula 

d 
- x" = nx11- 1 dx 

is valid for all fractional exponents n = p!q.* 

(2) 

For the sake of convenience, we begin the proof of (2) for fractional exponents 
by introducing y as the dependent variable, 

y = xplq. 

Raising both sides of this to the qth power yields 

and by differentiating implicitly with respect to x and using the known validity 
of the power rule for integral exponents, we obtain 

qyq- 1 
dy = pxp- 1 dx 

or 

But yq- l = yq/y = xP/xP1q, so 
d xp- I xP- 1 _]!_ = p_ __ = p_ __ . xplq = p_ xplq- 1 
dx q yq- 1 q xP q 

' 

and the proof is complete. 

Example 3 We immediately have 

d I 
- x112 = - x- 112 dx 2 ' 

d 2 
_ x-213 = __ x-513 dx 3 ' 

The first of these derivatives is often used in the form 

! Vx = 2�· 

d 5 - x514 = _ xll4 dx 4 · 

This formula was established directly from the definition of the derivative in Ex
ample 3 of Section 2.3 .  

Example 4 By the chain rule, the power rule of Section 3.3 is now known to be 
valid for all fractional exponents. Accordingly, 

d 5 d 
_ (4 _ x2)-s12 = __ (4 _ x2)-112 _ (4 _ x2) dx 2 dx 

'Students who are comfortable with fractional exponents should ignore this footnote. However, for 
those who have forgotten the meaning of these ,e!Ponents, we offer a brief review. We begin by re
calling that the square root Vx, the cube root V' x, and more generally the qth root �. where q is 
any positive integer, are all defined for x � O; if q is odd, � is also defined for x < 0. The defini
tion of fractional exponents now proceeds in two stages :  First, x11q is defined for q > 0 by x11q = 

�; and second, if plq is in lowest terms and q > 0, xP1q is defined by xP1<t = (x11'1)P. It is sometimes 
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Example S In differentiating expressions containing radicals, it is necessary to 
begin by replacing all radical signs by fractional exponents. Thus, 

_!!:__ x 
= _!!:__ x(x2 - 1 )- 112 = x (-1-) (x2 - I )-3/2(2x) + (x2 - 1 )- 112 dx � dx 2 

-x2 I -x2 + (x2 - l ) - I  - + - --�--� - (x2 _ l )3/2 (x2 _ l ) 1 12 - (x2 _ l )3/2 (x2 _ l )3/2 · 

For convenience of reference, we list together all the differentiation rules de
veloped in this chapter. 

d 
dx c = 0. 

2 ! xn = nxn- I  (n any integer or fraction). 

d du 3 dx (cu) = c dx . 
d du dv 

4 dx (u + v) = dx + dx ' 
5 

d dv du The product rule: dx (uv) = u dx + v dx · 

6 
. d ( u ) vdu/dx - u dvldx The quotient rule: dx -; = v2 

. 

7 The chain rule: dy = dy · 
du . 

dx du dx 
8 The power rule: ! un = nun- I : (n any integer or fraction). 

9 
d . du 
dx s

rn u = cos u dx . 

0 
d . du 

1 dx cos u = - sm u dx . 

These rules will be used in many ways in almost everything we do from this 
point on. We therefore urge students who have not already done so to commit 
them to memory and practice them until their use becomes almost automatic. The 
eminent philosopher A. N. Whitehead might well have had these rules in mind 
when he said, "Civilization advances by extending the number of important op
erations which we can perform without thinking about them." 

It is worth pointing out that most mistakes in differentiation come from mis
using the power rule or the quotient rule. For instance, in applying the power rule 
it is easy to forget the essential final factor duldx: 

Common mistake 

_!!:__ ( 1 + 6x2)4 = 4( 1 + 6x2)3 dx ! ( 1  + 2x) 1 13 = to + 2x)-213 

Right answer 

4( 1 + 6x2)3 • 1 2x 

to + Zx)-213 . 2 

useful to know (and it is not difficult to prove) that (xP) 11q = (x11q)p if x > 0. For example, 8213 is 
easy to evaluate both ways, since g2/3 = (82) 113 = 64113 = 4 and g2/3 = (81'3)2 = 22 = 4; but 323/5 = 
(323) 115 is hard, while 32315 = (32115)3 = 23 = 8 is easy. 

1 05 
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The difficulty with the quotient rule lies in remembering the order of subtraction 
in the numerator. If we forget, one way of quickly recalling the correct order is 
to use the product rule as follows: 

d ( u )  d dv du 
dx --;-; = dx (uv- 1) = u . (- l ) v-2 

dx 
+ v- 1 dx 

1 du u dv v du/dx - u dvldx 
--;; dx - -;; dx v2 

Remark The equation in Example 1 ( d)  has a long history and deserves a bit of 
further comment. Its graph is called the folium of Descartes and is shown in Fig .  

(ta, tal 3.3. If we consider the simplest case by putting a = 1, the equation becomes 

x3 + y3 = 3xy, (3) 

and the problem of solving this for y in terms of x-which we airily dismissed 
above- is not absolutely out of the question. And thereby hangs a tale of con
siderable historical interest. 

Figure 3.3 The folium of Descartes. 

In 1 545 the boisterous Italian physician-mathematician-astrologer Girolamo 
Cardano ( 150 1-1576) discovered a formula for solving any cubic equation by 
means of radicals.* This formula resembles the familiar quadratic formula but is 
much more complicated. If Cardano's formula is used to solve equation (3) for 
y, the three solution functions that arise are t 

and 

Y Y 
= -.!. y + .!.\1=3(J-x3 + Jx6 - x3 -

J_!!_ _ Jx6 - x3
) 

2, 3 2 I - 2 2 4 2 4 . 

The method of implicit differentiation as carried out in Example 2(d ) is clearly 
preferable to the task of directly differentiating horrors like these. Furthermore, 
implicit differentiation works just as easily for equations such as 

xs + 5x4y2 + 3xy3 + y5 = I ,  

which are actually impossible to solve for y i n  terms of x. + 

*At one point in his turbulent life Cardano was imprisoned for heresy: his offense was that he pub
lished a horoscope for Jesus. 
TThese formulas can be obtained from the ideas in Chapter X of H. Tietze, Famous Problems of 
Mathematics (Graylock Press, 1 965). 
+Jn 1 824 the Norwegian mathematician Niels Henrik Abel ( 1 802-1 829) proved that no general for
mula exists for solving a fifth-degree equation by means of radicals, as is possible for equations of 
lower degree. This young man made many profound discoveries in his short life, and it has been said 
that he was the greatest genius produced by the Scandinavian countries. 
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PROBLEMS 

In Problems 1-10, find dyldx by implicit differentiation. 
I 3x3 + 4y3 + 8 = 0. 
2 xy2 - x2y + x2 + 2y2 = 0. 
3 x = y - y7. 
4 x4y3 - 3xy = 60. 
S x3 - y3 = 4xy. 

I 1 6 - + - = 1 .  x y 
7 Vx + vY = 6. x + y 2 8 -- = x . 

x - y  
9 x213 + y213 = 1 . 
10 vry + 4 = y. 

In Problems 1 1-1 8, find dy/dx by implicit differentiation and 
also by solving for y and then differentiating, and verify that 
your two answers are equivalent. 
1 1  3xy + 2 = 0. 
12 x2 + y2 = 9. 
13 y2 = 3x - 1 . 
1 4 2x2 + 3x + y2 = 1 2. 1 - y I S  !+Y=x. 
16 x2 + 5x + xy = 3 . 
1 7  9x2 + 4y2 = 36. 
18 x2 + y - y2 = 5. 
In Problems 1 9-28, find the derivative of each function. 
19 x415 . 20 x516 
21 x-314. 22 x-7/ 1 1 . 
23 3w. 24 0 + x2'3>312. 
25 ( x3 x� 8 )3'4. 
27 (x + 2 )312. x - 1 
29 Find the equation of 

26 YI + �. 
28 fx.2+3 v�· 

(a) the tangent to y = (5 - 3x) 1 13 at ( - 1 ,  2); 
(b) the tangent to x4 + 16y4 = 32 at (2, l ); 
(c) the normal to y =  x� at the origin; 
(d) the normal to y2 - 4xy = 1 2 at ( I ,  6). 

30 Show that the curves x2 + 3y2 = 1 2 and 3x2 - y2 = 6 
intersect at right angles at the point (v3, v3). 

3 1  Show that for the "curve" x(x + 6 ) + y2 - 4y + 1 5 = 0, 
implicit differentiation gives 

dy = x + 3  
dx 2 - y ' 

Show further that this result is completely meaningless, 
because there are no points on this "curve." 

32 Verify that the normal at any point (x0, y0) on the circle x2 + y2 = a2 passes through the center. 
33 Find a function y = f(x) for which 

(a) �� = 3Vx; (b) �� = 5xVx. 
34 Show that the curve xy3 + x3y = 4 has no horizontal tan

gent. 
35 Find the highest point on the loop of the folium of 

Descartes ( Fig. 3 .3) whose equation is (3). 
In Problems 36-40, find dyldx by implicit differentiation. 
36 tan y = x. 37 y3 + y2 = sin x. 
38 cos y = x. 39 sin y = xy. 
40 cos xy = x2 + y2. 
In Problems 41-48, find the derivative of each function. 

4 1 sin Vx. 42 cos x 
Vx . 

43 tan2 Vx. 44 sin3 ( I  - 5x)413. 
45 V6 - s cos 2x. 46 sin2 x 

1 + cos x 
47 tan (3x - 1 )-u2. 48 [tan (3x - l )ru2. 

The derivative of y = x4 is clearly y' = 4x3. But 4x3 can also be differentiated, 
yielding 12x2. It is natural to denote this function by y" and call it the second 
derivative of the original function. By differentiating the second derivative y" = 
12x2 we obtain the third derivative y"' = 24x, and so on indefinitely. Several no
tations are in common use for these higher-order derivatives, and students should 
become familiar with all of them. The successive derivatives of a function y = 
f(x) can be written as follows: 

3 . 6  
DERIVATIVES OF 
H IGHER ORDER 

f'(x) y '  
dy d 

First derivative dx dx f(x) 
Second derivative f"(x) y" d2y d2 dx2 dx2 f(x) 
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Third derivative j"'(x) y"' 
nth derivative J<nl(x) y<n) 

d3y 
dx3 
dny 
dx" 

d3 dx3 f(x) 
d" 
dx" f(x) 

A few remarks about these notations are perhaps in order. The entries in the 
first column are read ''.f prime of x," '} double prime of x," ''.{ triple prime of x," 
''.f upper n of x"; similarly, those in the second column are read "y prime," "y 
double prime," and so on. The prime notation quickly becomes unwieldy and is 
not often used beyond the third order. It is sometimes convenient to think of the 
original function as the zeroth-order derivative and to write f(x) = JC0l(x). The 
seemingly strange position of the superscripts in the third column can be under
stood if we remember that the second derivative is the derivative of the first de
rivative, 

d2y 
= 

_!!__ ( dy ) 
dx2 dx dx · 

On the left side of this, the superscript 2 is attached to the d on top and to the 
dx on the bottom, and this is consistent with the way these symbols are written 
on the right. 

What are the uses of these higher derivatives? In geometry, as we will see in 
Chapter 4, the sign of f"(x) tells us whether the curve y = f(x) is concave up or 
concave down. Also, in a later chapter this qualitative interpretation of the sec
ond derivative will be refined into a quantitative formula for the curvature of the 
curve. 

In physics, second derivatives are of very great importance. If s = f(t) gives 
the position of a moving body at time t, then we know that the first and second 
derivatives of this position function, 

ds 
v = -dt and 

dv d2s 
a = - = -dt dt2 ' 

are the velocity and acceleration of the body at time t. The central role of accel
eration arises from Newton 's second law of motion, which states that the accel
eration of a moving body is proportional to the force acting on it. The basic prob
lem of Newtonian dynamics is to use calculus to deduce the nature of the motion 
from the given force. We shall begin examining problems of this kind in Chap
ter 5. 

Derivatives of higher order than the second do not have any such fundamen
tal geometric or physical interpretations. However, as we shall see later, these de
rivatives have their uses too, mainly in connection with expanding functions into 
infinite series. 

All these applications will be discussed in detail at the proper time. Mean
while, our present task is to develop proficiency at performing the calculations. 

Example 1 It is easy to find all the derivatives of y = x5: 
y ' = 5x4, y" = 20x3, y"' = 60x2, 

y<4l = 1 20x, y <5) = 1 20, y(n) = 0 for n > 5 . 
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The following notation will often be useful. For any positive integer n, the sym
bol n !  (read "n factorial") is defined to be the product of all the positive integers 
from 1 up to n :  

n !  = 1 · 2 · 3 · · · n .  
Thus, 1 ! = 1 ,  2 ! = 1 · 2 = 2, 3 ! = 1 · 2 · 3 = 6, 4 ! = 1 · 2 · 3 · 4 = 24, etc. If  
we differentiate y = xn repeatedly we clearly get 

y '  = n.xn- 1 , 
y" = n(n - I )xn-2, 
y"' = n(n - l )(n - 2)xn-3 ,  . . . , 

y (n) = n(n - l )(n - 2) · · · 2 · 1 = n ! , 
y<k) = 0 for k >  n. 

Example 2 To discover a formula for the nth derivative of y = l lx = x- 1 , we 
compute until a pattern emerges : 

y' = -x-2, 
y" = 2x-3, 

y<4l = 2 · 3 · 4X-5 = 4 !x-5, 
y (S) = -2 · 3 · 4 · 5X-6 = -5 !x-6. 

From the evidence so far and the way the process of differentiation works, it is 
clear that except for sign y<n) is n !x-<n+ l) _ A convenient way of expressing the 
alternating sign is provided by the number (- l )n, which equals - 1  if n is odd 
and 1 if n is even. We therefore have 

y <n) = (- l )nn !x-<n+ 1 ) 
for every positive integer n. 

Example 3 Implicit differentiation can be used to find a simple formula for y " 
on the circle x2 + y2 = a2. To begin the process, we differentiate and obtain 

2x + 2yy ' = O or ' x y = --. y ( 1 )  

Differentiating again by  the quotient rule and remembering that y i s  a function 
of x, we get 

y" = - y - xy' 
y2 . 

When ( 1 )  is substituted into this, the formula becomes 

,, _ y - x( -xly) _ y2 + x2 _ a2 y - - y2 - __ y_3_ - - y3 , 

which should be simple enough for anyone. 

1 09 
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PROBLEMS 

1 Find the first four derivatives of 
(a) 8x - 3 ;  
(b) 8x2 - I l x  + 2; 
(c) 8x3 + 7x2 - x + 9; 
(d ) x4 - 1 3x3 + 5x2 + 3x - 2; 
(e) xs12 . 

THE COMPUTATION OF DERIVATIVES 

Example 4 Repeated differentiation enables us to give a relatively easy proof of 
the binomial theorem. For any positive integer n, we consider the function 

( I  + x)" = ( 1 + x)( 1 + x) · · · ( 1 + x). 
It is obvious that this function is a polynomial of degree n, that is, 

( l  + x)" = ao + a1x + a2x2 + a:ix3 + · · · + a,,x", (2) 

and our problem is to find out what the coefficients are. If we put x = 0, we im
mediately obtain a0 = 1 .  Next, differentiating both sides of (2) repeatedly yields 

n( l + x)"- 1 = a1 + 2a2x + 3a:ix2 + · · · + na,,x 11- 1 , 
n(n - 1 )( 1  + x)11-2 = 2a2 + 3 · 2a3x + · · · + n(n - I )anX"-2, 

n(n - l )(n - 2)( 1 + x)"-3 = 3 · 2a3 + · · · + n(n - l )(n - 2)anX"-3, 
and so on. These equations hold for all values of x, so we can put x = 0 in each 
of them. This procedure gives the following expressions for the coefficients a 1 ,  

a2, a3, . . .  : 

a 1 = n, n(n - 1 )  
a2 = 2 

n(n - l )(n - 2) a3 = 
2 . 3 

n(n - 1 )(n - 2) · · · (n - k +  1 )  
I · 2 · 3 . .  · k 

With these coefficients , equation (2) takes the form 

( I  ) I 
n(n - I )  2 n(n - I )(n - 2) 3 + x " =  + nx +  x + x + . . .  

1 · 2 I · 2 · 3 

a11 = 1 .  

n(n - 1 )(11 - 2) · · · (n - k + I )  
+ 

I · 2 · 3 · · · k 
xi' + . . .  + x", (3) 

and this is  the binomial theorem.* 

'To obtain the equivalent version given in the footnote of Section 3. 1 ,  substitute x = b/a in equation 
(3) and then multiply by a". 

4 

1 
(a) y = --; l - x  x 
(c) y = -1- . + x  

I (b) y = 
I + 3x

; 

Use implicit differentiation to find a simple formula for 
y" in each case: 

2 Calculate the indicated derivative in each case: (a) b2x2 + a2y2 = a2b2; (b) y2 = 4px; 
(a) y" if y = _x_; (b) y " if y = x2 - �; 

l - x x 
(c) ::2 (! : �} ( d )  ::2 (x3 + :3 ) ; 

d500 
(e) dxsoo (xl 3 1 - 3x79 + 4). 

3 Find a general formula for yC11l in each case: 

s 

6 

(c) x112 + y112 = a 112; (d ) x3 + y3 = a3 ; 
(e) x4 + y4 = a4. 
Find a simple formula for y" on the curve x" + y" = a" 
and show that your results in parts (c), (d), and (e) of 
Problem 4 are all special cases of this formula. 
Find the values of y' , y", and y"' at the point (4, 3) on 
the circle x2 + y2 = 25. 
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7 If s is the position of a moving body at time t, find the 
time, position, and velocity at each moment when the ac
celeration is zero: 

I 
(a) s = 8t2 - t (t > O); 

(b) s = l 2t"2 + t312 (t > 0); 
24 

(c) s = 3 + t2 (t 2'. 0). 

8 (a) What is the 23rd derivative of 

(b) What is the 22nd derivative? 
9 If f(x) = x3 - 2x2 - x, for what values of x is f' (x) = 

f"(x)? 
10 Show the following: 

(a) if y' is proportional to x2, then y" is proportional to 
x; 

(b) if y' is proportional to y2, then y" is proportional to 
y3 . 

1 1  It is natural to expect from the chain rule that the for
mula 

d2y d2y d2u 
dx2 = du2 . dx2 

might be true. Disprove this guess by considering y = 
Vu where u = x2 + I .  Prove that in fact 

- - - - + - -
d2y _ d2y (du )2 d2u dy dx2 du2 dx dx2 du ' 

and verify this for the given functions. 
1 2  I f  u and v are functions of x, and y = uv, show that 

y" = u"v + 2u 'v' + uv". 
Find a similar formula for y"'. 

1 3  For each of the functions sin x and cos x, obtain 
(a) the 4th derivative; 
(b) the 1 0th derivative; 
(c) the IOOth derivative; 
(d ) the 1 59th derivative. 

CHAPTER 3 REVIEW: CONCEPTS, FORMULAS, METHODS 

Memorize and learn to use, or think through the following. 
1 Derivative of a function. 
2 Binomial theorem. 
3 Derivative of a polynomial . 
4 Reflection property of parabolas. 
S Normal line to a curve. 
6 Product rule. 
7 Quotient rule. 

ADDITIONAL PROBLEMS FOR CHAPTER 3 

SECTION 3. 1 
1 Find the points on the curve y = x3 - 3x2 - 9x + 5 at 

which the tangent is horizontal. 
2 Find the points on the curve y = x3 - x2 at which the 

tangent has slope 1 .  
3 Find the points on the curve y = x3 + x at which the tan

gent has slope 4. What is the smallest value the slope of 
the tangent to this curve can have, and where on the curve 
does the slope of the tangent have this smallest value? 

4 At what points on the curve y = x3 - x2 + x is the tan
gent parallel to the line 2x - y - 7 = O? 

S Find the slope of the tangent to the curve y = x4 - 2x2 + 
2 at any point. For what values of x is the tangent hori
zontal? For what values of x does the tangent point up
ward to the right? 

8 Composite function. 
9 Chain rule. 
10 Power rule. 
1 1  Derivatives of trigonometric functions. 
12 Implicit function. 
13 Implicit differentiation. 
1 4 Second derivative and higher derivatives. 

6 The curve y = ax2 + bx + 2 is tangent to the line 8x + 
y = 14 at the point (2, -2) .  Find a and b. 

7 Find the constants a, b, and c if the curve y = ax2 + 
bx + c passes through the point ( - 1 ,  0) and is tangent 
to the line y = x at the origin. 

8 If the curve y = ax2 + bx + c passes through the point 
( - 1 ,  0) and has the line 3x + y = 5 as its tangent at the 
point ( 1 ,  2), what values must the constants a, b, and c 
have? 

9 The curves y = x2 + ax + b and y = x3 - c have the 
same tangent at the point ( l ,  2). What are the values of 
a, b, and c? 

10 Find the equations of  the tangents to  the curve y = x2 -
4x that pass through the point ( 1 ,  -4). 

1 1  If a * 0, show that the tangent to the curve y = x3 at 
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(a, a3) intersects the curve a second time at the point 
where x = -2a. 

12 Show that the tangents to the curve y = x2 at the points 
(a, a2) and (a + 2, (a + 2)2) intersect on the curve y = 
x2 - I .  

13 Find the values of  a ,  b ,  c ,  and d if the curve y = ax3 + 
bx2 + ex + d is tangent to the line y = x - 1 at the point 
( 1 , 0) and is tangent to the line y = 6x - 9 at the point 
(2, 3). 

14 Use the reflection property of parabolas to show that the 
two tangents to a parabola at the ends of a chord through 
the focus are perpendicular to each other. 

15 Show that the tangent to the curve y = x3 - 2x2 - 3x + 
8 at the point (2, 2) is one of the normals of y = x2 -
3x + 3 .  

16 There is only one normal to the parabola x2 = 2y that 
passes through the point ( 4, I ) . Find its equation. 

17 The point P = (6, 9) lies on the parabola x2 = 4y. Find 
all points Q on this parabola with the property that the 
normal at Q passes through P 

SECTION 3 .2 
18 Differentiate each of the following functions two ways 

and verify that your answers agree: 
(a) (x2 - 1 )(x3 - 1 ) ; (b) 3x4(x2 + 2x); 
(c) (x2 - 3)(x - l ) ; (d ) (x + l )(x2 - 2x - 3). 

19 Differentiate each of the following functions and sim
plify your answer as much as possible: 

x + x- 1  x2 + 2x +  I 
(a) x - X- 1 ' (b) x2 - 2x +  l ; 

(c) 
x2 

x3 + 2 ; 

(e) 
x3 

I - x2 ' 

(d ) 
2x + 3 

x2 + x - 4 '  
1 - x 

(f) 1 + x ' 
(g) 

6x4 + 9 , x - l (h) 
x2 + 6x + 9 . x2 - 4x + 4 

20 Find dy/dx two ways, first by dividing and then by us
ing the quotient rule, and show that your answers agree: 

( ) 9 - x3 . (b) 
5 - 3x . ( x3 - 6x 

a 2 • 4 • c) 4 x x x 
21 Prove the quotient rule from the product rule as follows: 

Write y = ulv in the form yv = u, differentiate this with 
respect to x by the product rule, and solve the resulting 
equation for dy!dx. 

22 Extend the product rule to a product of three functions 
by showing that 

d du dv dw - (uvw) = vw - + uw - + uv -. dx dx dx dx 
Hint: Treat uvw as a product (uv)w of two factors. (No
tice that the right-hand side of this extended product rule 
is the sum of all terms in which the derivative of one fac-

tor is multiplied by the other factors unchanged. This pat
tern persists for products of more than three factors . )  

23 Use Problem 22 to differentiate 
(a) (x + l )(x + 2)(x + 3); 
(b) (x2 + 2x)(x3 + 3x2)(x4 + 4). 

24 Use Problem 22 to show that (d/dx) u3 = 3u2 du/dx, and 
apply this formula to calculate 

d 
dx (6x1 I + 9x5 - 3)3 . 

25 Sketch the curve y = l OVs/( l + x2) and find the points 
on it at which the normal passes through the origin. 

26 Consider the curve y = al( 1 + x2), where a is a positive 
constant. For what values of a does there exist a point 
P = (xo, Yo) on the first-quadrant part of the curve at 
which the normal passes through the origin? If the nor
mal at the point for which x0 = 2 passes through the ori
gin, what must be the value of a? 

27 There are two points on the curve y = (x + 4)/(x - 5)  at 
which the tangent passes through the origin. Sketch the 
curve and find these points. 

SECTION 3.3 
28 Find dy/dx in each case: 

(a) y = (4x2 - 2) 1 2 ;  (b) y = (x4 + 1 ) 125; 
(c) y = (x4 _ x8) 1 6; (d ) y = (x- 1  _ x-2)-3; 
(e) y = (4x2 + 5)- 1 ; (f) y = (x + x2 + x3 + x4)5 . 

29 Find dy/dx in each case: 

30 

31 

(a) y = ( I + 2x)3(4 - 5x)6; 
(b) y = (x2 + 1 ) 1 o(x2 _ l ) I S ; 
(c) y = (x2 - 1 )( 1 6  + x2)-3; 
(d ) y = (4x3 - 9x2)2(3x -2x2)3 . 
Find dx/dt in each case: 

(1 + 312)2 
(a) s = · 1 + 1 ' (b) s = (t3 - 1 )s ; 

(r2 + 1 )4 ( I  + 212)s 
(c) s =  (12 - 1 )3 ; (d ) s =  ( 1 -313)4 · 
Find a function y = f(x) for which 

(a) : = l 2x3(x4 + 1 )2; 

(b) ix = 72x5(x6 + 1 )5. 
32 Prove the power rule for positive integral exponents n by 

writing y = un, expanding �y = (u + �u)" - un by the 
binomial theorem, and then dividing by �x. Use the quo
tient rule to extend this result to negative integral expo
nents. 

SECTION 3.4 
33 Find dyldx for each of the following functions: 

(a) y = cos ( 1  - 3x); (b) y = sin ( 1  - x7); 
(c) y = cos (cos x); (d ) y = cos [sin (cos x)] ;  
(e) y = cos4 x; (f) y = cos5 ( 1 - 3x2)3; 
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cos x (g) y = ---l - sin x ' 
(i) y = cos x4; 
(k) y = tan ( 1  - 3x); 
(m) y = cos (tan x); 
(o) y = tan4 xs. 

(h) y = sins 3x; 

(j) y = (1 - coss x)3; 
(I) y = tan4 ( I  - 2x3); 
(n) y = sin [cos (tan x)]; 

34 Differentiate each of the given functions: 
(a) y = sin ( ! Ox - I ) ; (b) y = cos2 x; 
(c) y = 5 cos (7 - 2x); (d) y = sins xS; 

(e) y = 4 cos4 ( 1  - x); (f) y = 1 - cos x · 
1 + cos x ' 

1 (g) y = cos3 x sin2 x; (h) y - · - 5 - 3 cos 2x ' 

(i) y = x cos x; 

4 . 1 (k) y = x sm -; x 
(m) y = ( I + sin x)4; 
(o) y = cos2 x - sin2 x; 
(q) y = sin2 (tan2 x). 

(J. ) x y = -.-; sm x 

(I) Y = sin x + cos x ; 

(n) y = sin3 x - cos3 x; 
(p) y = tan (sin 5x); 

35 Find the values of x for which the graph of y = 2 sin x + 
sin2 x has a horizontal tangent. 

36 Same as Problem 35 for y = sin 2x - 2 sin x. 
37 Assuming that the derivative of sin x is known to be 

cos x, find the derivative of cos x by differentiating the 
identity sin2 x + cos2 x = 1 .  

38 Consider the function defined by { . I 
f(x) = � sm � if x * 0, 

if x = 0. 
(a) The graph of this function is shown in Fig. 3.4. Make 

a careful verification of the correctness of the gen
eral features of this graph. What happens to y when 
x is large? 

(b) Show thatf(x) is continuous at x = 0. 
(c) Findf'(x) for x -=/=  0. 
(d ) Show thatf'(O) does not exist. 
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Figure 3.4 
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39 Consider the function defined by { 2 . I 
f(x) = � sm � if x * 0, 

if x = 0. 

(a) The graph of this function is shown in Fig. 3 .5 .  Ex
amine it carefully and make sure that it correctly re
flects the main characteristics of the function. What 
happens to y when x is large? 

(b) Show thatf(x) is continuous at x = 0. 
(c) Find f'(x) for x -=/=  0. 
(d) Find f'(O). 
(e) Show thatf' (x) is not continuous at x = 0. 

I 
\ \ 

\ 
\ 

Figure 3.5 

SECTION 3 .5  

y y = x2 I 
l A I 

I I / 

40 Find dyldx by implicit differentiation: 

x 

2 . I y = x sm x 

(a) x4 + 2xy3 + 2y4 = 4 ;  

x2  + 2 

(b) 2'.. - 2x = y; 

(c) y2 = x2 - 2 ; 

(e) � + 2y = Vx. 

x 

41 Find dy/dx by implicit differentiation and also by solv
ing for y and then differentiating, and verify that your 
two answers are equivalent: 
(a) y3 = 3x2 + 5x - 1 ;  (b) y5 = x2; 
(c) 4y2 = 3xy + x2; (d) x312 + y312 = 8. 

42 Find the derivative in each case: 
(a) xs12 _ x312; (b) (x2 + 2)419; 

x2 
(c) V'x + W; (d ) � ;  

1 - x 

(e) Vx + �; 
� (g) ,..; �; 

43 Find the equation of 

( f) V2x2 - 1 ;  

Ch) V2 + �. 

(a) the tangent to x3 + y3 = 2xy + 5 at (2, 1 ); 
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2x (b) the tangent to y = W--=--J at (3, 3) ; 

(c) the normal to x3 + 3xy3 - xy2 = xy + I O  at (2, I ) ; 
(d ) the normal to x213 + y213 = 5 at (-8, I ) . 

44 Show that the sum of the x- and y-intercepts of any line 
tangent to the curve Vx + vY = Va is equal to a. 

45 The curve x213 + y213 = a213 is called a hypocycloid of 
four cusps. Sketch it and show that the tangent at (x0, y0) 
is x0 - ll3x + y0 - ll3y = a213. Use this equation to show 
that the segment cut from the tangent by the axes has 
constant length a, so that a segment of length a with its 
ends sliding along the axes always touches the curve. 

46 Find the derivatives of the given functions: 
(a) cos Vx; (b) Vx sin Yx; 
(c) �; (d ) cos3 �x4 + I ; 
(e) \/I + sinYx; (f) tan 1 13 ( I  + 3x); 
(g) 1 ; (h) Ytan(�). 

Ycos x3 

SECTION 3.6 
47 Calculate y" if 

(a) y = ( 1  + 3x) 113; 
(c) y = x415 ; 
(e) y = Vx + �; 

x (b) y = ; � 
(d ) y = x3Vx - ?x; 
(f) y = (x2 + 4)512. 

48 Find a general formula for y<n) if 
1 1 (a) y = 1 - 2x ; (b) y = a + bx '  

49 Show that 

_dn [-!-] = n l [-(- 1 )" + -1 -] 
dx" x( l -x) · x11+ I  ( 1 - x)n+ I · 

50 Consider the function f(x) defined by 

f(x) = { -;: if x 2: 0, 
if x < 0. 

Sketch the graph, show that f' (x) = 2lxl, and conclude 
that f"(O) does not exist. 

51 For each of  the following functions, find f"(x) and then 
calculate the limit 

1. f(x + 26x) - 2f(x + iix) + f(x) 
iJ�o (iix)2 

and notice that they are equal: 
(a) f(x) = x3; (b) f(x) = l lx. 

52 Solve Problem 5 1  after replacing the limit given there by 
. f(x + ilx) - 2f(x) + f(x - ilx) hm 

lix--tO ( iix )2 
53 Find the given derivatives by calculating the first few de

rivatives and noticing a pattern: 
(a) the 20th derivative of x sin x; 
(b) the 62nd derivative of sin 3x. 



APPLICATIONS 
OF DERIVATIVES 

In this chapter we begin to justify the effort we have spent on learning how to 
calculate derivatives. 

Our first applications are based on the interpretation of the derivative as the 
slope of the tangent line to a curve. The purpose of this work is to enable us to 
use the derivative as a tool for quickly discovering the most important features 
of a function and sketching its graph. This art of curve sketching is essential in 
the physical sciences. It is also one of the most useful skills that calculus can 
provide for those who need to use mathematics in their study of economics or 
biology or psychology. 

A function f(x) is said to be increasing on a certain interval of the x-axis if on 
this interval x 1 < x2 impliesf(x1 ) <f(x2) .  In geometric language, this means that 
the graph is rising as the point that traces it moves from left to right. Similarly, 
the function is said to be decreasing (the graph is falling) if x 1 < x2 implies 
f(x1 ) > f(x2). These concepts are illustrated in Fig. 4. 1 .  

In sketching the graph of a function, i t  i s  important to know the intervals on 
which it is increasing and those on which it is decreasing. The sign of the de
rivative gives us this information: 

A function f(x) is increasing on any interval in which J'(x) > 0, and it is decreasing 
on any interval in which f'(x) < 0. 

This is geometrically evident if we keep in mind the fact that a straight line points 

1 15 

4. 1 
INCREASING AND 
DECREASING 
FUNCTIONS . MAXIMA 
AND MINIMA 

Figure 4.1  Increasing and decreasing 
functions. 
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increasing decreasing increasing 

Figure 4.2 x 1 x 2 

increasing 

upward to the right if its slope is positive and downward to the right if its slope 
is negative ( Fig. 4.2). 

It is clear that a smooth curve can make the transition from rising to falling 
only by passing over a peak where the slope is zero. Similarly, it can change 
from falling to rising only by going through a trough where the slope is zero. At 
such points we have a maximum or minimum value of the function. We locate 
these values by finding the critical points of the function, which are the solutions 
of the equationf'(x) = O; that is ,  we force the tangent to be horizontal by equat
ing the derivative to zero, and we then solve the equation f'(x) = 0 to discover 
where this happens. In Fig. 4.2 the critical points are xi ,  x2, x3, and the corre
sponding critical values are the values of the function at these points, that is, 
f(x, ), f(x2) ,  f(x3). 

It is important to understand that a critical value is not necessarily either a 
maximum or a minimum. This is shown by f(x3) in Fig. 4.2; at the critical point 
x3 the graph does not pass either over a peak or through a trough, but instead 
merely flattens out momentarily between two intervals on each of which the de
rivative is positive. 

It should also be pointed out that we are discussing the so-called relative (or 
local) maximum or minimum values. These are values that are maximal or min
imal compared only with nearby points on the curve. In Fig. 4.2, for instance, 
f(x1) is a maximum even though there are many higher points on the curve, off 
to the right. If we seek the absolute maximum of a function, we must compare 
its relative maxima with one another to determine which (if any) is larger than 
any other value assumed by the function. 

Example 1 To sketch the graph of the polynomial 

y = f(x) = 2x3 - 3x2 - 1 2x + 12, 
we begin by computing the derivative and factoring this derivative as completely 
as possible: 

f' (x) = 6x2 - 6x - 12 = 6(x + l )(x - 2). 
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/ \ /  (- 1 ,  1 9) 

+ + 
- I  2 

Figure 4.3 

Figure 4.4 

The critical points are evidently x = - 1  and x = 2, and by substituting - 1 and 
2 in f(x), we see that the corresponding critical values are y = 1 9  and y = -8. 
We now examine the three intervals into which the critical points divide the 
x-axis, for on each of these intervals f' (x) has constant sign. When x < - 1 , 

x + 1 and x - 2 are both negative, so their product is positive and f' (x) > 0. 
When - 1  < x < 2, x + 1 is positive and x - 2 is negative, so their product is & negative andf' (x) < 0. When x > 2, x + 1 and x - 2 are both positive, so their � product is positive and f' (x) > 0. These results are displayed in Fig. 4.3, where 
the slanted lines give a schematic suggestion of the direction of the graph in each 
interval . In Fig. 4.4 we now plot the points ( - 1 , 1 9) and (2, - 8) and sketch a 
smooth curve through these points, using the information in Fig. 4.3 provided by 
the sign of the derivative; that is,f(x) is increasing when x < - 1 , decreasing when 
- 1 < x < 2, and increasing when x > 2. Notice that in Fig. 4.4 we use different 
units of length on the two axes, as a matter of convenience in drawing a picture 
of reasonable size.* It is clear that our function has a maximum at x = - 1  and 
a minimum at x = 2, and also that no absolute maximum or minimum exists. 

The zeros of a function are always valuable aids in curve sketching when they 
can be found, but finding them can be quite difficult. We have plotted a few 
additional points in Fig. 4.4 to suggest that the zeros of this particular function 
are approximately -2.2, 0.9, and 2.9. As a matter of fact, we sometimes sketch 
the graph of a function to help us estimate the approximate location of its zeros, 
just as we have done here, as a first step toward the numerical calculation of these 
zeros to any desired degree of accuracy. In Section 4.6 we describe a standard 
method for carrying out such calculations. t 

Example 2 The rational function 

x y = 
x2 + 1 

*The basic idea of a graph as a visual aid displaying the qualitative nature of the function does not 
require the use of equal units on the two axes. It is only when we work with certain quantitative as
pects of the geometry of the plane, such as distances between points, areas of regions, or angles be
tween lines, that it is necessary to use equal units on both axes. 
tThose students who have a graphing calculator will enjoy plotting the graph of the polynomial in 
this example, with the vertical scale changed by a factor of 10 or more. 

1 1 7 
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( l , t) 

( - ! , - 1-l 

Figure 4.5 

Figure 4.6 Endpoints, cusp, and 
corner. 

APPLICATIONS OF DERIVAT IV ES 

was discussed in Example 6 of Section 1 .6, and we explained there why the graph 
has the shape it does ( Fig. 4.5). To find the precise location of the indicated max
imum and minimum, we calculate the derivative and equate it to zero: 

(x2 + 1 )  · 1 - x · 2x  1 - x2 y' = (x2 + 1 )2 (x2 + I )2 = 0. 

The roots of this equation (the critical points) are x = 1 and x = - 1 , so the max
imum and minimum occur at x = 1 and x = - 1 ,  respectively. The actual maxi
mum and minimum values are y = t and y = -t. With these facts and our ini
tial awareness of the overall shape of the graph, it is obvious that this function 
increases on the interval - 1 < x < 1 and decreases for x < - I and x > 1 . 
However, these conclusions can also be drawn directly from the sign of the de
rivative, which is clearly positive for - 1 < x < 1 and negative for x < - 1  
and x > 1 . 

These examples, as well as our past experience, suggest a few informal rules 
that are useful in sketching the graph of a function f(x). If possible and conve
nient, we should determine 

1 The critical points of f(x). 
2 The critical values of f(x). 
3 The sign off' (x) between critical points. 
4 The zeros of f(x). 
5 The behavior of f(x) as x ---,) oo and as x � - oo. 

6 The behavior of f(x) near points at which the function is not defined. 

However, perhaps the most important rule of all is this: Don 't be a slave to any 
rule, be flexible, use common sense. Remember the old Hungarian proverb: "All 
fixed ideas are wrong, including this one." 

Remark 1 Maxima and minima can occur in three ways not covered by the pre
ceding discussion: at endpoints, cusps, and corners. As examples we consider 
the three functions 

x = �, y = x213, y = 1 - W = 1 - lx J . 
Their graphs are shown in Fig. 4.6. The first function has the closed interval 
- 1 :::; x :::; 1 as its domain, and at the endpoints it has minima that are not re
vealed by equating the derivative to zero. The second function has a minimum 
at x = 0 that is a cusp, because its derivative 

- 1  

2 
y

' = fx- 1/3 = 3-\rx 



4. 1 INCREASING AND DECREASING FUNCTIONS. MAXIMA AND M I NIMA 1 1 9 

is negative to the left of 0 and positive to the right of 0, and becomes infinite 
near 0. The third function has a maximum at x = 0, and this maximum is called 
a corner for obvious reasons. In seeking the maxima and minima of functions, 
equate the derivative to zero by all means, but do so carefully, keeping these three 
possibilities in mind as well. 

Remark 2 Among other things, mathematicians are professional skeptics. On 
one side of their nature they have trained themselves to attack loose arguments 
and to accept only those statements that they find impossible to doubt, in the 
hope that Ultimate Certainty will reward their efforts. Our statements about in
creasing and decreasing functions and maxima and minima are supported only 
by geometric plausibility arguments. The statements themselves are true, and 
when examined more carefully they fall into a field of study called Analysis, 
where the foundations of calculus are fully investigated. However, this book is 
for students, not mathematicians, and our main concern is with the use of the 
tools rather than the tools themselves. We gave a few preliminary discussions in 
Section 2.6, and we remind any reader who might be interested that fully rigor
ous proofs can be found in Appendices A.3 and A.4 at the back of the book. 

PROBLEMS 

Sketch the graphs of the following functions by using the first 
derivative and the methods of this section; in particular, find 
the intervals on which each function is increasing and those 
on which it is decreasing, and locate any maximum or mini
mum values it may have. 

1 y = x2 - 2x. 
3 y = x2 - 6x + 9. 
5 y = 2x3 - 3x2 + 1 .  
7 y = x3 - x. 
9 y = 3x4 + 4x3. 

I 1 1  y = x + -. x 

2 y = 2 + x - x2. 
4 y = x2 - 4x + 5. 
6 y = x3 - 3x2 + 3x - I .  
8 y = x4 - 2x2 + 1 .  

10 y = 3x5 - 20x3. 
1 

12 y = 2x + 2· x 
I x 13 y = x2 + x . 14 y = (x - 1 )2 . 

15 y = x�. *16 y = 5x213 - x513. 

17 The function f(x) = x3 + x - I , being a third-degree 
polynomial, obviously crosses the x-axis (why?) and 
therefore has at least one zero. By examiningf'(x), show 
that this function has only one zero. Show similarly that 
f(x) = 7x131 + I lx73 + x - 500 has one and only one 
zero. 

18 Consider the function y = xm( I - x)n, where m and n are 
positive integers, and show that 
(a) if m is even, y has a minimum at x = O; 
(b) if n i s  even, y has a minimum at x = I ;  
(c) y has a maximum at x = ml(m + n) regardless of 

whether m and n are even or not. 
19 Sketch the graph of a function f(x) defined for x > 0 

and having the properties 

1 f( l )  = 0 and f'(x) = - (all x > 0). x 
20 Sketch the graph of a function .f(x) with the properties 

f'(x) < 0 for x < 2 and f'(x) > 0 for x > 2 

(a) if f' (x) is continuous at x = 2 ;  
(b) ifj'(x) � - 1  as x � 2- andf'(x) � I as x � 2+ . 

2 1  In each case, sketch the graph of a function with all the 
stated properties : 
(a) .f( I ) = I , f'(x) > 0 for x < 1 , f'(x) < 0 for 

x > I ;  
(b) f(- 1 )  = 2 and /(2) = - 1 , f' (x) > 0 for x < - 1  

and x > 2, f' (x) < O for - 1  < x < 2; 
(c) f(- 1 ) = 1 and j'(- 1 ) = 0, f'(x) < O for x < - 1  

and - 1  < x < 2, f'(x) > O for x  > 2; 
(d ) f'(x) < O for -2 < x < O and x > 1 ,f'(x) > 0 

for x < -2  and 0 < x < l , f ' (-2) = f' (O) = 0, 
f'( l )  does not exist. 

22 Construct a formula for a functionf(x) with a maximum 
at x = -2 and a minimum at x = 1 .  

23 Find the critical points and corresponding critical values 
for the function y = cos 2x + 2 cos x on the interval 
[0, 27T]. Sketch the graph. 

24 Find a > 0 so that the curves y = sin ax and y = cos ax 
intersect at right angles. 

25 Show that the largest possible value of y = sin x - cos x 
is \/2. 

26 Find the largest possible value of each of the following 
functions: 
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(a) y = sin x + cos x; 
(b) y = sin x + cos2 x; 
(c) y = sin2 x + cos2 x. 

APPLICATIONS OF DERI VATIVES 

(a) y = sin (cos x); (b) y = cos (sin x). 

27 Find the maximum and mm1mum values of y = 
2 sin 2x + sin 4x on the interval [O, ?T], and state where 
these values occur. Sketch the graph. 

29 Show that y = 27/(sin x) + 64/(cos x) has a minimum 
value but no maximum value on the interval 0 < x < 
?T/2, and find this minimum value. 

30 Find all critical points for each of the following func
tions, use the first derivative to decide whether each of 
the corresponding critical values is a maximum, a mini
mum, or neither, and sketch the graphs: 

28 Find the maximum and minimum values of each of the 
following functions on the interval [O, 27T] ,  and sketch 
the graphs: (a) y = x + sin x; (b) y = sin2 2x. 

Figure 4.7 

4 . 2 
CONCAVITY AND 

POINTS OF 
INFLECTION 

One of the most distinctive features of a graph is the direction in which it curves 
or bends. The graph on the left in Fig. 4.7 curves upward as the point that traces 
it moves from left to right, and the graph on the right curves downward. The sign 
of the second derivative gives us this information, as follows. 

A positive second derivative, f"(x) > 0, tells us that the slope f' (x) is an in
creasing function of x. This means that the tangent turns counterclockwise as we 
move along the curve from left to right, as shown on the left side of Fig. 4.8. 
The curve is said to be concave up (the concave side of a curve is its hollow 
side). Such a curve lies above its tangent except at the point of tangency. Simi
larly, if the second derivative is negative,f"(x) < 0, then the slope f' (x) is a de
creasing function, and the tangent turns clockwise as we move to the right (see 
the right side of Fig. 4.8) . Under these circumstances the curve is concave down; 
it lies below its tangent except at the point of tangency. 

Most curves are concave up on some intervals and concave down on other in
tervals .  A point like P in Fig. 4.8, across which the direction of concavity changes, 
is called a point of inflection. * If f"(x) is continuous and has opposite signs on 
each side of P, then it must have a zero at P itself. The search for points of in
flection is mainly a matter of solving the equationf"(x) = 0 and checking the di
rection of concavity on both sides of each root. 

Example 1 To investigate the function 

y = f(x) = 2x3 - 1 2x2 + 1 8x - 2 

'The word "inflection" comes from the Latin injlectere, meaning "to bend." 

Figure 4.8 

f"(x) > 0, so slope 
of tangent increases 

J"(x) < 0, so slope 
of tangent decreases 
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for concavity and points of inflection, we calculate 

f'(x) = 6x2 - 24x + 1 8 = 6(x - l )(x - 3) 
and 

f"(x) = 1 2x - 24 = 1 2(x - 2). 
The critical points [the roots off' (x) = 0] are clearly x = l and x = 3, and the 
corresponding critical values are y = 6 and y = -2. We have a possible point of 
inflection at x = 2, since this is the only root ofj"(x) = 0. It is evident thatf"(x) 
is negative for x < 2 and positive for x > 2, so the graph is concave down on 
the left of x = 2 and concave up on the right. This tells us that we really have a 
point of inflection at x = 2, as indicated in Fig. 4.9. 

Example 2 The rational function 

I 
y = x2 + I  

is very easy to sketch by inspection if we notice the following clues: it is sym
metric about the y-axis because the exponent is an even number, its values are 
all positive, it has a maximum at x = 0 because this yields the smallest denom
inator, and y � 0 as [x[ � =. It is therefore intuitively clear that the graph has 
the shape shown in Fig. 4. 1 0. There are evidently two points of inflection, and 
the only question is, What are their precise locations? To discover this, we com
pute 

and 

y" = 

y' 
-2x 

(x2 + I )2 

(x2 + 1 )2 · (-2) + 2x · 2(x2 + 1 )  · 2x (x2 + 1 )4 
(x2 + 1 )  · (-2) + 8x2 

(x2 + 1 )3 
2(3x2 - 1 )  
(x2 + 1 )3 · 

Equating y" to zero and solving gives x = ::!:: 1 1\/3, which locates the points of 
inflection. If we wish, we can verify our first impression about the direction of 
concavity on various parts of the curve, as shown in Fig. 4. 1 0, by observing 
that y" < 0 when x2 < + and y

" > 0 when x2 > +. These facts tell us that 
the graph is concave down for - 1/\/3 < x < 1 1\!3 and concave up for 
x < - 11\!3 and x > 11\/3. 

Remark 1 As we have tried to suggest in these examples, knowing thatf"(x0) = 
0 is not enough to guarantee that x = x0 furnishes a point of inflection. We must 
also know that the graph is concave up on one side of x0 and concave down on 
the other. The simplest function that shows this difficulty is y = f(x) = x4 ( Fig. 
4. 1 1 ) .  Here f'(x) = 4x3 and f"(x) = 1 2x2, so f"(x) = 0 at x = 0. However, f"(x) 
is clearly positive on both sides of the point x = 0, and therefore-as we already 
know from the graph-this point corresponds to a minimum, not a point of in
flection. The function y = x5 - 5x4 provides a more complicated example of the 

( I ,  6) 

Figure 4.9 

l 
-,/3 

Figure 4.10 

same phenomenon. Here Figure 4. 1 1  

1 2 1  

(2,  2) 

(3,  -2) 

l 

v13 
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Figure 4. 12 

Figure 4.13 The second derivative 
test. 

PROBLEMS 

APPLICATIONS OF DERIVATIVES 

y' = Sx4 - 20x3 and y" = 20x3 - 60x2 = 20x2(x - 3). 

The roots of y" = 0 are x = 0 and x = 3.  However, y" does not change sign at 
x = 0, so the only point of inflection is at x = 3 .  The graph is concave down on 
the left of this point and concave up on the right. 

Remark 2 The graph of y = x 1 13 = Vx is easy to sketch and has an obvious 
point of inflection at x = 0 ( Fig. 4. 12) .  We can also discover this by inspecting 
the second derivative. We have 

and 

y' = +x-213 

- 2  
y" = -�x-s13 = 9W , 

so y" is positive if x < 0 and negative if x > 0. However, y" does not exist at 
x = 0. In searching for points of inflection, we must therefore consider not only 
points at which y" = 0, but also points (if there are any) at which y" does not ex
ist. 

Remark 3 In  the so-called second derivative test-which we state informally 
in Fig. 4. 1 3 -the sign of the second derivative is used to decide whether a crit
ical point furnishes a maximum or a minimum value. This test is sometimes use
ful, but its importance is often exaggerated. We will see in the next two sections 
that in most applied problems it is clear from the context whether we have a max
imum or minimum value, and no further testing is necessary. 

)' 

x 

A maximum, if 
f'(x0 ) = 0 and /"(x0 ) < 0 

)' 

X o  

A minimum, if 
f'(x0) = 0 and f"(x0 ) > 0 

x 

For each of the following, locate the points of inflection, find 
the intervals on which the curve is concave up and those on 
which it is concave down, and sketch. 

9 
9 y = x2 + 9 · 

4x2 
1 1  y = x2 + 3 . 

ax 
10 y = x2 + b2 (a, b 

1 2  1 2  
1 2  y = 7 - �-

> 0). 

1 y = (x - a)3 + b. 2 y = x3 - 6x2. 
3 y = x3 + 3x2 + 4. 4 y = 2x3 + 3x2 - l 2x. 
5 y = x4 + 2x3 + I .  6 y = x4 - 6x2. 
7 y = x4 - 2x3 .  8 y = 3x5 - 5x4. 

l 
13 y = x - -. x 
14 In each part of this problem, use the given formula for 

the second derivative of a function to locate the points 
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of inflection, the intervals on which the graph is concave 
up, and the intervals on which the graph is concave down :  
(a) y" = 8x2 + 32x; (b) y" = 1 5x3 + 39x; 
(c) y" = 3x4 - 27x2 ; (d ) y" = (x + 2)(x2 - 4). 

15  Sketch the graph of  a functionf(x) defined for all x such 
that 
(a) f(x) > O, f'(x) > 0, and f"(x) > 0; 
(b) f' (x) < 0 and f"(x) < 0. 

16 Is  it possible for a functionf(x) defined for all x to have 
the three properties f(x) > 0, f'(x) < 0, and f"(x) < 
O? Explain. 

17 (a) By sketching, show that y = x2 + a/x has a minimum 
but no maximum for every value of the constant a. 
Also, verify this by calculation. 

(b) Find the point of inflection of y = x2 - 8/x. 
18 Starting from x2 + y2 = a2, calculate d2y!dx2 by implicit 

differentiation and state why its sign should be opposite 
to the sign of y. 

19 Find the value of a that makes y = x3 - ax2 + l have a 
point of inflection at x = 1 .  

20 Find a and b such that y = aVx + b/Vx has ( l ,  4) as a 
point of inflection .  

21 If k i s  a positive number * l ,  show that the first quad
rant part of the curve y = xk is 
(a) concave up if k > l ; 
(b) concave down if k < 1 .  

22 If k is a positive number * I and y = xk - kx, show that 
(a) if k < 1, y has a maximum at x = l ;  
(b) if k > 1 ,  y has a minimum at x = 1 .  

23 Show that the graph of a quadratic function y = ax2 + 
bx + c has no points of inflection. Give a condition un
der which the graph is (a) concave up; (b) concave down.  

24 Show that the general cubic curve y = ax3 + bx2 + 
ex + d has a single point of inflection and three possi
ble shapes depending on whether b2 > 3ac, b2 = 3ac, 
or b2 < 3ac. Sketch these shapes. 

25 In each of the following, sketch the graph of a function 
with all the stated properties: 
(a) f(O) = 2, f(2) = 0, f' (0) = f' (2) = 0, f' (x) > 0 for 

Ix - I I  > l ,f'(x) < 0 for Ix - J I  < l ,f"(x) < 0 
for x < l , f"(x) > 0 for x > l ;  

(b) f( - 2) = 6, f( l )  = 2 ,  f(3) = 4, J'( l )  = f' (3) = 0, 
f"(x) < 0 for Ix - 2 1  > l ,f'(x) > 0 for Ix - 21 < 
l , f"(x) < 0 for x > 2 or Ix + t i  < l , f"(x) > 0 
for Ix - l l  < 1 or x < -2; 

(c) f(O) = 0, f(2) = f(- 2) = 1 ,  f'(O) = 0, f'(x) > 0 
for x > 0, f' (x) < 0 for x < 0, f"(x) > 0 for 
lxl < 2, J"(x) < 0 for lxl > 2, limx-->�f(x) = 2, 
l imx-->-�f(x) = 2; 

(d ) f(2) = 4, f'(x) > 0 for x < 2,f'(x) < 0 for x > 
2, f"(x) > 0 for x * 2, l imx-->2 If' (x)I = 00, lirnx__,� 
f(x) = 2, lirnx__,-� f(x) = 2 .  

26 Show that the graph of y = sin x is concave down when 
it is above the x-axis and concave up when it is below 
the x-axis. 

27 For each of the following functions defined on the in
terval 0 :'."': x :S 27T, find all points of inflection and de
termine the intervals on which the graph is concave up 
and those on which the graph is concave down, and 
sketch the graph: 
(a) y = x - 2 sin x; 
(b) y = sin2 x; 
(c) y = x + sin x. 

Among the most striking applications of calculus are those that depend on find
ing the maximum or minimum values of functions. 4 . 3 Practical everyday life is filled with such problems, and it is natural that math
ematicians and others should find them interesting and important. A busi
nessperson seeks to maximize profits and minimize costs. An engineer design
ing a new automobile wishes to maximize its efficiency. An airline pilot tries to 
minimize flight times and fuel consumption. In science, we often find that na
ture acts in a way that maximizes or minimizes a certain quantity. For example, 
a ray of light traverses a system of lenses along a path that minimizes its total 
time of travel, and a flexible hanging chain assumes a shape that minimizes its 
potential energy due to gravity. 

Whenever we use such words as "largest," "smallest," "most," "least," "best," 
and so on, it is a reasonable guess that some kind of maximum or minimum prob
lem is lurking nearby. If this problem can be expressed i n  terms of variables and 
functions-which is not always possible by any means-then the methods of 
calculus stand ready to help us understand it and solve it. 

Many of our examples and problems deal with geometric ideas, because max
imum and minimum values often appear with particular vividness in geometric 

APP LIED MAXIMUM 
AND MINIMUM 
P ROBLEMS 
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x = ?  1 6  

Figure 4. 14 

APPLICATIONS OF DERIVATIVES 

settings. In order to be ready for this work, students should make sure they know 
the formulas for areas and volumes given in Fig. 1 .22 of Chapter 1 .  

We begin with a fairly simple example about numbers. 

Example 1 Find two positive numbers whose sum is 1 6  and whose product is 
as large as possible. 

Solution If x and y are two variable positive numbers whose sum is 1 6, so that 

x + y = 16, ( I )  
then we are asked to  find the particular values of x and y that maximize their 
product 

p = xy. (2) 

Our initial difficulty is that P depends on two variables, whereas our calculus 
of derivatives works only for functions of a single independent variable. Equa
tion ( I )  gets us over this difficulty. It enables us to express y in terms of x, y = 
1 6  - x, and thereby to express P as a function of x alone, 

P = x( l 6 - x) = l 6x - x2. (3) 

In Fig. 4. 1 4  we give a rough sketch of the graph of (3) .  Our only purpose here 
is to provide visual emphasis for the following obvious facts about this function: 
that P = 0 for x = 0 and x = 1 6, that P > 0 for 0 < x < 1 6, and that there
fore the highest point (where P has its largest value) is characterized by the con
dition dP/dx = 0, since this condition means that the tangent is horizontal. To 
solve the problem we compute this derivative from (3) ,  

dP - = l6 - 2x· dx ' 

we equate this derivative to zero, 

1 6  - 2x = O; 
and we see that x = 8 is the solution of this equation. This is the value of x that 
maximizes P, and by ( 1 )  the corresponding value of y is also 8. It is quite clear 
from Fig. 4. 1 4  that x = 8 actually does maximize P; but if we wish to verify this, 
we can do so by computing the second derivative, 

d2P 
dx2 = -2, 

and by recalling that a negative second derivative implies that the curve is con
cave down and therefore we have a maximum-which we already knew from 
Fig. 4. 1 4. The related problem of making the product P as small as possible 
within the stated restrictions has no solution, because the restriction that x and y 
must be positive numbers means that x must belong to the open interval 0 < 
x < 1 6, and this part of the graph has no lowest point. 

Example 2 A rectangular garden 450 ft2 in area is to be fenced off against rab
bits. If one side of the garden is already protected by a barn wall, what dimen
sions will require the shortest length of fence? 
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Solution We begin by drawing a sketch and introducing notation that will make 
it convenient to deal with the area of the garden and the total length of the fence 
( Fig. 4. 1 5) .  If L denotes the length of the fence, we are to minimize 

L = 2x + y 
subject to the restriction that 

xy = 450. 
By using (5), L can be written as a function of x alone, 

L = 2x + 450 . x 

(4) 

(5) 

(6) 

A quick sketch ( Fig. 4. 1 6) helps us to visualize this function and feel comfort
able with its properties, especially the fact that it has a minimum and no maxi
mum (we are only interested in positive values of x). Our next steps are to com
pute the derivative of (6), 

dL 
= 2 _ 450 

dx x2 ' 
and then to equate this derivative to zero and solve the resulting equation, 

2 - 450 
= 0 2 ' x x2 = 225, x = 15 .  

(We ignore the root x = - 1 5 for the reason stated.) By (5), the corresponding 
value of y is y = 30, so the garden with the shortest fence is 1 5  by 30, or twice 
as long as it is wide. 

Example 3 Find the dimensions of the rectangle of greatest area that can be in
scribed in a semicircle of radius a. 

Solution If we take our semicircle to be the top half of the circle x2 + y2 = a2 
( Fig. 4. 1 7, left), then our notation is ready and waiting: We must maximize 

A =  2xy 
with the restriction that 

x2 + y2 = a2. 
Since (8) yields y = Ya2 - x2 = (a2 - x2) 1 12, (7) becomes 

A = 2x(a2 - x2) 112. 

x 

r I I I I I I I I - - -----,-

1 I I I 
I I I I T - -- - ---

(7) 

(8) 

(9) 

� Barn x 

y 450 ft2 

Figure 4.15 

L 

Figure 4.16 

Figure 4.17 

I '\._dl I - = 0 dx 
x = ? 
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It is clear that x lies in the interval 0 < x < a . On the right in Fig. 4. 1 7  we 
imagine the extreme cases: When x is close to 0, the rectangle is tall and thin, 
and when x is close to a, it is short and wide-and in each case the area is small, 
so somewhere in between we have a maximum area. To locate this maximum, 
we compute dA!dx from (9), equate it to zero, and solve: 

2x . t(a2 - x2)- 112 . ( -2x) + 2(a2 - x2) 112 = 0, x2 . � ---- = va2 - x2 Ya2 - x2 
a 1 , ;;:: x = \/2 = 2v 2a. 

Since y = Ya2 - x2, we see that the corresponding value of y is also ±V2a, so 
the dimensions of the l argest inscribed rectangle are 2.x = V2a and y = ± V2a, 
and this rectangle is twice as long as it is wide. 

There is a more efficient way of solving this problem if we don't care about 
the actual dimensions of the largest rectangle but only about its shape. The first 
step is to notice that (8) determines y as an implicit function of x, so implicit dif
ferentiation with respect to x yields 

2x + 2y dy = 0 dx or ( 10) 

Next, by differentiating (7) with respect to x and using the fact that dA!dx = 0 
at the maximum, we obtain 

2x: + 2y = 0 or x: + y = 0. ( 1 1 )  

When ( 1 0) is inserted i n  ( 1 1 ), the result is 

x (-�) + y = 0 ,  -x2 + y2 = 0, y2 = x2, or y = X, 

where the last equation expresses the shape of the rectangle with the largest area. 
We can also describe this shape by saying that the ratio of the height of the rec
tangle to its base is 

Example 4 A wire of length L is to be cut into two pieces, one being bent to 
form a square and the other to form a circle. How should the wire be cut if the 
sum of the areas enclosed by the two pieces is to be (a) a maximum? (b) a min
imum? 

Solution If x denotes the side of the square and r the radius of the circle, as 
shown on the left in Fig .  4. 1 8, then the sum of the areas is 

A =  x2 + 'TTr2 ( 12) 
where x and r are related by 

4x + 2'TTr = L. ( 1 3) 

We solve ( 1 3) for r in terms of x, 



4x 21rr 

x G 

4.3 APPLIED MAXIMUM AND MINIMUM PROBLEMS 

-;---------·--- ..... -

I 
r = l7T (L - 4x), 

L !.. L .\· 
4 

and use this to express A in terms of x alone, 

I 
A = x2 + 7T • -- (L - 4x)2 47T2 

I = x2 + 
47T (L - 4x)2. ( 14) 

Now we notice that when x = 0 all the wire is used for the circle, and when x = 
±L all the wire is used for the square. To solve the problem, we must fully un
derstand the behavior of the function ( 1 4) on the interval 0 :'.S x :'.S ±L. Its values 
at x = 0 and x = ±L are clearly L2141T and L2/ 16, and the first of these values is 
the larger because 1 6  > 4 1T. This is indicated on the right in Fig. 4. 1 8 .  Since 
( 1 4) shows that the graph is a parabola that opens up (x2 has a positive coeffi
cient), all that is needed to verify the shape of the graph shown in the figure is 
to find the location of the low point. For this we calculate the derivative of ( 1 4  ), 

dA 1 dx = 2x + 
47T • 2(L - 4x) · ( -4) 

2 = 2x - - (L - 4x). 7T 

On setting this equal to zero and solving the resulting equation, we get 

I x - - (L - 4x) = 0, 
7T 

7TX = L - 4x, L x = 4 + 'TT . 

This number lies between tL and ±L, so the graph shown in the figure is correct 
and we complete the solution of the problem as follows. 

The highest point of the graph is at the left end, and therefore to maximize A 
we must choose x = 0 and use all the wire for the circle. If we insist that the wire 
must actually be cut, then (a) has no answer; for no matter how little of the wire 
is used for the square, we can always increase the total area by using still less. 

For (b), the total area is minimized when x = L/(4 + 1T) . Accordingly, the 
length of wire used for the square is 4x = 4L/(4 + 1T) and the length used for the 
circle is 

1 27 

Figure 4. 1 8  
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4L 'TTL L - 4x = L - -- = --. 4 + 7T 4 + 7T 

We also notice that the minimal area is attained when the diameter of the circle 
equals the side of the square, since 

I I ?TL L 2r = -:;;: (L - 4x) = -:;;: · 4 + 7T = 4 + 7T. 

Example 5 At a price of $ 1 .50, a door-to-door salesperson can sell 500 potato 
peelers that cost 70  cents each. For every cent that the salesperson lowers the 
price, the number sold can be increased by 25. What selling price will maximize 
the total profit? 

Solution If x denotes the number of cents the salesperson lowers the price, then 
the profit on each peeler is 80 - x cents and the number sold is 500 + 25x. The 
total profit (in cents) is therefore 

P = (80 - x)(500 + 25x) = 40,000 + I 500x - 25x2. 

We maximize this function by setting the derivative equal to zero and solving the 
resulting equation, 

dP 
- = 1 500 - 50x dx ' 1 500 - 50x = 0 50x = 1 500, 

The most advantageous selling price is therefore $ 1 .20. 

x = 30. 

As these examples show, the mathematical techniques required in most max
imum-minimum problems are relatively simple. The hardest part of such a prob
lem is usually "setting it up" in a convenient form. This is the analytical, think
ing part of the problem, as opposed to the computational part. We emphasize this 
because it is clear that calculus is unlikely to be of much value as a tool in the 
sciences unless one learns how to understand what a problem is about and how 
to translate its words into appropriate mathematical language. This is what "word 
problems" or "story problems" are for-to help students learn these critically 
important skills. 

No set of rules for problem solving really works, because the essential ingre
dients are imagination and intelligence, which cannot be taught. However, the 
following general suggestions may be helpful. They don 't guarantee success, but 
without them progress is unlikely. 

STRATEGY FOR SOLVING MAXIMUM-MINIMUM PROBLEMS 

1 Understand the problem. Begin by reading the problem carefully, several 
times if necessary, until it is fully understood. It is a sad fact of life that stu
dents often seem driven to start working on a problem before they have any 
clear idea of what it is about. Take your time and make your efforts count. 

2 If geometry i s  involved-as it often is-make a fairly careful sketch of rea
sonable size. Show the general configuration. For instance, if a problem is 
about a general triangle, don't mislead yourself by drawing one that looks 
like a right triangle or an isosceles triangle. Don't be hasty or sloppy. You 
hope your sketch will be a source of fruitful ideas, so treat it with respect. 
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3 Label your figure carefully, making sure you understand which quantities are 
constant and which are allowed to vary. If convenient, use initial letters to 
suggest the quantities they represent, as A for area, V for volume, h for height. 
Be aware of geometric relations among the quantities in your figure, espe
cially those involving right triangles and similar triangles. Write these rela
tions down in the form of equations and be prepared to use them if needed. 

4 If Q is the quantity to be maximized or minimized, write it down in terms of 
the quantities in the figure, and try to use the relations in Step 3 to express 
Q as a function of a single variable. Draw a quick informal graph of this 
function on a suitable interval, perform little thought experiments in which 
you visualize the extreme cases, and use derivatives to discover details and 
thereby solve your problem.*  

*Serious mathematical problem solving i s  mental activity on  the highest level. Even exceptionally 
able students, who are confident they have the necessary imagination and intelligence, may derive 
additional comfort from the possession of a method. Such a method was distilled by George Polya 
( 1 887- 1 985) out of his own vast experience as an eminent creative mathematician (250 research pa
pers and I 0 books) and the foremost mathematics teacher of his generation. Polya's method consists 
of four simple principles that will be recognized at once as only common sense: ( I )  understand the 
problem; (2) devise a plan; (3) carry out your plan; (4) look back on your work and learn. The strat
egy given above is nothing but Polya's principles ( I ), (2), and (3) adapted to the special circum
stances of maximum-mjnimum problems. Polya developed his ideas in a series of great and delight
ful books that should be required reading for every undergraduate mathematics major: How To Solve 
It (Princeton Press, 1 945, 2nd ed., 1 957); Mathematics and Plausible Reasoning (2 vols., Princeton 
Press, 1 954); and Mathematical Discovery (2 vols., Wiley, 1 962). His discussion of the following 
problem in How To Solve It, under the heading Workjng Backwards, is only one of many unforget
table gems: How can you bring up from the river exactly 6 quarts of water when you have only two 
containers, a 4-quart pail and a 9-quart pail ( Fig. 4. 1 9) ,  to measure with? Figure 4.19 
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Find the positive number that exceeds its square by the 
largest amount. Why would you expect this number to 
be in the open interval (0, 1 )? 

is as small as possible. Show that this minimal area is 
attained when C bisects the segment AB. 

2 Express the number 1 8 as the sum of two positive num
bers in such a way that the product of the first and the 
square of the second is as large as possible. 

3 Show that the rectangle with maximum area for a given 
perimeter is a square.t 

4 Show that the rectangle with minimum perimeter for a 
given area is a square. 

5 Show that the square has the largest area among all rec
tangles inscribed in a given fixed circle x2 + y2 = a2. 

6 If we maximize the perimeter of the rectangle instead 
of the area in Problem 5, show that the solution is still 
a square. 

7 An east-west and a north-south road intersect at a point 
0. A diagonal road is to be constructed from a point A 
east of 0 to a point B north of 0, passing through a 
town C which is a miles east and b miles north of 0. 
Find the ratio of OA to OB if the triangular area OAB 

tThis was the earliest maximum-minimum problem solved by the 
methods of calculus (by Fermat, about 1 629). 

8 A certain poster requires 96 in2 for the printed message 
and must have 3-in margins at the top and bottom and 
a 2-in margin on each side. Find the overall dimensions 
of the poster if the amount of paper used is a minimum. 

9 A university bookstore can get the book Courtship Rit

uals of the American College Student at a cost of $4 a 
copy from the publisher. The bookstore manager esti
mates that she can sell 1 80 copies at a price of $ 10 and 
that each 50-cent reduction in the price will increase the 
sales by 30 copies. What should be the price of the book 
to maximize the bookstore's total profit? 

10 A new branch bank is to have a floor area of 3500 ft2. 
It is to be a rectangle with three solid brick walls and 
a decorative glass front. The glass costs 1 .8 times as 
much as the brick wall per linear foot. What dimensions 
of the building will minimize the cost of materials for 
the walls and front? 

11 At noon a ship A is 50 mi north of a ship B and is steam
ing south at 1 6  mi/h. Ship B is headed west at 1 2  mi/h. 
At what time are they closest together, and what is the 
minimal distance between them? 

12  Express the number 8 a s  the sum of  two nonnegative 
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numbers in such a way that the sum of the square of 
the first and the cube of the second is as small as pos
sible. Also solve the problem if this sum is to be as large 
as possible. 

1 3  Find two positive numbers whose product i s  16 and 
whose sum is as small as possible. 

14 A triangle of base b and height h has acute base angles. 
A rectangle is inscribed in the triangle with one side on 
the base of the triangle. Show that the largest such rec
tangle has base b/2 and height h/2, so that its area is 
one-half the area of the triangle. 

15 Find the area of the largest rectangle with lower base 
on the x-axis and upper vertices on the parabola y = 

27 - x
2
. 

16 An isosceles triangle has its vertex at the origin, its base 
parallel to and above the x-axis, and the vertices of its 
base on the parabola 9y = 27 - x2. Find the area of the 
largest such triangle. 

17 If a rectangle has an area of 32 in2, what are its di
mensions if the distance from one corner to the mid
point of a nonadjacent side is as small as possible? 

18  I f  the cost per hour of  running a small riverboat i s  pro
portional to the cube of its speed through the water, find 
the speed at which it should be run against a current of 
a miles per hour to minimize the cost of an upstream 
journey over a distance of b miles. 

1 9  A Norman window has the shape of  a rectangle sur
mounted by a semicircle. If the total perimeter is fixed, 
find the proportions of the window (i.e. , the ratio of the 
height of the window to its base) that will admit the 
most light. 

20 Solve the Norman window problem in Problem 19 if 
the semicircular part is made of stained glass that trans
mits only half as much light per unit area as does the 
clear glass in the rectangular part. 

21 A trough is to be made from three planks, each 1 2  in 
wide. If the cross section has the shape of a trapezoid, 
how far apart should the tops of the sides be placed to 
give the trough maximum carrying capacity? 

22 Solve Problem 21 if there is one 1 2-in plank and two 
6-in planks. 

23 The strength of a rectangular beam is jointly propor
tional to its width and the cube of its depth.t Find the 
proportions (ratio of depth to width) of the strongest 
beam that can be cut from a given cylindrical log. 

24 Among all isosceles triangles with fixed perimeter, 
show that the triangle of greatest area is equilateral. 

25 An isosceles triangle is inscribed in the circlex2 + y2 
= 

a
2 with its base parallel to the x-axis and one vertex at 

the point (0, a). Find the height of the triangle with max-

tThis means that if x is the width and y is the depth, then the strength 
S is given by the formula S = cxy3, where c is a constant of propor
tionality. 
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imum area and show that this triangle is equilateral. 
(Can you show by geometric reasoning alone that the 
largest triangle inscribed in the circle is necessarily 
equilateral?) 
A wire of length L is to be cut into two pieces, one bent 
to form a square and the other to form an equilateral 
triangle. How should the wire be cut if the sum of the 
areas enclosed by the two pieces is to be (a) a maxi
mum? (b) a minimum? Show that case (b) occurs when 
the side of the square is t the height of the triangle. 
A man 6 ft tall wants to construct a greenhouse of length 
L and width 1 8 ft against the outer wall of his house by 
building a sloping glass roof of slant height y from the 
ground to the wall, as shown in Fig. 4.20. He consid-

t-------- 1 8------, 

Figure 4.20 

ers space in the greenhouse to be usable if he can stand 
upright without bumping his head. If the cost of build
ing the roof is proportional to y, find the slope of the 
roof that minimizes the cost per square foot of usable 
space. Hint: Notice that this amounts to minimizing ylx. 
(The fireman's problem) A fence a feet high is b feet 
from a high burning building. Find the length of the 
shortest ladder that will reach from the ground across 
the top of the fence to the building. 
A corridor of width a is at right angles to a second cor
ridor of width b. A long, thin, heavy rod is to be pushed 
along the floor from the first corridor into the second. 
What is the length of the longest rod that can get around 
the corner? 
A long sheet of paper is a units wide. One corner of the 
paper is folded over as shown in Fig. 4.2 1 .  Find the 
value of x that minimizes (a) the area of the triangle 
ABC; (b) the length of the crease AC. 
The speed v of a wave on the surface of a still body of 
liquid depends as follows on its wavelength A: - J g 27T<J 

v - 27r A + ---;5,\' 
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l-i 34 � Water has the very unusual property among common 
liquids of having a temperature above its freezing point 
at which its density is a maximum. (This property is 
important for the survival of life in ponds and lakes: the 
denser water sinks and prevents the bottom water from 
freezing.) If 1 l iter of water at 0°C occupies a volume 
of 

V = l _ 6.42 T + 8.5 1 T2 _ 6.79 T3 
J 05 1 06 J 08 

liters at T°C, find the temperature at which the density 
is greatest. 

c 

Figure 4.2 1 

where the constants are the acceleration g due to grav
ity, the surface tension a of the liquid, and the density 
8 of the liquid. Find the minimum speed of a wave and 
the corresponding wavelength. 

32 The illumination provided on a flat surface by a light 
source is inversely proportional to the square of the dis
tance from the source and directly proportional to the 
sine of the angle of incidence. How high should a light 
be placed on a pole to maximize the illumination on the 
ground 50 ft from the pole? 

33 Find the maximum area of a rectangle that can be cir
cumscribed about a given rectangle with base B and 
height H ( Fig. 4.22). Figure 4.22 

We continue to develop the basic ideas of Section 4.3 by means of additional ex
amples. 

Example 1 A manufacturer of cylindrical soup cans receives a very large order 
for cans of a specified volume V0. What dimensions will minimize the total sur
face area of such a can, and therefore the amount of metal needed to manufac
ture it? 

Solution If r and h are the radius of the base and the height of a cylindrical can 
( Fig. 4.23, left), then the volume is 

( 1 )  
and the total surface area is 

A = 21Tr2 + 21Trh. (2) 

We must minimize A, which is a function of two variables, by using the fact that 
equation ( 1 )  relates these variables to one another. We therefore solve ( 1 )  for h, 
h = V0!1T!2, and use this to express A as a function of r alone, 

() 

H 

B 

4 . 4  
MORE MAXIMUM
MINIMUM PROBLEMS. 
REFLECTION AND 
REFRACTION 
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Figure 4.23 
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h 

- - - - - , __ ._ _ _ _ 

A 

r = ?  

2 Vo A = 27rr + 27rr · --7rr2 

= 2
7rr2 + 2 Vo

. r (3) 

The graph of this function ( Fig. 4.23, right) shows that A is large when r is small 
and also when r is large, with a minimum somewhere in between. As usual, to 
discover the precise location of this minimum, we differentiate (3), equate the 
derivative to zero, and solve, 

dA 2 Vo - = 47rr - -dr r2 ' 
2Vo 47Tr - -2- = 0, r 47Tr3 = 2 V0, 

(4) 

If we want the actual dimensions of the most efficient can, we can solve equa
tion (4) for r and then use this to calculate h, 

from which we observe that h = 2r. Or, if we are interested primarily in the 
shape, we can replace Vo in (4) by m2h and immediately obtain 

or 2r = h. 

From the point of view of lowering costs for raw materials-an extremely seri
ous matter for manufacturers- this remarkable result tells us that the "best" shape 
for a cylindrical can is that in which the height equals the diameter of the base. 

Example 2 Find the ratio of the height to the diameter of the base for the cylin
der of maximum volume that can be inscribed in a sphere of radius R. 

Solution If we sketch a cylinder inscribed in the sphere and label it as shown 
on the left in Fig. 4.24, then we see that 

(5) 

where 

x2 + y2 = R2. (6) 
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Visualizing the extreme cases ( Fig. 4.24, right) tells us that V is small when x i s  
near zero and also when x i s  near R, so between these extremes there is  a shape 
of maximum volume. To find it, we use (6) to write (5) as 

V = 27ry(R2 - y2) = 27r(R2y - y3), 

from which we obtain 
dV 
dy = 27r(R2 - 3y2). 

Setting this equal to zero to find y and then using (6) to find x gives 

y = � and x = fR2 - f R2 = � R. 
The ratio of the height to the diameter of the base for the largest cylinder is there
fore 

l2'.. = l_ = -1- = _!_y12 = 0.707. 2x x V2 2 

This result can be obtained more efficiently by the method of implicit differ
entiation. If x is taken as the independent variable and y is thought of as a func
tion of x, then (6) yields 

From (5) we find that 

2x + 2y 
dy = O 
dx 

or 
dy x 
dx y 

�� = 27f (x2�� + 2xy) = 27f [x2 (-�) + 2xy] 

= 27f ( -x3 : 2xy2 ) = 2;-x (2y2 - x2). 

It therefore follows that dV!dx = 0 when 

2y2 = x2 or 

as before. 

Example 3 If a ray of light travels from a point A to a point P on a flat mirror 
and is then reflected to a point B, as shown in Fig. 4.25 , then the most careful 
measurements show that the incident ray and the reflected ray make equal an-

1 33 

Figure 4.24 
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Figure 4.25 Reflection of light. 

B 

Figure 4.26 
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gles with the mirror: a = {3. Assume that the ray of light takes the shortest path 
from A to B by way of the mirror, and prove this law of reflection by showing 
that the path APB is shortest when a = {3. 

Solution If we think of the point P as assuming various positions on the mir
ror, with each position determined by a value of x, then we wish to consider the 
length L of the path as a function of x. From Fig. 4.25 this function is clearly 

L = \/ a2 + x2 + \/ b2 + (c - x)2 
= (a2 + x2) 1 12 + [b2 + (c _ x)2] 1 12, 

and differentiation yields 

dL = +<a2 + x2)- 1 12 . (2x) + t[b2 + (c - x)2r 112 . 2(c - x) . ( - 1 )  dx 
x c - x  

Yb2 + (c - x)2 
If we minimize L by equating this derivative to zero, we get 

x c - x 
Yb2 + (c - x)2 ' 

and this equation can be changed in form as follows: 

x 
Yb2 + (c - x)2 � = JC� xY + I . c - x 

a b 
x c - x 

(7) 

(8) 

The equation last written can easily be solved for x. However, there is no need 
to do this, because the equation as it stands tells us what we want to know: For 
the angles a and f3 in the two right triangles shown in the figure, the ratios of 
the opposite side to the adjacent side are equal, so a and f3 are equal. 

It is fairly clear on intuitive grounds that we have minimized L. If we wish to 
verify thi s  by the second derivative test, we can use (7) to compute 

d2L a2 b2 -- = + -�------=---=-= dx2 (a2 + x2)3/2 [b2 + (c _ x)2] 3/2 
(we omit the details of the computation), and all that remains is to notice that 
this quantity is positive. 

Remark 1 The reasoning in Example 3 can be made simpler if we recall from 
Section 1 .7 the definition of the cosine of a positive acute angle A. If we think 
of A as one of the acute angles of a right triangle (Fig. 4.26), then by definition 

cos A = !:!._ = adjacent side
. c hypotenuse 

Using this, the minimizing condition (8) can be written as 

cos a = cos {3, 

so a = {3. For use in the next example, we also recall the definition of the sine 
of A, 
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sin A = !!._ = opposite side . c hypotenuse 
A 

P' ', P ' ' 
' ' ' ' ' ' ' ' ' , ' 

' ' 
, ,  

B 

Remark 2 The law of reflection discussed in Example 3 was known to the an
cient Greeks. However, the fact that a reflected ray of light follows the shortest 
path was discovered much later, by Heron of Alexandria in the first century A.D.  
Heron's geometric proof is  simple but ingenious. The argument goes as follows. 
Let A and B be the same points as before ( Fig. 4.27), and Jet B' be the mirror 
image of B, so that the surface of the mirror is the perpendicular bisector of BB '. 
The segment AB' intersects the mirror at a point P, and this is the point where a 
ray of light is reflected in passing from A to B; for a = I' and y = /3, so a = {3. 
The total length of the path is AP + PB = AP + PB ' = AB '. For any other point 
P' on the mirror the total length of the path is AP' + P' B = AP' + P' B' ,  and 
this is greater than AB' because the sum of two sides of a triangle is greater than 
the third side. This shows that the actual path of our reflected ray of light is the 
shortest possible path from A to B by way of the mirror. 

, , "::,,,, .,. B ' 

Example 4 The reflected ray of light previously discussed travels in a single 
medium at a constant speed. However, in different media (air, water, glass) light 
travels at different speeds .  If a ray of light passes from air into water as shown 
in Fig. 4.28, it is refracted (bent) toward the perpendicular at the interface. The 
path APB is clearly no longer the shortest path from A to B. What law determines 
it? In 1 62 1  the Dutch scientist Snell discovered empirically that the actual path 
of the ray is that for which 

sin a 
sin f3 

= a constant, (9) 

where this constant is independent of the positions of A and B. This fact is now 
called Snell 's law of refraction. * Prove Snell 's law by assuming that the ray takes 
the path from A to B that minimizes the total time of travel. 

Figure 4.27 

A 

b 

Solution If the speed of light in air is Va and in water is Vw, then the total time B 

of travel T is the time in air plus the time in water, 

Ya2 + x2 Yb2 + (c _ x)2 Figure 4.28 Refraction of light. 
T =  + --�-�-Va Vi,, 

1 1 = - (a2 + x2)112 + _ [b2 + (c _ x)2] 112. Va Vw 
If we compute the derivative of this function and notice its meaning in terms of 
Fig. 4.28, we obtain 

dT x 
dx 

= Va y a2 + x2 
sin a _ sin f3 

Va Vw 

c - x 
Vw Yb2 + (c - x)2 

If we now minimize T by equating this to zero, the result is 

( 1 0) 

*Willebrord Snell ( 1 591-1626) was an astronomer and mathematician. At the age of 22 he succeeded 
his father as professor of mathematics at Leiden. His fame rests mainly on his discovery of the law 
of refraction (9). 
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sin a 
= 

sin f3 

Va Vw 
or sin a _!± 

sin f3 v.,, 
( 1 1 ) 

This is a more revealing form of Snell's law, because it tells us the physical mean
ing of the constant on the right side of (9): It is the ratio of the speed of light in 
air to the (smaller) speed of light in water. This constant is called the index of 
refraction of water. If the water in this experiment is replaced by any other translu
cent medium, such as alcohol, glycerin, or glass, then this constant has a differ
ent numerical value, which is the index of refraction of the medium in question. 

As in Example 3, we can verify that the configuration ( 1 1 )  actually minimizes 
T by computing the second derivative and noting that this quantity is positive: 

d2T I a2 I b2 
- = - + - > O  dx2 Va (a2 + x2)3/2 Vw [b2 + (c - x)2]3/2 . 

But there is another method that is worth mentioning. We begin by observing 
that dT/dx as given by ( 1 0) is a difference of two terms. As x increases from 0 
to c, the first term, (sin a)lv0, increases from 0 to some positive value. The sec
ond term, (sin {3)1vw, decreases from some positive value to 0. This shows that 
dT/dx is negative at x = 0 and increases to a positive value at x = c. The mini
mum value of T therefore occurs at the only x for which dT/dx = 0, and this is 
precisely the configuration described by ( 1 1 ) . 

Remark 3 The ideas of Example 4 were discovered in 1 657 by Fermat (Section 
1 .4), and for this reason the statement that a ray of light traverses an optical sys
tem along the path that minimizes its total time of travel is called Fermat's prin
ciple of least time. (It should be noticed that when a ray of light travels in a sin
gle uniform medium, "shortest path" is equivalent to "least time," so Example 3 
falls under the same principle.) During the next two centuries Fermat's ideas stim
ulated a broad development of the general theory of maxima and minima, lead
ing first to Euler's creation of the calculus of variations and then to Hamilton's 
principle of least action, which has turned out to be one of the deepest unifying 
principles of physical science. Euler expressed his enthusiasm in the following 
memorable words: "Since the fabric of the world is the most perfect and was es
tablished by the wisest Creator, nothing happens in this world in which some rea
son of maximum or minimum would not come to light."* 

Remark 4 Snell's sine law (9) was first published by Descartes in 1637 (with
out any mention of Snell), and he purported to prove it in an incorrect form equiv
alent to 

sin a Vw 
sin f3 Va 

Descartes based his argument on a fanciful model and on the metaphysically based 
opinion that light travels faster in a denser medium. Fermat rejected both the opin
ion ("shocking to common sense") and the argument ("demonstrations which do not 
force belief cannot bear this name"). After many years of passive but exasper
ated skepticism he at last actively confronted the problem and proved the correct 
law himself in 1657, creating the necessary calculus techniques as he went along. 

'For a brief account of the great Swiss mathematician Euler (pronounced "OIL-er") see Section 8.4. 
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PROBLEMS 

1 A closed rectangular box with a square base is to be 
made out of plywood. If the volume is given, find the 
shape (ratio of height to side of base) that minimizes 
the total number of square feet of plywood that are 
needed. 

2 Solve Problem l if the box is open on top. 
3 Find the radius of the cylinder of maximum volume that 

can be inscribed in a cone of height H and radius of 
base R. 

4 Find the height of the cone of maximum volume that 
can be inscribed in a sphere of radius R. 

5 A square piece of tin 24 in on each side is to be made 
into an open-top box by cutting a small square from 
each comer and bending up the flaps to form the sides. 
How large a square should be cut from each comer to 
make the volume of the box as large as possible? 

6 Solve Problem 5 if the given piece of tin is a rectangle 
1 5  by 24 in. 

7 A cylindrical can without a top is to be made from a 
specified weight of sheet metal. Find the ratio of the 
height to the diameter of the base when the volume of 
the can is greatest. 

8 A cylindrical tank without a top is to have a specified 
volume. If the cost of the material used for the bottom 
is three times the cost of that used for the curved lat
eral part, find the ratio of the height to the diameter of 
the base for which the total cost is least. 

9 Draw a reasonably good sketch of y = Vx and mark 
the point on this graph that seems to be closest to the 
point (t, 0). Then calculate the coordinates of this clos
est point. Hint: Minimize the square of the distance from 
the point (t, 0) to the point (x, Vx). 

10 Generalize Problem 9 by finding the point on the graph 
of y = Vx that is closest to the point (a, 0) for any 
a > 0. 

11 A spy climbs out of a submarine into a rubber boat 2 
mi east of a point P on a straight north-south shoreline. 
He wants to get to a house on the shore 6 mi north of 
P He can row 3 mi/h and walk 5 mi/h, and he intends 
to row directly to a point somewhere north of P and 
then walk the rest of the way. 
(a) How far north of P should he land in order to get 

to the house in the shortest possible time? 
(b) How long does the trip take? 
(c) How much longer will it take if he rows directly to 

P and then walks to the house? 
12 Show that the answer to part (a) of Problem 1 1  does 

not change if the house is 8 mi north of P 
13 If the rubber boat in Problem 1 1  has a small outboard 

motor and can go 5 mi/h, then it is obvious by common 
sense that the fastest route is entirely by boat. What is 

the slowest speed for which the fastest route is still en
tirely by boat? 

* 14 The intensity of illumination at a point P due to a light 
source is directly proportional to the strength of the 
source and inversely proportional to the square of the 
distance from P to the source. Two light sources of 
strengths a and b are a distance L apart. What point 
on the line segment joining these sources receives the 
least total illumination? If a is 8 times as large as 
b, where is this point? (Assume that the intensity 
at any point is the sum of the intensities from the two 
sources.) 

*15 Two towns, A and B, lie on the same side of a straight 
highway. Their distance apart is c, and their distances 
from the highway are a and b. Show that the length of 
the shortest road that goes from A to the highway and 
then on to B is Yc2 + 4ab 
(a) by using calculus; 
(b) without calculus. Hint: Introduce the "mirror im

age" of B on the other side of the highway. 
16 Find the minimum vertical distance between the curves 

y = 1 6x2 and y = - l !x2. 
17  An isosceles triangle is circumscribed about a circle of 

radius R. If x is the height of the triangle, show that its 
area A is least when x = 3R. Hint: Minimize A2. 

18 If the figure in Problem 17 is revolved about the alti
tude of the triangle, the result is a cone circumscribed 
about a sphere of radius R. Show that the volume of the 
cone is least when x = 4R, and that this least volume is 
twice the volume of the sphere. 

19 A silo has cylindrical walls, a flat circular floor, and a 
hemispherical top. For a given volume, find the ratio of 
the total height to the diameter of the base that mini
mizes the total surface area. 

20 In Problem 1 9, if the cost of construction per square 
foot is twice as great for the hemispherical top as for 
the walls and the floor, find the ratio of the total height 
to the diameter of the base that minimizes the total cost 
of construction. 

21  What i s  the smallest value of the constant a for which 
the inequality ax + l lx 2: 2Vz is valid for all positive 
numbers x? 

*22 There is a refinery at a point A on a straight highway 
and an oil well at a point B which can be reached by 
traveling 5 mi along the highway to a point C and then 
1 2  mi across country perpendicular to the highway. If 
a pipeline is built from A to B, it costs k times as much 
per mile to build it across country as along the high
way, because of the difficult terrain. The line will be 
built either directly from A to B or along the highway 
to a point P part of the way toward C and then across 
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country to B, whichever is cheaper. Decide on the 
cheapest route (a) if k = 3; (b) if k = 2. (c) What is the 
largest value of k for which it is cheapest to build the 
pipeline directly from A to B? 

23 A circular ring of radius a is uniformly charged with 
electricity, the total charge being Q. The force exerted 
by this charge on a unit charge located at a distance x 
from the center of the ring, in a direction perpendicu
lar to the plane of the ring, is given by F = Qx(x2 + 
a2)-312. Sketch the graph of this function and find the 
value of x that maximizes F 

24 A cylindrical hole of radius x is bored through a sphere 
of radius R in such a way that the axis of the hole passes 
through the center of the sphere. Find the value of x that 
maximizes the complete surface area of the remaining 
solid. Hint: The area of a segment of height h on a 
sphere of radius R is 2TTRh. 

*25 The sum of the surface areas of a cube and a sphere is 
given. What is the ratio of the edge of the cube to the 
diameter of the sphere when (a) the sum of their vol
umes is a maximum? (b) the sum of their volumes is a 
minimum? 

*26 Consider two spheres of radii 1 and 2 whose centers are 
6 units apart. At what point on the line joining their cen
ters wi II an observer be able to see the most total sur
face area? (See the hint for Problem 24. )  

*27 Find the point on the parabola y = x2 that is  closest to 
the point (6, 3). 

28 A man at point A on the shore of a circular lake of ra
dius 1 mi wants to reach the opposite point C as soon 
as possible ( Fig. 4.29) . He can walk 6 mi/h and row his 
boat 3 mi/h. At what angle (J to the diameter AC should 
he row? 

Figure 4.29 

29 Find the maximum possible area A of a trapezoid in
scribed in a semicircle of radius 1 ( Fig. 4.30) 
(a) by expressing A as a function of (J; 
(b) by expressing A as a function of ¢. 

Figure 4.30 

30 A laboratory scientist performs an experiment n times 
to measure a physical quantity x and obtains the n 
results x , ,  x2, . . . , Xn. These measurements deviate 
from the "true value" of x because of unavoidable 
environmental factors of many kinds, such as fluctu
ations in temperature or air pressure. She decides to 
use an estimate x for x based on the method of least 
squares. This means that x is chosen to minimize the 
quantity 

which is the sum of the squares of the deviations of the 
estimate x from the measured values. Show that this es
timate x is the average of the measured values: 

x =  X1 + Xz + . . . + Xn 
n 

3 1  A spider a t  a comer S of the ceiling of a cubic room 
8 ft on each side wishes to catch a bug at the oppo
site comer B of the floor ( Fig. 4.31 ) . The spider, 
who must walk on the ceiling, the walls, or the 
floor, wishes to find the shortest path to the bug. Find 
a shortest path 
(a) by using calculus; 
(b) without calculus, by merely thinking. 

I ...-¥ -
x , _ _ 
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Figure 4.31 
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4.5 RELATED RATES 

If a tank is being filled with water, then the water level rises. To describe how 
fast the water level rises, we speak of the rate of change of the water level or, 
equivalently, the rate of change of the depth. If the depth is denoted by h, and t 
is the time measured from some convenient moment, then the derivative dh/dt i s  
the rate of change of the depth. Further, the volume V of water in the tank is also 
changing, and dV/dt is the rate of change of this volume. 

Similarly, any geometric or physical quantity Q that changes with time is a 
function of time, say Q = Q(t), and its derivative dQ/dt is the rate of change of 
the quantity. The problems that we now consider are based on the fact that if two 
changing quantities are related to one another, then their rates of change are also 
related. 

Example 1 Gas is being pumped into a large spherical rubber balloon at the con
stant rate of 8 ft3/min. Find how fast the radius r of the balloon is increasing (a) 
when r = 2 ft; (b) when r = 4 ft. 

Solution The volume of the balloon ( Fig. 4.32) is given by the formula for the 
volume of a sphere, 

( 1 )  

From the statement of  the problem we know that dV/dt = 8 ,  and we must find 
dr!dt for two specific values of r. It is essential to understand the background 
of this situation, namely, the fact that V and r are both dependent variables 
with the time t as the underlying independent variable. With this in mind, it i s  
natural to introduce the rates of change of V and r by differentiating ( 1 )  with 
respect to t, 

dV 4 dr dr - = -'TT · 3r2 - = 47Tr2 -dt 3 dt dt ' 
where the chain rule is needed in the calculation. It follows from (2) that 

dr 
dt 

dV 2 
2 ' 'TTr 

since dV/dt = 8. In case (a) we therefore have 

� = 2� = 0. 16 ft/min, 

and in case (b), 

� = 8
171' = 0.04 ft/min. 

(2) 

These conclusions confirm our commonsense awareness that since the volume 
of the balloon is increasing at a constant rate, the radius increases more and more 
slowly as the volume grows larger. 

Example 2 A ladder 1 3  ft long is leaning against a wall. The bottom of the lad
der is being pulled away from the wall at the constant rate of 6 ft/min. How fast 
is the top of the ladder moving down the wall when the bottom of the ladder is 
5 ft from the wall? 

1 3 9  
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Figure 4.33 

Figure 4.34 

4 ft3 /min 

Figure 4.35 

6 ft/min 
------7 
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Solution The first thing we do is draw a diagram of the situation and label it, 
being careful to use letters to represent quantities that are changing ( Fig. 4.33). 
In terms of this figure, we can clarify our thoughts by stating what is known and 
what we are trying to find: 

dx 
dt = 6, dy 

- - = ? when x = 5 dt . . 

(The use of the minus sign here can best be understood by thinking of dy/dt as 
the rate at which y is increasing and -dy/dt as the rate at which y is decreasing. 
The problem asks for the latter.) Roughly speaking, we know one time deriva
tive and we want to find the other. We therefore seek an equation connecting x 
and y which we can differentiate with respect to t to obtain a second equation 
connecting their rates of change. It is clear from the figure that our starting point 
must be the Pythagorean theorem, 

x2 + y2 = 1 69. 

When this is differentiated with respect to t, we get 

dx dy 2x - + 2y - = O  dt dt 

and therefore 

or 
dy x dx 
dt y dt 

_ dy 6x 
dt y 

(3) 

or 
dy x dx -dt = y dt' 

(4) 

since dx/dt = 6. Finally, equation (3) tells us that y = 12 when x = 5, so (4) 
yields our conclusion, 

dy 6 . 5 I . -- = -- = 2- ft/mm when x = 5 dt 1 2  2 • 

Warning : Don't substitute the values x = 5 ,  y = 1 2  prematurely. The essence of 
the problem is the fact that x and y are variables; if we pin them down to spe
cific values too soon, as is done in Fig. 4.34, then this makes it impossible to un
derstand or solve the problem. In other words, preserve the fluidity of the situa
tion until the l ast possible moment. 

Example 3 A conical tank with its vertex down is 1 2  ft high and 12 ft in di
ameter at the top. Water is being pumped in at the rate of 4 ft3/min. Find the rate 
at which the water level is rising (a) when the water is 2 ft deep; (b) when the 
water is 8 ft deep. 

Solution As before, we begin by drawing and labeling a diagram ( Fig. 4.35), 
with the purpose of visualizing the situation and establishing notation. Our next 
step is to use this notation to state as follows what is given and what we are try
ing to find: 

dV = 4 dt , dx 
- = ? when x = 2 and x = 8 dt . . 

The changing volume V of water in the tank has the shape of a cone, so our start
ing point is the formula for the volume of a cone, 
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(5) 

The only dependent variables we care about are V and x, so we wish to elimi
nate the superfluous variable y. By examining Fig. 4 .35 and using similar trian
gles, we see that 

2'. = � = _!_ x 1 2  2 
and substituting this in (5) gives 

or 

- ..!!.._ 3 
v - 1 2  x .  

I y = 2x, (6) 

(7) 

We are now in a position to introduce the rates of change by differentiating (7) 
with respect to t, which yields 

or 

dV = .!!_ x2 dx 
dt 4 dt 

dx 
4 dV 16  

dt m;2 dt 1TX2 ' 
since dV!dt = 4. This formula tells us that when x = 2, 

dx
d = _! = I .27 ft/min, t 1T 

and when x = 8, �� = 4� = 0.08 ft/min, 

and the solution is complete. 

(8) 

It may be helpful to students if we now summarize the method that emerges 
from these examples: 

STRATEGY FOR SOLVING RELATED RATE PROBLEMS 

1 Read the problem carefully, several times if necessary, until it is fully un
derstood. 

2 Draw a careful sketch of the situation being considered. Add to the sketch all 
numerical quantities that remain constant throughout the problem. Now add 
as letters all quantities-the dependent variables-that are functions of time. 

3 Write down the given rate of change and the required rate of change in terms 
of derivatives. 

4 Find an equation that connects the two dependent variables in Step 3, using 
geometry if necessary to eliminate any superfluous dependent variable. Use 
the chain rule to differentiate both sides of this equation with respect to t. 

5 Substitute the given rate of change from Step 3 into the differentiated equa
tion obtained in Step 4, and solve for the required rate of change. 

Warning: Don' t  give the dependent variables numerical values too soon. This 
should be done only after the differentiation in Step 4. 

1 4 1  
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PROBLEMS 

1 A stone dropped into a pond sends out a series of con-
centric ripples. If the radius r of the outer ripple in-
creases steadily at the rate of 6 ft/s, find the rate at which 
the area of disturbed water is increasing (a) when 13 
r = 10 ft, and (b) when r = 20 ft. 

2 A large spherical snowball is melting at the rate of 27T 
ft3/h. At the moment when it is 30 inches in diameter, 
determine (a) how fast the radius is changing, and (b) 
how fast the surface area is changing. 14 

3 Sand is being poured onto a conical pile at the constant 
rate of 50 ft3/min. Frictional forces in the sand are such 
that the height of the pile is always equal to the radius 
of its base. How fast is the height of the pile increas-
ing when the sand is 5 ft deep? 15 

4 A girl 5 ft tall is running at the rate of 1 2  ft/s and passes 
under a street light 20 ft above the ground. Find how 
rapidly the tip of her shadow is moving when she is (a) 
20 ft past the street light, and (b) 50 ft past the street 
light. 

5 In Problem 4, find how rapidly the length of the girl 's *16 
shadow is increasing at each of the stated moments. 

6 A light is at the top of a pole 80 ft high. A ball is dropped 
from the same height from a point 20 ft away from the 
light. Find how fast the shadow of the ball is moving 
along the ground (a) 1 second later; (b) 2 seconds later. 
(Assume that the ball falls s = 1612 feet in t seconds.) 

7 A woman raises a bucket of cement to a platform 40 ft 17 

above her head by means of a rope 80 ft long that passes 
over a pulley on the platform. If she holds her end of 
the rope firmly at head level and walks away at 5 ft/s, 
how fast is the bucket rising when she is 30 ft away 
from the spot directly below the pulley? 18 

8 A boy is flying a kite at a height of 80 ft, and the wind 
is blowing the kite horizontally away from the boy at 
the rate of 20 ft/s. How fast is the boy paying out string 
when the kite is 1 00 ft away from him? 

9 A boat is being pulled in to a dock by means of a rope 
with one end tied to the bow of the boat and the other 
end passing through a ring attached to the dock at a 
point 5 ft higher than the bow of the boat. If the rope 
is being pulled in at the rate of 4 ft/s, how fast is the 
boat moving through the water when 1 3  ft of rope are 
out? 

10 A trough is 10 ft long and has a cross section in the 
shape of an equilateral triangle 2 ft on each side. If wa-
ter is being pumped in at the rate of 20 ft3/min, how 
fast is the water level rising when the water is 1 ft deep? 

1 1  A spherical meteorite enters the earth's atmosphere and 
bums up at a rate proportional to its surface area. Show 19 
that its radius decreases at a constant rate. 

12 A point moves around the circle x2 + y2 = a2 in such 

a way that the x-component of its velocity is given by 
dxldt = -y. Find dyldt and decide whether the direc-
tion of the motion is clockwise or counterclockwise. 
A car moving at 60 mi/h along a straight road passes 
under a weather balloon rising vertically at 20 mi/h. If 
the balloon is 1 mi up when the car is directly beneath 
it, how fast is the distance between the car and the bal-
loon increasing 1 minute later? 
Most gases obey Boyle's law :  If a sample of the gas is 
held at a constant temperature while being compressed 
by a piston in a cylinder, then its pressure p and vol-
ume V are related by the equation pV = c, where c is a 
constant. Find dpldt in terms of p and dV!dt. 
At a certain moment a sample of gas obeying Boyle's 
law (Problem 14) occupies a volume of 1000 in3 at a 
pressure of L O  lb/in2. If this gas is being compressed 
isothermally at the rate of 1 2  in3/min, find the rate at 
which the pressure is increasing at the instant when the 
volume is 600 in3. 
A ladder 20 ft long is leaning against a wall 1 2  ft high, 
with its top projecting over the wall. Its bottom is be-
ing pulled away from the wall at the constant rate of 5 
ft/min. Find how rapidly the top of the ladder is ap-
proaching the ground (a) when 5 ft of the ladder pro-
jects over the wall; (b) when the top of the ladder 
reaches the top of the wall . 
A conical party hat made of cardboard has a radius of 
4 in and a height of 12 in. When filled with beer, it leaks 
at the rate of 4 in3/min. At what rate is the level of beer 
falling (a) when the beer is 6 in deep? (b) when the hat 
is half empty? 
A hemispherical bowl of radius 8 in is being filled with 
water at a constant rate. If the water level is rising at 
the rate of t in/s at the instant when the water is 6 in 
deep, find how fast the water is flowing in 
(a) by using the fact that a segment of a sphere has vol-

ume 

V = 7Th2 (a - 4) 
where a is the radius of the sphere and h is the height 
of the segment; 

(b) by using the fact that if V is the volume of the wa-
ter at time t, then 

dV 
= 7Tr2 dh 

dt dt 
where r i s  the radius of the surface and h is the depth. 
Water is being poured into a hemispherical bowl of ra-
dius 3 in at the rate of 1 in3/s. How fast is the water 
level rising when the water is 1 in deep? 
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*20 In Problem 1 9, suppose that the bowl contains a lead 
ball 2 inches in diameter, and find how fast the water 
level is rising when the ball is half submerged. 

21 Assume that a snowball melts in such a way that its vol
ume decreases at a rate proportional to its surface area. 
If half the original snowball has melted away after 2 
hours, how much longer will it take for the snowball to 

23 A drawbridge with two 20-ft spans is being raised at 
the rate of 2 radians/min ( Fig. 4.36). How fast is the 
distance between the ends of the spans increasing when 
they are elevated 7T/4 radians? 

1-1 22 � 
disappear completely? 
A man in a hot air balloon is rising at the rate of 20 ft/s. 
How fast is the distance to the horizon increasing when 
the balloon is 2000 ft high? Assume that the earth is a 
sphere of radius 4000 mi. 

Consider the cubic equation 

x3 - 3x - 5 = 0. 

' 
' 

' 

Figure 4.36 

( I )  

It is possible to solve this equation by exact methods, that is, b y  formulas yield
ing a solution in terms of radicals in the same sense that the quadratic formula 

-b :::':: Yb2 - 4ac x =  2a 
provides an exact solution of the quadratic equation ax2 + bx + c = 0. However, 
if what we need is a numerical solution of ( 1 )  that is accurate to a reasonable 
number of decimal places, then it is more convenient to find this solution by the 
approximation method to be described here than to try to use the exact solution. 
Furthermore, while formulas that yield exact solutions in terms of radicals for 
equations of degree 2, 3 ,  and 4 do exist, it is known to be impossible to solve 
the general equation of degree 5 or more in terms of radicals. Therefore, in or
der to solve a fifth-degree equation like x5 - 3x2 + 9x - 1 1 = 0, we would be 
forced to use an approximation method, since no other method is available. 

Returning to equation ( 1 ), if we denote x3 - 3x - 5 by f(x), then we can eas
ily calculate the following values: 

/(-2) = -7, /(- 1 )  = -3 ,  f(O) = -5, 

f(l ) = -7, f(2) = -3, f(3) = 13 .  
The pair of  values f(2) = -3 and j(3) = 1 3  suggests that as  x varies continu
ously from x = 2 to x = 3 ,f(x) varies continuously from -3  to 1 3, and that con
sequently there is some intermediate value of x where f(x) = 0. This is true, but 
even though it is intuitively obvious, it is quite difficult to give a rigorous proof. 
We do not attempt such a proof here, but instead take it for granted that if a con
tinuous function j(x) has values f(a) and f(b) with opposite signs, then there is 
at least one root of the equationf(x) = 0 between a and b. * This tells us that ( 1 )  
has a root between x = 2 and x = 3, and we can take either of these numbers as 
a first approximation to this root. The approximation x = 2 would seem to be the 
better choice, since -3 is closer to 0 than 1 3  is. 

•This property of continuous functions is discussed in Section 2.6 under the heading The Intermedi
ate Value Theorem. 
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APPLICATIONS OF DERIVATIVES 

In general, suppose we have a first approximation x = xi to a root r of an equa
tion f(x) = 0. This root is a point where the curve y = f(x) crosses the x-axis, as 
shown in Fig. 4.37; and the idea of Newton's method is to use the tangent line 
to the curve at the point where x = xi as a stepping-stone to a better approxi
mation x = x2. Beginning with the approximation x = xi, we draw the tangent 
line to the curve at the point (xi ,J(xi )). This line intersects the x-axis at the point 
x = x2, which seems to be a better approximation than x1 (see Fig. 4.37). Re
peating the process, we use the tangent line at (x2, f(x2)) to get to the point 
x = x3, which is a still better approximation. Figure 4.37 illustrates the idea as a 
geometric procedure, but to apply it in calculations we need a formula. This for
mula is easily derived as follows. 

The slope of the first tangent line is f' (x 1 ) . If we consider this line to be de
termined by the points (x2, 0) and (xi , J(x1 )), then the slope is also 

This equation yields 

so 

so 

or 

f(x1 ) X2 = X 1 - j'(xi ) . (2) 

In this way our first approximation x1 leads to a second approximation x2 given 
by (2) ; this in turn leads to a third approximation x3, given by 

and so on indefinitely. 

Example I On applying this method to equation ( 1 ) , we have 

f(x) = x3 - 3x - 5, f' (x) = 3x2 - 3, x1 = 2, 
f(X1 ) -3  \ X2 = X 1 -f'(xi ) = 2 - 9 = 23. 

By writing x2 in decimal form as x2 = 2.333333, correct to six decimal places, 
and continuing with a good calculator, we get 

_ f(x2) _ 0.703699 _ X3 - X2 - f (x2) 
- 2.333333 - 13 .333329 - 2.280556, 

rounding off to six decimal places. Since the burden of computation is on our 
calculator-and calculators are cheap labor-we shall continue working to six 
decimal places. When two successive approximations are equal in their first six 
decimal places, we shall consider this as evidence of accuracy. Thus, in the case 
of equation ( 1 )  we obtained x3 = 2.280556 after two applications of the proce
dure. Repeating this procedure yields 

X4 = 2.279020, 
X5 = 2.279019, 
X6 = 2.2790 1 9. 
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We therefore conclude that x = 2.2790 19  is the desired solution of equation ( 1 )  
accurate to six decimal places. 

Newton's method is not restricted to the solution of polynomial equations like 
( l ), but can also be applied to any equation containing functions whose deriva
tives we can calculate. 

Example 2 To illustrate this remark we consider the equation 

X = COS X, (3) 
where x on the right side is understood to be measured in radians. The best way 
to begin thinking is to graph the two functions y = x and y = cos x on the same 
set of axes, as shown in Fig. 4.38 .  It is then easy to understand that these curves 
intersect at only one point and the x-coordinate of this point is the solution of 
(3), because at the point of intersection the two y 's are equal. By inspecting Fig. 
4.38 we are able to give a good first approximation to this solution: 

X1 = 0.7. 
To apply Newton's method we write (3) in the form 

x - cos x = 0 
and put f(x) = x - cos x so that f' (x) = 1 + sin x. Now, setting our calculator to 
the radians mode, we find that 

_ f(x1 ) _ Xz - x1 - f' (xi )  - 0.739436, 
f(x2) X3 = Xz - f'(xz) = 0.739085, 
f(x3) X4 = X3 - f'(x3) 

= 0.739085. 

This finishes the calculation and gives us the desired solution x = 0.739085 cor
rect to six decimal places. 

Remark In some cases, the sequence of approximations produced by Newton's 
method may fail to converge to the desired root. For example, Fig .  4.39 shows a 
function for which the approximation x1 leads to x2 and x2 leads back to xi ,  so 
repetitions of the process do not bring us any closer to the root r than our initial 
guess. Specific examples of this behavior-and worse-are given in the prob
lems. The mathematical theory providing conditions under which Newton's 
method is guaranteed to succeed can be found in books on numerical analysis. 
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PROBLEMS 

1 

1-1 2 � 

rn . 3 
rn . 4 

rn . 5 

rn . 6 

1-1 7 � 

By sketching the graph of y = f(x) = x3 - 3x - 5, show 
that equation ( 1 )  has only one real root. Hint: Use the 
derivative f' (x) = 3x2 - 3 = 3(x2 - 1 )  to locate the 
maxima and minima of the function and to learn where 
it is increasing and decreasing. 
(a) Show that x3 + 3x2 - 6 = 0 has only one real root, 

and calculate it to six decimal places of accuracy. 
(b) Show that x3 + 3x = 8 has only one real root, and 

calculate it to six decimal places of accuracy. 
Use Newton's method to calculate the positive root of 
x2 + x - 1 = 0 to six decimal places of accuracy. 
Calculate Vs to six decimal places of accuracy by solv
ing the equation x2 - 5 = 0, and use this result in the 
quadratic formula to check the answer to Problem 3 . 
Use Newton's method to calculate � to six decimal 
places of accuracy. 
Consider a spherical shell I ft thick whose volume equals 
the volume of the hollow space inside it. Use Newton's 
method to calculate the shell's outer radius to six deci
mal places of accuracy. 
A hollow spherical buoy of radius 2 ft has specific grav
ity t. so it floats on water in such a way as to displace t 
its own volume. Show that the depth x to which it is sub
merged is a root of the equation x3 - 6x2 + 8 = 0, and 
use Newton's method to calculate this root to six deci
mal places of accuracy. Hint: The volume of a spherical 
segment of height h cut from a sphere of radius a is 
7rh2(a - h/3). 

8 

9 

Suppose that by good luck our first approximation x1 
happens to be the root of f(x) = 0 that we are seeking. 
What does this imply about x2, x3, etc.? 
Show that the function y = f(x) defined by 

f(x) = { ....;;=-;. -� 
x �  r, 
x �  r, 

has the property illustrated in  Fig. 4.39; that is, for any 
positive number a, if x1 = r + a, then x2 = r - a; and if 
x1 = r - a, then x2 = r + a.  

IO Show that Newton's method applied to the function y = 
f(x) = "Vx leads to x2 = -2x1 , and is therefore useless 
for finding where f(x) = 0. Sketch the situation. � 1 1 In Example I of Section 4. l we saw from its graph that 
the function y = f(x) = 2x3 - 3x2 - l 2x + 1 2  has pos
itive zeros close to x = 0.9 and x = 2.9. Use Newton's 
method to calculate these zeros to six decimal places of 

r-i 12 l!!l!l 
r-i 13 l!!l!l 

accuracy. 
Find a solution of 2x = cos x correct to six decimal 
places. 
Find the smallest positive solution of each of the fol
lowing equations, correct to six decimal places: 
(a) 4(x - 1) = sin x; 
(b) x2 = sin x. 

14 How many solutions does the equation 

x = sin x 
have? Why? 

4 . 7 
(OPTIONAL) 

APPLICATIONS TO 
ECONOMICS. 

MARGINAL ANALYSIS 

Ever since its beginning, calculus has served primarily as a tool for the physical 
sciences. The uses of mathematics in the social sciences have arisen more re
cently. In this section we discuss several applications of calculus to microeco
nomics, the branch of economics that studies the economic decisions of individ
ual businesses or industries. More precisely, we focus our attention on the 
production and marketing of a single commodity by a single firm. 

The most important management decisions in a particular firm usually depend 
on the costs and revenues involved. We shall examine applications of derivatives 
to the cost and revenue functions. 

COST, MARGINAL COST, AND AVERAGE COST 

The total cost to a firm of producing x units of a given commodity is a certain 
function of x called the cost function and denoted by C(x). Here x can be the 
number of pieces produced, or the number of pounds, or the number of bushels, 
and so on. The cost C(x) can be measured in dollars, in thousands of dollars, in 
French francs, or in any other monetary unit. 

To determine the cost function C(x) is a difficult task for experts in book
keeping and accounting .  Here, however, we take this function as given. We shall 
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assume, for the sake of definiteness, that x is the number of pieces or units pro
duced, and therefore a nonnegative integer, and also that the cost C(x) is mea
sured in dollars. For most commodities, such as TV sets or calculators, x can 
only be a nonnegative integer, so the graph of C(x) might look like the sequence 
of dots in Fig. 4.40. However, economists usually assume that these dots are con
nected by a smooth curve as shown in the figure. Accordingly, C(x) is understood 
to be defined for all nonnegative values of x, not just for nonnegative integers. 

Many components make up the total cost. Some, like capital expenditures for 
buildings and machinery, are fixed and do not depend on x. Others, like wages 
and the cost of raw materials, are roughly proportional to the amount x produced. 
If this were all, then the cost function would have the very simple form 

C(x) = a +  bx, 
where a is the fixed cost and b is the constant running cost per unit. 

But this is not all, and most cost functions are not as simple as this. The es
sential point is the fact that a time restriction is present, and that C(x) is the cost 
of producing x units of the product in a given time interval, say l week. There 
will then be a fixed cost of a dollars per week, as before, but the variable part 
of the cost will probably increase more than proportionally to x as the weekly 
production x increases, because of overtime wages, the need to use older ma
chinery that breaks down more frequently, and other inefficiencies that arise from 
forcing production to higher and higher levels. The cost function C(x) might then 
have the form 

a +  bx + cx2 or a +  bx + cx2 + dx3, 
or it might be a function even more complicated than these. The general nature 
of such a cost function is suggested in Fig. 4.40. 

The derivative C' (x) of the cost function is called the marginal cost. This de
rivative is, or course, the rate of change of cost with respect to the production 
level x. The economic meaning of this important concept will become clearer as 
we proceed. 

As a first step in this direction we point out that it is a good approximation to 
think of the marginal cost C' (x), at a given production level x, as the extra cost 
of producing one more unit. To see this we recall the definition of the derivative, 

C'( ) = I' C(x + fu:) - C(x) x iJ�o fu: . 

1 47 

Figure 4.40 
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We therefore have the approximation 

C' (x) = 
C(x + � - C(x) , 

where this approximation is good if Ax is "suitably small." It is customary in 
economics to assume that Ax = 1 meets the requirement of being suitably small. 
Therefore we have 

C'(x) = C(x + I) - C(x), 
approximately. In words, the marginal cost at each level of production x is the 
extra cost required to produce the next unit of output [the (x + ! )st unit] . 

Example 1 Suppose a company has estimated that the cost (in dollars) of pro
ducing x units is 

C(x) = 5000 + 7x + 0.02x2. 
Then the marginal cost is 

C'(x) = 7 + 0.04x. 
The marginal cost at the production level of 1 000 units is 

C'( I OOO) = 7 + 0.04(1000) = $47/unit. 
The exact cost of producing the l OO l st unit is 

C(l001 )  - C( I OOO) = [5000 + 7(100 1 )  + 0.02( 100 1 )2] 
- [5000 + 7(1000) + 0.02( 1000)2] 

= $47.02. 
The difference between the marginal cost for x = 1 000 and the exact cost of pro
ducing the l OO l st unit is clearly negligible. 

The graph of a typical cost function is shown in Fig. 4.4 1 .  This cost function 
is increasing because it costs more to produce more. The marginal cost C' (x) is 
the slope of the tangent to the cost curve. The cost curve is initially concave down 
(the marginal cost is decreasing), because it costs more to produce the first piece 
than to produce one more piece when many are being produced; this reflects the 
more efficient use of the fixed costs of production. At a certain production level 
x0 there is a point of inflection Po and the cost curve becomes concave up (the 
marginal cost is increasing), because when we produce almost as much as we 
can, it becomes more expensive to increase production by even a small amount. 
As we suggested earlier, reasons for this might include greater overtime costs or 
more frequent breakdowns of the equipment as we strain our productive capac
ity. 

It is a reasonable view that the most efficient production level for a manufac
turer is that which minimizes the average cost 

which, of course, is the cost per unit when x units are produced. We sketch a typ
ical average cost curve in Fig. 4.42 by noticing that C(x)/x is the slope of the line 
joining the origin to the point P in Fig. 4.4 1 .  We know that some cost is un-
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C(x) 

C(O) 

x 
x 

Figure 4.41 A cost function. Figure 4.42 Marginal cost and 
average cost. 

avoidable even before a single unit is produced- for instance, the capital ex
penditures mentioned earlier, utilities, insurance, and so on-so C(O) > 0. This 
shows that C(x)/x has the limit +oo as x --7 0+. We are particularly interested in 
the minimum that C(x)/x appears to have. To locate this minimum we find the 
critical point x1 of the function C(x)/x by calculating the derivative by means of 
the quotient rule, 

!!:._ ( C(x) ) = xC' (x) - C(x)_ dx x x2 
This derivative must be zero at the critical point, so xC' (x) - C(x) = 0 or 

C'(x) = C(x) . x 
We therefore have the following basic law of economics: 

If the average cost is a minimum, then 
marginal cost = average cost. 

( I )  

I n  other words, a t  the peak of operating efficiency the marginal cost equals the 
average cost. We see from this that the graphs of marginal cost and average cost 
intersect at the point of minimum average cost, as shown in Fig. 4.42. Like other 
principles of economics, this is usually established by extensive verbal discus
sions supported by tables and graphs. However, the calculus derivation is brief 
and clear. 

Equation ( 1 )  has an interesting geometric interpretation for the cost function 
shown in Fig. 4.4 1 :  At the production level x = x1 where C(x)!x has a minimum, 
the line from the origin to the point Pi is tangent to the graph. We can see the 
reason for this by noticing that the average cost C(x)lx decreases as P moves to 
the right along the curve toward P i ,  and then increases as P moves beyond Pi .  
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Example 2 A firm estimates that the cost (in dollars) of producing x units is 
C(x) = 3400 + 4x + 0.002x2. 

(a) Find the cost, marginal cost, and average cost of producing 500 units, 
1 000 units, 1500 units, and 2000 units. 

(b) What is the minimum average cost, and at what production level is this 
achieved? 

Solution (a) The marginal cost is  

C'(x) = 4 + 0.004x. 
The average cost is 

C(x) = 3400 + 4 + 0.002x. x x 
We use these formulas to calculate the entries in the following table, giving all 
amounts in dollars (or dollars per unit) rounded to the nearest cent. 

x C(x) C'(x) C(x)/x 

500 5,900 6 1 1 .80 

I OOO 9,400 8 9.40 

1 500 1 3 ,900 I O  9.27 

2000 1 9,400 1 2  9.70 

(b) When average cost is a minimum, we must have 

marginal cost = average cost, 

C'(x) = 
C(x)

' x 
3400 4 + 0.004x = -- + 4 + 0.002x. x 

This equation simplifies to 

so 

and 

0 002x = 
3400 . x , 

x2 = 1 ,700,000 

x = \/1 ,700,000 = 1 304. 
To verify that this production level actually gives a minimum for C(x)/x, we ob
serve that the second derivative ( C(x)/x)" = 6800/x3 > 0, so the graph of C(x)lx 
is concave up for all x > 0 and we have a minimum. Finally, the minimum av
erage cost is 

ci���4) = �;�� + 4 + 0.002( 1304) = $9.22. 

REVENUE, PROFIT, AND DEMAND 

It is clearly important for a manager to know all about the cost function, but this 
is not enough. The overall purpose of the firm is to make a profit, and for this it 
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is essential to consider the income from sales, or the revenue, as economists call 
it. And this requires us to bring the consumers (buyers) of the product into the 
picture. 

The revenue function R(x) is the total revenue (or income) derived from pro
ducing and selling x units of the product. The marginal revenue is the derivative 
R' (x) of this function. By the same type of interpretation as used above, the mar
ginal revenue can be thought of as the extra revenue received from the sale of 
one more unit, 

R' (x) = R(x + 1) - R(x), 
approximately. 

Example 3 Many business decisions are based on an analysis of the costs and 
revenues "at the margin," or at the edge-hence the expression marginal analy
sis for this kind of thinking. 

To understand this, let us suppose we are running a taxi company in New York 
City and are trying to decide whether to add one more cab to our large fleet. If 
it will make money for the company then we add it ,  otherwise not. Clearly we 
need to consider the costs and revenues involved. Since the choice is between 
adding this cab and leaving the fleet the same size, the crucial question is whether 
the additional revenue generated by one more cab is greater or smaller than the 
additional cost incurred. This additional revenue and cost are precisely the mar
ginal revenue and marginal cost. Therefore, if the marginal revenue is greater 
than the marginal cost, then we should clearly add the cab and increase our profit. 
This is nothing but simple common sense expressed in the economists' language 
of "marginal this" and "marginal that." 

The total profit derived from producing and selling x units is  

P(x) = R(x) - C(x). 
This is called the profit function; it is what is left over from the revenue after the 
cost is deducted. A firm will lose money when production is too low, because of 
fixed costs, and also when production is too high, because of high marginal costs. 
Unless the firm can operate profitably at some in-between level of production, 
the business will fail, so we can assume that the profit curve looks something 
like Fig. 4.43. P(x) 

The marginal profit is the derivative P' (x) of the profit function. In order to 
maximize profit we look for the critical points of P(x), that is, the points where 
the marginal profit is zero. B ut if 

P ' (x) = R'(x) - C' (x) = 0 

then 

R'(x) = C'(x). 
This gives another basic law of economics: 

If the profit is a maximum, then 
marginal revenue = marginal cost. 

To satisfy ourselves that this condition gives a maximum and not a minimum, 
we can use the second derivative test, 

Figure 4.43 A profit function. 

1 5 1 

x 
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x p 

p x 
Figure 4.44 Demand curve. Figure 4.45 Price function. 

P"(x) = R"(x) - C"(x) < 0 
or 

R"(x) < C"(x). 
Thus the profit will be a maximum if 

R' (x) = C'(x) and R"(x) < C"(x). 
In order to put teeth into these generalities, we must consider the nature of the 

consumers who constitute the market. Normally, the higher the price of a com
modity, the smaller the number x that will be sold. Thus x, the number "de
manded," is a decreasing function of the price p of a unit, and this function is 
usually determined by market research. The demand curve ( Fig. 4.44) displays 
this dependence, and under these circumstances the variable x is called the de
mand and the function x = x(p) is the demand function. For the sake of conve
nience in comparing the demand curve with the cost function, economists usu
ally interchange the axes and consider p as a function of x, p = p(x), as shown 
in Fig. 4.45 . This function is called the price function. 

When x units of a commodity are sold at a price of p(x) dollars per unit, then 
the revenue R(x) is evidently the product of the price per unit and the number of 
units sold, R(x) = xp(x), and the profit is 

P(x) = xp(x) - C(x). 
If both the price function p(x) and the cost function C(x) are known, then the law 
stated above can be used to find the value of x that maximizes profit. It is clear 
that this value of x need not be the one that minimizes the average cost, for the 
latter depends only on the cost function C(x). That is, profit depends on the whims 
of the marketplace, while efficiency is an internal matter. 

Example 4 What production level will maximize profit for a firm with cost func
tion 

C(x) = 2400 + 9x + 0.002x2 
and demand function x = 1 2,000 - 500p? 
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Solution First, we point out that the economic meaning of the demand function 
is that no units will be sold (x = 0) at a price of $24 per unit, but for every dol
lar decrease in price, 500 more units will be sold. If we solve for p, then we ob
tain the price function 

I p(x) = 24 - 500 x. 

The revenue function is therefore 

I R(x) = xp(x) = 24x - 500 x2, 

so the marginal revenue is 

and the marginal cost is 

R'(x) = 24 - 2!0 x 

C' (x) = 9 + 0.004x = 9 + 2!0x. 

When the profit is a maximum, then marginal revenue equals marginal cost, that 
is, 

and solving yields 

I I 24 - 250 X = g + 250 X, 

or x = 1 875 .  

To verify that this gives a maximum we calculate the second derivatives, 

II ) I R (x = - 250 ' C"(x) = 2!0 · 
Since R"(x) < C"(x) for all x, the production level x = 1 875 maximizes profit. 
The corresponding price is p( l 875) = $20.25. 

ELASTICITY OF DEMAND 

The nature of the demand curve in Fig. 4.44 depends on the particular product 
under consideration. It is relatively flat (or inelastic) for bread and motor oil, 
since people tend to buy what they need without much regard for the price, and 
relatively steep (or elastic) for candy, since no one really needs it but more peo
ple buy more of it when the price is low. 

The elasticity of demand is an important concept of quantitative economics. 
To introduce it in a precise way, let (p, x) be an arbitrary point on the demand 
curve in Fig. 4.44. If p increases by a small amount !J..p and - fu is the corre
sponding decrease in x, then the ratio of the percentage decrease in x to the per
centage increase in p is 

100(-ii.t/x) 
100(/::i.plp) 

The elasticity of demand E(p) at the price level p is now defined by 

1 53 
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. ( p ih) p dx E(p) = hm -- - = - - -. 
t;.p-?0 x D.p x dp 

The demand is said to be elastic if E(p) > 1 and inelastic if E(p) < 1 .  The pos
itive function E(p) is a useful tool of economic analysis because it measures the 
responsiveness of the demand to changes in the price p :  it is small when the de
mand curve is relatively flat, so that changes in p induce relatively smaller changes 
in x, and large when this curve is relatively steep. It also has the merit of being 
independent of the units of measurement used for p and x. This is a great con
venience in many economic and business situations .  For example, changing the 
units of p from dollars to French francs, say, and the units of x from pounds to 
kilograms would leave the value of the elasticity E(p) unchanged, because this 
quantity involves only the percentage changes in p and x. 

Example 5 In Example 4 the demand function is x = 1 2,000 - 500p. Find E(p ) .  
At what price p i s  the demand elastic? Inelastic? 

Solution From the definition we have 

E(p) = _!!.._ dx = x dp 
p 

1 2,000 - SOOp . ( -SOO) 

SOOp 
12,000 - SOOp 

_P_ 
24 - p " 

From Example 4 we understand that 0 < p < 24, so the condition E(p) > 1 is 
equivalent to 

_P_ > I 24 - p or p > 24 - p or 2p > 24 or p > 12, 

so the demand is elastic for p > 1 2. Similarly, the demand is inelastic for p < 12. 
To understand what this means,  we observe that when the revenue is expressed 
as a function of p (instead of x) we have R(p) = p( l 2,000 - 500p) = 500p · 

(24 - p). It is easy to see from this that revenue is maximized for p = 12 .  There
fore to maximize revenue, the price must be lowered if the demand is elastic and 
raised if the demand is inelastic. These conclusions are valid for any decreasing 
demand function, whether it is linear or not (see Problem 26). 

The commonsense interpretation of all this is clear: If the demand is elastic at 
a given price, then a price decrease by a certain percentage causes a proportion
ally larger increase in sales, so the revenue, which is the product of price and 
sales, is increased. Similarly, if the demand is inelastic, then a price increase by 
a certain percentage causes a proportionally smaller decrease in sales, so again 
the revenue is increased. 

The discussions of this section suggest several ways in which derivatives can 
be used in economics. The most influential contribution to this subject in the 
twentieth century was perhaps Keynes's General Theory of Employment, Inter
est and Money, which has been characterized as "an endless desert of econom
ics, algebra and abstraction, with trackless wastes of differential calculus, and 
only an oasis here and there of delightfully refreshing prose.'" This may be some-

•chapter IX of The Wordly Philosophers, by Robert L. Heilbroner. 
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what exaggerated for the sake of its juicy phrases, but nevertheless the general 
impression is valid-that modern economics makes extensive use of many kinds 
of mathematics, especially calculus. 

PROBLEMS 

rn In Problems 1-4 a cost function (in dollars) is given for pro
ducing x units of a certain commodity. In each case find the 
marginal cost at the production level of 500 units and also the 
actual cost of producing the 501 st unit. 

I C(x) = 1 5 ,000 + 1 3x + 0.03x2. 
x x2 

2 ccx) = 400 + 10 + 100. 
3 C(x) = 5000 + 1 5x - O.Olx2 + 0.000 lx3. 
4 C(x) = 3000 + l OOVx. 

rn For each of the cost functions in Problems 5- 10, find the min
imum average cost and the production level at which this is 
achieved. 

S C(x) = 8000 + 1 5x + x2. 
6 C(x) = 2400 + 3x + 0.02x2. 
7 C(x) = 60 + t x + � x2. 
8 C(x) = 5000 + 2x + 0.00 lx3. 

x2 
9 C(x) = 2Vx + 900 . 

10 C(x) = 10,000 + 8x + 4x312. 
For each of the cost and price functions in Problems 1 1-1 6, 
find the production level that maximizes profit. 
I I  C(x) = 1 240 + 8x + 0.02x2, p(x) = 16. 
1 2  C(x) = 1 240 + 8x + 0.02x2, p(x) = 1 6  - fc>x. 
1 3  C(x) = 900 + 35x + 0.001x2, p(x) = 65 - 5box. 
14 C(x) = 750 + 1 40x - 0.2x2 + iox3, 

p(x) = 300 - tx. rn I S  C(x) = 4500 + 50x - x2 + 0.002x3, 
p(x) = 80 - O .O lx. 

1--i x2 � 1 6  C(x) = 6000 + 1 5x - 200 + 0.001x3, 
p(x) = 1 20 - 0.05x. 

1 7  A Broadway theater has seats for 2000 playgoers. With 
the ticket price at $50, the average attendance at a mod
erately successful play has been 1 200. When the ticket 
price was lowered to $40, the average attendance rose to 
1 400. 
(a) Find the price function, assuming that it is linear. 
(b) What should the ticket price be to maximize revenue? 

In Problems 1 8-2 1  use the given demand function to find the 
selling price p that maximizes the revenue. 
18  x = 1 200 - 20p. 
19 x = 800 - 2.5p. 
20 x = 160 - p312 . 
21 x = 768 - p2. 

22 

1--i 23 � 

24 

25 

26 

A perfect competitor is an enterprise that has such a small 
share of the market that it cannot influence the price of 
its product and can sell as much as it produces at the pre
vailing market price p. Figure 4.46 shows the cost and 
revenue curves of a certain perfect competitor. Sketch the 
profit curve. 

/ 
/ 

/ 
/ 

/ 

Figure 4.46 

/ 
/ 

R(x) = px/
/ 

/ 
/ 
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The daily cost to a small company of producing x hand 
calculators is C(x) = 1 560 + 50x - 8x2 + tx3 dollars. 
The market price of this calculator is $ 1 30. What is the 
maximum daily profit, and what is the daily output x that 
yields this profit? 
A small company with fixed costs (overhead ) of a dol
lars produces x units of a commodity which it sells at a 
fixed price of p dollars per unit. If it costs b dollars to 
produce each unit, where b < p, at what output level does 
the company break even, and what is the graphical in
terpretation of this break-even point? 
Suppose the company in Problem 24 produces trout fish
ing instructional videotapes for $8 that it sells for $30. 
If the overhead is $ 14,000, how many tapes must be sold 
to break even? 
Consider a demand curve x = x(p ), where x(p) is any de
creasing function. 
(a) If E(p) > 1 ,  show that the revenue R = px is in

creased by lowering the price. 
(b) If E(p) < 1 ,  show that the revenue is increased by 

raising the price. 
(c) Establish the formula 

dR 
dp = x[ l - E(p)] ,  
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and use this to deduce that E(p) = 1 at a point on 
the demand curve where the revenue is a maximum. 

27 Verify the conclusion in part (c) of Problem 26 for each 
of the demand curves in Problems 1 8-2 1 :  

CHAPTER 4 REVIEW: CONCEPTS, METHODS 

Define, state, or think through the following. 
1 Increasing and decreasing functions. 
2 Critical points and critical values. 
3 Relative (or local) maximum and minimum values. 
4 Absolute maximum and minimum values. 
5 Procedure for curve sketching. 
6 Endpoints, cusps, and comers. 
7 Concave up and concave down. 
8 Point of inflection. 

ADDITIONAL PROBLEMS FOR CHAPTER 4 

SECTION 4. 1 

Sketch the graphs of the following functions by using the first 
derivative and the methods of Section 4. 1 ;  in particular, find 
the intervals on which each function is increasing and those 
on which it is decreasing, and locate any maximum or mini
mum values it may have. 

1 y = fx3 - f x2 - 2x + �. 
2 y = x3 + 6x2 + l 2x + 8 .  
3 y = -x3 + 3x + 2. 
4 y = x3 + 3x - 2. 
5 y = x4 - 6x2 + 8x. 
6 y = (x + 2)3(x - 4)3. 
7 y = x4 - 4x3 + 16. 
8 y = 3x5 - 1 Ox3 + I Sx + 3 .  
9 y = x2(x + 1 )2. 

10 y = x3(x - 1 )2. 
X3 

* 1 2 y = �. 

14 16 3 1 y = 3x + -. 
x 

16 y =  4(x - I )  
x2 

18 4 - 2x y = �. 

20 5x2 - 20x + 2 1  y =  
x2 - 4x + 5 

*21 y = x2(x - 4)213. 

22 y = Vx + � - 2v'2. 

x 13 y = 
(x + I )2 

. 

15 

17 

1 9  

y =  4(x2 - 1 )  
x4 

1 6  
y = x 2  + 2· x 

5x2 + 2 y = 
x2 + 1 . 

(a) x = 1 200 - 20p; 
(b) x = 800 - 2.Sp; 
(c) x = 1 60 - p312; 
(d) x = 768 - p2. 

9 Second derivative test. 
1 0  Strategy for applied maximum-minimum problems. 
1 1  Law of reflection. 
12 Snell's law of refraction. 
13 Fermat's principle of least time. 
J 4 Rate of change. 
15 Strategy for related rate problems. 
16 Newton's method. 

SECTION 4.2 

For each of the following, locate the points of inflection, find 
the intervals on which the curve is concave up and those on 
which it is concave down, and sketch. 

23 y = x3 + x. 
24 y = x3 + 3x2 + 6x + 7. 
25 y = x3 - 12x + 2. 
26 y = x4 - 2x2. 
27 y = x4 + 4x3 . 

28 y = (x + 2)(x - 2)3 . 
29 y = x4 - 4x3 - 2x2 + 12x - I .  

x 30 y =  ---

w+I '  
x3 *3 1  y = 

x2 + 3a2 (a > 0). 
1 

Y = 
x3 + 1 · *32 

*34 x3 
y = 

(x - 1 )2 · 
6 6 36 y = - + -
x x2 ' 

37 In each part of this problem, use the given formula for 
the second derivative of a function to locate the points 
of inflection, the intervals on which the graph is con
cave up, and the intervals on which the graph is con-
cave down: 
(a) y" = x2(x - l )(x - 2)2; 
(b) y" = (x2 + 2)(x + 2)2(x - l )(x - 2); 
(c) y" = x(x - l )(x2 - 4)(x - 3). 

38 If f(x) = (x - a)(x - b)(x - c), find the x-coordinate 
of the point of inflection. Hint: See Additional Prob
lem 22 in Chapter 3. 
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39 Find the value of a that makesf(x) = ax2 + l/x2 have 
a point of inflection at x = 1 .  

*40 Consider the general cubic curve y = ax3 + bx2 + 
ex + d. 
(a) Show that the curve has one and only one point of 

inflection, 

2b3 be where k = 27a2 - Tc; + d. 

(b) Show that the curve has one maximum point and 
one minimum point if and only if b2 - 3ae > 0. 

(c) When the curve has a maximum point P and a min
imum point Q, show that the abscissa (x-coordi
nate) of I is the average of the abscissas of P and 
Q. Hint: Recall how to find the sum of the roots 
of a quadratic equation from its coefficients. 

( d )  Part ( c) suggests that our general cubic curve might 
be symmetric with respect to its point of inflec
tion I. Prove this by ( I )  introducing a new X-axis 
and Y-axis by means of 

b X = x + -3a and y = y - k, 

so that the origin of the XY-system is the point I; 
(2) showing that the equation of our curve in the 
XY-system is 

Y = aX (x2 - b2 �)ae} 
and (3) observing that this transformed equation 
is symmetric with respect to the origin of the XY
system. 

SECTION 4.3 

41 Find the positive number that exceeds its cube by the 
largest amount. 

42 Find two positive numbers x and y such that their sum 
is 30 and the product xy4 is a maximum. 

43 Find two positive numbers x and y such that their sum 
is 56 and the product x3y5 is a maximum. 

44 (Generalization of the preceding problems) Let m and 
n be given positive integers. If x and y are positive 
numbers such that x + y = S, where S is a constant, 
show that the maximum value of the product P = xmy" 
is attained when 

mS x = --m + n  and nS y = m + n · 
*4S Express the number 1 8  as the sum of two positive num

bers in such a way that the sum of the square of the 
first and the fourth power of the second is as small as 
possible. 

46 Find the positive number such that the sum of its cube 
and 48 times the reciprocal of its square is as small as 
possible. 

47 The sum of three positive numbers is 15 .  Twice the 
first plus three times the second plus four times the 
third is 45 . Choose the numbers so that the product of 
all three is as l arge as possible. 

*48 (A generalization of Problem 6 in Section 4.3) Con
sider a rectangle with sides 2x and 2y inscribed in a 
given fixed circle x 2 + y2 = a2, and let n be a positive 
number. We wish to find the rectangle that maximizes 
the quantity z = x" + y". If n = 2, it is clear that z has 
the constant value a2 for all rectangles. If n < 2, show 
that the square maximizes z; and if n > 2, show that 
z is maximized by a degenerate rectangle in which x 
or y is zero. 

49 Show that of all triangles with given base and given 
perimeter, the one with the greatest area is isosceles. 
Hint: Use Heron's formula for the area, 

A = Ys(s - a)(s - b)(s - e), 

where a, b, e are the sides and s is the semiperimeter 
(half the perimeter). 

SO Show that of all triangles with given base and given 
area, the one with the least perimeter is isosceles. Hint: 
If the base lies on the x-axis and is bisected by the ori
gin, and if the third vertex (x, h) has a fixed height 
above the x-axis, then the triangle is isosceles if x = 

0. 
Sl If a and b are positive constants, the region between 

the parabola a2y = a2b - 4bx 2 and the x-axis is a par
abolic segment of base a and height b. Find the base 
and height of the largest rectangle with lower base on 
the x-axis and upper vertices on the parabola. 

S2 A circle of radius a is divided into two segments by a 
line L at a distance b from the center. The rectangle 
of greatest possible area is inscribed in the smaller of 
these segments. How far from the center is the side of 
this rectangle that is opposite to the line L? 

*S3 Two straight fences meet at a point, but not necessar
ily at right angles. A post stands in the angle between 
them. If a triangular corral is constructed by building 
a new straight fence containing this post, show that the 
fenced-off triangle has minimal area when the old post 
is in the center of the new fence. (Notice that this gen
eralizes the result of Problem 7 in Section 4.3.) 

*S4 A line through a fixed point (a, b) in the first quad
rant intersects the x-axis at A and the y-axis at B. Show 
that the minimum values of AB and OA + OB are 

*SS 

(a2/3 + b2;3)3;2 and (Va + Vhf. 

(A generalization of Example 4 and Problem 26 in 
Section 4.3) First, notice that areas of similar figures 
are proportional to the squares of corresponding 
lengths, as in Fig. 4.47, where 

A =  e 1 p2 = ezd2 = eµ2 = e4y2 
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p 

ya :..-- -
- --

y 
Figure 4.47 

for suitable constants C J ,  c2, c3, c4. Here p is the 
perimeter, d is the diameter-the length of the longest 
chord-and x and y are the indicated lengths. The con
stants CJ ,  c2, c3, c4 are evidently the areas when p = 
1 ,  d = 1 ,  x = 1 , y = I .  Now, cut a wire of length L 
into two pieces and use these pieces as the perimeters 
p and P of figures of two specified shapes ( Fig. 4.48), 
so that p + P = L. Then the sum of the areas is 

A = A J + A1 = ap2 + bP2 = ap2 + b(L - p)2, 

� r� � l:J 
Figure 4.48 

where 0 � p � L (we allow either perimeter to be 
zero). Show that 
(a) the minimum combined area is abL2/(a + b), cor

responding to 
b p = -- L a + b  and P = -

a
- L" a +  b ' 

(b) the maximum combined area is the larger of the 
one-figure areas al 2 and bl 2, corresponding to 
p = L and p = 0. 

Also, verify that these conclusions contain as special 
cases the results of Example 4 and Problem 26 in Sec
tion 4 .3 .  
A printed page must have A square inches of printed 
matter and is required to have side margins of width 
a inches and top and bottom margins of width b inches. 
Find the length of the printed lines if the page is de
signed to use the least paper. 
For a certain printed page, the widths of the four mar
gins (possibly all different) and the area of the printed 
matter are specified. Show that the least paper is re
quired if the full page is similar in shape to the rec
tangle of printed matter. 
A dormer window has the shape of a rectangle sur
mounted by an equilateral triangle. If the total perime
ter is fixed, find the proportions of the window (i.e., 
the ratio of the height of the window to its base) that 
will admit the most light. 

59 A long strip of sheet metal 8 in wide is to be made 
into a rain gutter by turning up two sides at right an
gles to the bottom. If the gutter is to have maximum 
capacity, how many inches should be turned up on the 
sides? 

60 A playing field is to be built in the shape of a rectan
gle with a semicircular part at each end, and the 
perimeter is to be a race track of specified length. Find 
the proportions of the field that will give the rectan
gular part as large an area as possible. 

61 A farmer wishes to use 5 acres of land along a straight 
river to construct 6 small pens by means of a fence 
parallel to the river and 7 fences perpendicular to it. 
Show that if the total amount of fencing is to be min
imized, the parallel fence should be as long as all the 
others combined. 

62 An automobile manufacturer estimates that he can sell 
5000 cars a month at $ 10,000 each and that he can sell 
500 more cars per month for each $200 decrease in 
price. 
(a) What price per car will bring the largest gross in

come? 
(b) If each car costs $4000 to make, what price will 

bring the largest total profit? 
63 A manufacturer of electric knives estimates that her 

weekly production costs are given by the formula C = 
9500 + 8x + 0.00025x2, where x is the number of 
knives manufactured in a week.t The sales department 
estimates that if the selling price is set at y, then x = 
13,000 - 500y knives can be sold.* How many knives 
should be manufactured each week, and what should 
their selling price be, in order to achieve maximum 
profit? 

':'64 The cost for fuel of running a large paddlewheel steam
boat at a speed of v miles per hour through still water 
is $v3/24 per hour. Other costs-wages, insurance, 
etc.-are $ 1 08 per hour. What is the most economi
cal speed for a certain trip upstream against a current 
of 2 mi/h? 

65 A feedlot operator has a herd of 200 cows in his pens, 
each weighing 600 lb. The cost of keeping one cow 
for a day is 80 cents . The cows are gaining weight at 
the rate of 8 lb/day. The market price for cows is now 
$ 1 .25/lb, but is dropping I cent a day. How many days 
should the operator wait in order to sell his cows for 
the largest profit? 

tThe overhead is $9500 per week; the cost of labor and materials is 
$8 per knife; and the term 0.00025x2, which is small unless x is very 
large, says -in effect-that the factory has a fixed size and loses ef
ficiency if too much production is attempted. 

*This formula says that sales are expected to be 5000 at a selling price 
of $ 1 6, with a loss of 500 sales for each $ I  increase in price. 



ADDITIONAL PROBLEMS FOR CHAPTER 4 1 59 

66 An estimate of the numerical value of a certain quan
tity is to be determined from n measurements x1 , x2, 
. . .  , Xn· The least squares estimate is the number x 
that minimizes the sum of the squares, 

S = (x - x1 )2 + (x - x2)2 + · · · + (x - X11)2. 

Show that this least squares estimate is the arithmetic 
mean of the measurements, 

x =  
XJ + X2 + . . .  + X11 

n 
67 As a woman starts jogging across a 300-ft bridge, a 

man in a canoe passes directly below the center of the 
bridge. The woman is moving at the rate of 9 ft/s and 
the man at the rate of 1 2  ft/s. 
(a) What is the shortest horizontal distance between 

the woman and the man? 
(b) If the bridge is 288 ft high, what is the shortest 

distance between the woman and the man? 

SECTION 4.4 
68 Find the height of the cylinder of maximum lateral 

area that can be inscribed in a sphere of radius R. Show 
that this maximum lateral area is half the surface area 
of the sphere. 

69 A cylinder is generated by revolving a rectangle of 
given perimeter about one of its sides. What is the 
shape (ratio of height to diameter of base) of the cylin
der of maximum volume? 

*70 The cone of smallest possible volume is circumscribed 
about a given hemisphere. What is the ratio of its 
height to the diameter of its base? 

71  I f  the volume of  a cone i s  fixed, what shape (ratio of 
height to diameter of base) minimizes its total surface 
area? 

72 A pyramid has a square base and four equal sloping 
triangular faces. If the total area of the bottom and 
faces is given, show that the volume is greatest when 
the height is v'2 times the edge of the base. 

73 A cylinder is generated by revolving a rectangle about 
the x-axis, where the base of the rectangle lies on the 
x-axis and its upper vertices lie on the curve y = 
xl(x2 + 1 ). What is the largest volume such a cylinder 
can have? 

74 (A problem of Kepler) Consider a cylinder with a given 
fixed distance D from the center of a generator to the 
farthest point of the cylinder. If this cylinder has the 
largest possible volume, what is the ratio of its height 
to the diameter of its base? 

75 A solid is formed by cutting hemispherical cavities in 
the ends of a cylinder. If the total surface area of this 
solid is given, find the shape of the cylinder (ratio of 
height to diameter of base) that maximizes the volume 
of the solid. 

76 A given cone has height H and radius of base R. A 
second cone is inscribed in the first with its vertex at 
the center of the base of the given cone and its base 
parallel to the base of the given cone. Find the height 
of the second cone if its volume is as large as possi
ble. 

77 Closed cylindrical cans are to be made with a speci
fied volume. There is no waste involved in cutting the 
sheet metal that goes into the curved lateral part, but 
each end is to be cut from a square piece of metal and 
the scraps discarded. Find the ratio of the height to the 
diameter of the base that minimizes the cost of sheet 
metal. 

78 A certain tank consists of a cylinder with hemispher
ical ends. For a given surface area, describe the shape 
of the tank with maximum volume. 

79 A rectangle of tin whose sides are a and b is to be 
made into an open-top box by cutting a square from 
each corner and bending up the flaps to form the sides. 
How large a square should be cut from each corner to 
make the volume of the box as large as possible? 

80 An aquarium is to be 4 ft high and is to have a vol
ume of 88 ft3. The base, ends, and back are to be made 
of slate, and the front is to be made of special rein
forced glass that costs 1 .  7 5 times as much as the slate 
per square foot. What should the dimensions be to min
imize the cost of materials? 

81 A circular filter paper of radius a is to be formed into 
a conical filter by folding under a circular sector. Find 
the ratio of the radius to the depth for the filter of great
est capacity. 

82 A frame for a cylindrical lampshade is to be made from 
a piece of wire 20 ft long. The frame consists of two 
equal circles, four wires from the upper circle to the 
lower circle, and two diametrical wires in the upper 
circle. Find the height and radius that will maximize 
the volume of the cylinder. 

83 A box with a lid is to be made from a square sheet of 
cardboard 18 in on a side by cutting along the dotted 
lines as shown in Fig. 4.49. The cardboard is then 

I I I I I I 
_ .J  

-, I 

Figure 4.49 

r-1 
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folded up to form the ends and sides, and the flap is 
folded over to form the lid. What are the dimensions 
of the box of greatest volume? 

84 On a calm day the atmospheric pollution spreading out 
from a city is directly proportional to the population 
of the city and inversely proportional to the distance 
from the city. A retired forester wishes to start a tree 
nursery somewhere on a straight highway between two 
cities 60 km apart. If the first city is four times as large 
as the second, where should the forester locate his 
nursery to minimize the effect of pollution on his 
young trees? 

85 The x-axis is the southern shore of a lake containing 
a small island at the point (a, b) in the first quadrant. 
A woman at the origin can run r meters per second 
along the shore and can swim s meters per second, 
where r > s. If she wants to reach the island as quickly 
as possible, how far should she run before she starts 
to swim? 

86 Two towers 30 m apart are 30 and 70 m high, respec
tively. A taut wire fastened to the top of each tower is 
anchored to the ground between the towers. How far 
from the shorter tower will the wire touch the ground 
if its total length is a minimum? (Can you solve this 
problem without calculus?) 

87 Find the equation of the circle with center at the ori
gin that is internally tangent to the parabola 8y = 48 -
x2. 

88 Sketch the curve y = w+l6 and find the point on 
it that is closest to the point (6, 0). 

*89 Find the point on the parabola y2 = 3x that is closest 
to the point ( 4, I ). 

90 What points on the curve x2y = 1 6  are closest to the 
origin? 

91 For what points on the circle x2 + y2 = 25 i s  the sum 
of the distances from (2, 0) and (-2, 0) a minimum? 

92 Let P = (x, y) be a variable point on the line ax + 
by + c = 0 and let P0 = (x0, y0) be a fixed point not 
on this line. 
(a) If s is the distance from Po to P, use the methods 

of calculus to show that s2 (and therefore s) is a 
minimum when PP0 is perpendicular to the given 
line. 

(b) Show that the minimum distance is 
lax0 + by0 + c l 

Va2 + b2 
93 A smooth graph not passing through the origin always 

has a point (x0, y0) that is closest to the origin. t If this 

tFor the purposes of this problem, interpret the phrase "smooth graph" 
to mean the graph of a function y = f(x) defined for all x or on a 
closed interval a :s x :s b, whose derivative f' (x) exists in the interior 
of its domain. 

point is not an endpoint, show that the line from the 
origin to (xo, Yo) is perpendicular to the graph. 

94 If a, b, c are positive constants, show that ax + b/x 2'. 
c for all positive numbers x if and only if 4ab 2'. c2. 

95 If a, b, c are positive constants, show that ax2 + b/x 2'. 
c for all positive numbers x if and only if 27ab2 2'. 4c3. 

96 Consider the general quadratic function f(x) = ax2 + 
bx + c with a >  0. By calculating the minimum value 
of this function, show thatf(x) 2'. 0 for all x if and only 
if b2 - 4ac :s 0. 

97 By applying the idea of Problem 96 to the function 

f(x) = (a 1x + b1 )2 + (a2x + b2)2 + · · · + (anX + b,,)2, 
establish Schwarz 's inequality: 
Ja1 b 1 + · · · + a,,b,, I 

:s (a1 2 + . . . + a,, 2) 1 12(bi 2 + . . .  + b,, 2) 1 12. 
Also show that equality holds here if and only if 
there exists a number x such that b; = -a;x for every 
i = 1 ,  2, . . .  , n. 

SECTION 4 .5  

98 A cubic block of ice is melting at the rate of 6 in3/min. 
How fast is its surface area changing when its edge is 
1 2  in long? 

99 A light is on the ground 50 ft from a building. A man 
6 ft tall walks from the light toward the building at 4 
ft/s. Find how rapidly the length of his shadow on the 
building is decreasing (a) when he is 40 ft from the 
building; (b) when he is 30 ft from the building. 

100 Two airplanes are flying westward on parallel courses 
9 mi apart. One flies at 425 mi/h and the other at 500 
mi/h. How fast is the distance between the planes de
creasing when the slower plane is 1 2  mi farther west 
than the faster plane? 

101 A conical tank with its vertex down is 8 ft high and 4 
ft in diameter at the top. It is full of water, but the wa
ter is leaking out through a hole in the bottom at the 
rate of 1 ft3/min. Find the rate at which the water level 
is falling when the tank is f empty. 

102 Assume that water squirts out a hole in the bottom of 
a tank at a speed proportional to the square root of the 
depth y of the water. If the tank has the shape of a cone 
with its vertex down, show that the rate of change of 
the depth is 

dy = c 
dt - y3/2 

where c is a positive constant. 
103 Water is being pumped into an open-top cylindrical 

tank of radius 5 ft at the rate of 6 ft3/min. At the same 
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time, water is squirting out a hole in the bottom of the 
tank at the rate of 2Vy ft3/min, where y is the depth 
of the water. How high must the tank be for the water 
level to stabilize before it overflows? 
A long rectangular tank has a sliding panel that di
vides it into two adjustable tanks of width 4 ft (see 
Fig. 4.50). Water is pumped into the left compartment 
at the rate of 1 2  ft3/min. At the same time the panel is 
moved steadily to the right at the rate of 1 ft/min. In 
each of the following situations determine whether the 
water level is rising or falling, and how fast: (a) the 
left compartment contains 144 ft3 of water and is 9 ft 
long; (b) the left compartment contains 144 ft3 of wa
ter and is 1 8  ft long. 

1 2 ft3 /min 

Figure 4.50 

A large volume V of oil is spilled into a calm sea from 
a broken tanker. After the initial turbulence has died 
down, the oil spreads in a circular pattern of radius r 
and uniform thickness h, where r increases and h de
creases in a manner determined by the viscosity and 
buoyancy of the oil. Laboratory experiments suggest 
that the thickness is inversely proportional to the 
square root of the elapsed time, h = c/Vt. Show that 
the rate dr!dt at which the oil spreads is inversely pro
portional to t314. 
String of radius fo- in is being wound onto a ball at the 
rate of 32 in/s. If the ball is assumed to remain spher
ical and to consist entirely of string with no empty 
space, find the rate at which its radius is increasing 
when the radius is 2 in. 
Thread is being unwound at the rate of a inches per 
second from a spool of radius r inches. The unwound 
part of the thread has length x inches and is stretched 
taut into a segment PT tangent to the spool at the point 
T. Find the rate of increase of the distance y from the 
axis of the spool to the point P at the end of the thread. 
Meteorologists are interested in the adiabatic expan
sion or compression of large masses of air, in which 
temperatures may change but no heat is added or sub
tracted. The adiabatic gas law for air is p V1 .4 = c, 

where p is pressure, V is volume, and c is a constant. 
The volume of a certain insulated chamber of air is 

decreasing steadily at the rate of 1 ft3/min. Find how 
rapidly the pressure is increasing at an instant when 
the pressure is 65 lb/in2 and the volume is 1 3  ft3 . 

109 If a rocket weighs 1000 lb on the surface of the earth, 
then it weighs 

1 000 W = ( 1  + r/4000)2 

pounds when it is r mi Jes above the surface of the earth. 
If the rocket is rising at the rate of 1 .25 mi/min, how 
fast is it losing weight when its altitude is 1000 mi? 

110 Wheat is being poured into a pile at the constant rate 
of 36 ft3/min. If the pile always has the shape of a cone 
whose height is half the radius of the base, at what 
rate is the height increasing when the diameter of the 
pile is 1 2  ft? 

1 1 1  Gravel is being poured onto a pile, forming a cone. If 
the radius of the base is increasing at the rate of 
3 m/min and the height is increasing at the rate of 
l m/min, how rapidly is the volume increasing when 
the height is 4 m? 

1 12 A chord moves across a circle of radius 5 ft at the rate 
of 4 ft/min. How fast is the length of the chord de
creasing when it is f of the way across the circle? 

1 13 A point moves along the parabola x2 = 4py in such a 
way that its projection on the x-axis has constant ve
locity. Show that its projection on the y-axis has con
stant acceleration. 

1 14 Two points A and B are moving along the x-axis and 
y-axis, respectively, in such a way that the perpendic
ular distance k from the origin 0 to the segment AB 
remains constant. If A is moving away from 0 at the 
rate of 4k units per minute, find how fast OB is chang
ing, and whether it is increasing or decreasing, at the 
moment when OA = 3k. 

1 15 One side of a rectangle is increasing at the rate of 
7 in/min and the other side is decreasing at the rate of 
5 in/min. At a certain moment the lengths of these two 
sides are 10 and 7 in, respectively. ls the area of the 
rectangle increasing or decreasing at that moment? 
How fast? 

1 16 Two concentric circles are expanding. At a certain mo
ment, designated by t = 0, the inner radius is 2 ft and 
the outer radius is 1 0  ft; and for t > 0, these radii are 
increasing at the steady rates of 4 ft/min and 3 ft/min, 
respectively. If A is the area between the circles, when 
will A have its largest value? 

*1 17 Two concentric spheres are expanding. At time t = 0, 
the inner and outer radii r and R have the values ro 
and Ro feet, respectively. For t > 0, these radii are in
creasing at the steady rates of a and b feet per minute, 
where a > b > aro21R02. If V is the volume between 
the spheres, when will V have its largest value? 
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SECTION 4.6 IEJ 1 18 Show that each of the following equations has only 
one real root, and calculate it to six decimal places: 
(a) x3 + 5x - 2 = O; (b) x3 + 2x - 4 = 0. IEJ 1 19 Calculate each of the following to six decimal places 

120 

of accuracy: 
(a) Vll; (b) "\16.9; (c) m. 
Let a be a given positive number and xi a positive 
number that approximates Va. 
(a) Show that Newton's method applied to the equa

tion x2 - a = 0 gives x2 = iCx1 + a/xi) as the next 
approximation.t 

(b) If xi * Va, show that the approximation iCx1 + 
a/x i )  is greater than Va, regardless of whether x1 
is greater than Va or less than Va. Hint: Show 
that the inequality iCx1 + a/xi) > Va is equiva
lent to (Vx;° - v;;;;;-)2 > 0. 

(c) If the approximation x1 is too large, i.e., if 
x1 > Va, show that iCx1 + a/xi) is a better ap
proximation in the sense that 

_!_ (x1 + _E__) - Va < XJ - Va. 2 X 1  
(d ) Assume that the approximation x1 i s  too small, i .e., 

x1 < Va, but is large enough so that x1 > t"Va. 
Show that iCx1 + a/xi ) is a better approximation 
in the sense that 

_!_ (xi + _E__) - Va <  Va - XJ .  2 XJ 
Hint: Show that this inequality is equivalent to x1 + 
a!x1 - 2Va < 2Va - 2x1 , 3x1 - 4Va + alx1 < 
0, and 

(3x1 - Va)(x1 - Va) 0 -"'-'-'-'------''-'-'--'---� < . XJ 
121 If a is a given positive number and --<ra is calculated 

by applying Newton's method to the equation x3 -
a = 0, show that 

xi = + ( 2x1 + x�2 ) . 
IEJ 1 22 Consider a spherical shell 1 ft thick whose volume is 

twice the volume of the hollow space inside it. Use 
Newton's method to calculate the shell's outer radius 

[El 1 23 
to six decimal places of accuracy. 
A conical paper cup is 4 in deep and 4 inches in di
ameter. Its vertex is pushed up inside, as shown in Fig. 
4.5 1 .  How far does its tip penetrate the space inside 

tsee Additional Problem 4 at the end of Chapter I .  

the cup if the new volume is four-fifths of the origi
nal volume? 

2 

- --

-1 '\/ I 1 10 

14 i�J-:_� \ I I ' I I \ 1"f- x 
- _ _ _ _ _ __ _ \!/ 
Figure 4.51 

1 24 The formula in Problem 7 of Section 4.6 was discov
ered by Archimedes. Use it to show that if a plane at 
distance x from the center of a sphere of radius 1 cuts 
off t the volume of the sphere, then x is a solution of 
the equation 

3x3 - 9x + 2 = 0. 
Use Newton's method to calculate x correct to six dec
imal places. 

SECTION 4.7 

1 25 An economist studying a certain appliance business 
finds that the overhead and wholesale cost involved in 
handling x electric mixers a week is 56 + 24x dollars, 
and that each week x = 30 - iP mixers are sold at a 
retail price of p dollars apiece. What retail price should 
she advise the owner to charge in order to earn the 
greatest profit? 

126 (a) Suppose a manufacturer can sell x bicycles per 
year at a price of p = 300 - O.O lx dollars apiece, 
and that it costs him C(x) = 60,000 + 15x dollars 
to produce the x bicycles. For maximum profit, 
what should his production be and what price 
should he charge? 

(b) If the government imposes on the manufacturer a 
tax of $25 for each bicycle and the other features 
of the situation are unchanged, how much of the 
tax should he absorb himself and how much should 
he pass on to his customers if he wishes to con
tinue making the maximum profit? 

127 If the marginal revenue from producing x units of a 
certain commodity is 40 - fo-x2 dollars/unit and the 
marginal cost is 10 + fo-x2 dollars/unit, how many 
units should be produced to maximize the profit? 



INDEFINITE 
INTEGRALS AND 

DIFFERENTIAL 
EQUATIONS 

Our work in the preceding chapters was concerned with the problem of tangents 
as described in Section 2 . 1 -given a curve, find the slope of its tangent; or equiv
alently, given a function, find its derivative. 

In addition to launching the full-scale study of derivatives, Newton and Leib
niz also discovered that many problems in geometry and physics depend on "back
wards differentiation," or "antidifferentiation." This is sometimes called the in
verse problem of tangents: Given the derivative of a function, find the function 
itself. 

In this chapter we work with the same derivative rules as in Chapter 3. Here, 
however, these rules are read backwards, and lead in particular to the "integra
tion" of polynomials. Even these relatively simple procedures have some re
markable applications, which we discuss in Section 5 .5 .  

As we know, the definition of the derivative f' (x) of a function y = f(x) can be 
stated as follows: 

f'(x) = lim ily . 6.x--70 ilx ( 1 )  

It is understood here that Lix i s  a nonzero change i n  the independent variable x, 
and that Liy = f(x + Lix) - f(x) is the corresponding change in y. In Section 2 .3  
we introduced the equivalent notation 

dy 
dx (2) 

for this derivative, and we emphasized there that (2) is a single symbol and not 
a fraction. However, it is certainly true that (2) looks like a fraction, and in some 
circumstances it even acts like one. The most important example Gf this is the 
chain rule, 

dy du dy P:C[ dy 
du dx = P:C[ dx = dx' 

where the correct formula for the derivative of a composite function is obtained 
by canceling as if the derivatives were fractions. 
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Our present purpose is to give individual meanings to the pieces of (2), namely, 
to dy and dx, in such a way that their quotient is indeed the derivative f' (x). Our 
reasons for doing this are difficult to explain in advance. Suffice it to say that 
this notational device is a necessary prelude to the powerful computational meth
ods introduced in this chapter-integration by substitution, and the solution of 
certain differential equations by separating the variables. 

We begin  by considering the special case in which y is a linear function of x, 

y = mx + b. (3) 

Let P = (x, y) be a point on this line ( Fig. 5 . 1 ) .  If x is given an increment Li.x 
and if the corresponding increment in y is Lly, then the slope of the line (3) is 

so 

change in y Lly m =  = -
change in x Llx '  

Lly = m Llx. (4) 

When working in this way with increments along a straight line, we denote these 
increments by the symbols dx and dy, so that by definition 

dx = Llx and dy = Lly, 

and we call them differentials. With this notation, (4) becomes 

dy = m dx. 
Now consider an arbitrary function 

Y = f(x), 

(5) 

(6) 

and assume that this function has a derivative at x. If P is the corresponding point 
on the graph ( Fig. 5 . 2) ,  then the tangent at P is the straight line PR with slope 
m = f' (x). B y  the differentials d:x and dy arising from (6), we mean the incre
ments in the variables x and y that are associated with this tangent line. To state 
this more precisely, the differential d:x of the independent variable x is any in
crement Li.x in x, as shown, 

dx = Llx; (7) 

and the differential dy of the dependent variable y is the corresponding increment 
in y along the tangent line, namely, 

dy = f'(x) dx. (8) 
Thus, as Fig. 5.2 shows, if dx = Li.x = PQ is any change in x, then �Y = QS and 
dy = QR are the corresponding changes in y along the curve and along the tan
gent line, respectively. We observe that (8) reduces to (5) when f(x) = mx + b. 

If dx =f. 0, then we can divide (8) by it and obtain 

: = f'(x). (9) 

Up to this point equation (9) has been trivially true because its two sides have 
been merely two different ways of writing the same thing, namely, the derivative 
of the function y = f(x). The new feature of (9) in our present discussion is that 
now the Leibniz symbol on the left not only looks like a fraction but is a frac
tion, 



5.2 DIFFERENTIALS AND TANGENT LINE A PPROXIMATIONS 

dy differential of y 
dx 

= differential of x · 
The Leibniz notation for derivatives makes it particularly easy to produce the dif
ferential formula (8) when the function y = f(x) is given, by computing the de
rivative and multiplying by dx. The calculation in the first column gives the gen
eral pattern, 

Y = f(x) 

dy = f'(x) 
dx 

dy = f'(x) dx 

Y = x2 

dy 
= 2x 

dx 

dy = 2x dx, 
and the calculation in the second column shows how it works for the special case 
y = x2 . A little experience with the use of this notation makes us realize that we 
can proceed directly from y = x2 to the formula dy = 2x dx without bothering to 
write the intermediate step dy/dx = 2x. We emphasize that a differential on the 
left side of an equation requires that the right side must also contain a differen
tial. Thus, we never write dy = 2x, but instead dy = 2x dx. 

It is often convenient to write df(x) instead of dy. 

Example J As illustrations of this remark we have 

d(x2) = 2x dx, 

and 

d(5x4) = 20x3 dx, d (l) = (-_!_) dx = -dx' x x2 x2 

d(x4 + 7x2 + 6) = (4x3 + 1 4x) dx, 

d(x sin x) = (x cos x + sin x) dx. 

Our familiar formulas for calculating derivatives can now be given useful equiv
alent formulations in the notation of differentials. Suppose y = f(u), so that dy = 
f'(u) du. Then for various choices of the function /Cu) we get the formulas 

d(u") = nun- I  du, d(sin u) = cos u du, ( 1 0) 

and so on. When the differential notation is used in this way, it allows us to write 
derivative formulas without any need to mention the independent variable. In this 
spirit, if we multiply the product and quotient rules by dx, then they take the form 

d(uv) = u dv + v du and d 
(.!!..) = v du - u dv

. 
v v2 

Further, if we have y = f(u), and u in tum is a function of another variable x, 
say u = g(x), then we can substitute du = g ' (x) dx in the formula dy = f' (u) du 
and obtain 

dy = f'(u)g ' (x) dx. 

This is the differential version of the chain rule 

dy dy du 
dx du dx 

( 1 1 )  

( 1 2) 

that we mentioned earlier. In both versions ( 1 1 )  and ( 1 2) ,  the chain rule appears 
to be the result of simple algebraic manipulations of differentials.  It is this per-
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x 
Figure 5.3 

dy : } f f(x + dx) 
- -dx- - - 1  f(x) + dy 

l J 
x + dx 

INDEFINITE INTEGRALS AND DIFFERENTIAL EQUATIONS 

feet key-in-the-lock fit with the chain rule that makes the differential notation 
such an indispensable tool in calculus, as we shall see in the next section and 
thereafter. 

Example 2 In the following specific applications of formulas ( 1 0) we see the 
differential chain rule in action: 

and 

d(x2 + 1 )4 = 4(x2 + 1 )3 d(x2 + I )  

= 4(x2 + 1 )3 · 2 x  dx 

= 8x(x2 + 1 )3 dx, 

d(sin 4x3) = cos 4x3 d(4x3) 

= cos 4x3 · 1 2x2 dx 

= 1 2x2 cos 4x3 dx. 

Most people who use calculus routinely as a tool in their work think of dif
ferentials as very small quantities, even though the definitions contain no such 
requirement. There are several good reasons for this. One such reason can be 
seen in Fig. 5 .2, which shows that the tangent to a curve hugs the curve closely 
near the point of tangency. This means that when dx is small, the curve is virtu
ally indistinguishable from its tangent, and therefore the differential dy, which is 
comparatively easy to calculate, provides a very good approximation to the ex
act increment �y, which may be harder to calculate. We express this as a prac
tical procedure in the following way ( Fig. 5 . 3 ) :  

When f(x) and f '  (x) have been found for a particular value of x so  that dy = f '  (x) dx 
is known, then we can use the formula 

f(x + dx) = f(x) + dy ( 1 3) 

to compute approximate values of the function at nearby values of x. 

Formula ( 1 3) is called a tangent line approximation, or sometimes a linear ap
proximation. 

Example 3 Use differentials to find an approximate value for V'28. 

Solution The evaluation of Vx is easy for x = 27, so we take y = f(x) = Vx 
and dx = 1 .  Since dy = +x-213 dx, we have 

and therefore 

dy = _1_(27)-213 • I = -1
- = ___!___ 3 3 . 9 27 ' 

€8 = f(28) = f(27) + dy 
= 3 + -& = 3.037. 

The actual value of V'28 (by calculator) is 3.036588972 . . . .  Our approximation 
by differentials is therefore accurate to three decimal places even when dx = 1 .  
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Of course, the calculation in this example has little practical value, because 
calculators can easily find cube roots to great accuracy. The real purpose of the 
example is to emphasize that differentials provide good linear approximations to 
the increments of more complicated functions. We will understand the great im
portance of this idea more clearly in a later chapter, when we work with differ
entials of functions of several variables. 

Perhaps a few more examples would not be amiss. 

Example 4 Calculate the actual and approximate volumes of a 4.01 -ft cube. 

Solution If x is an edge, then the volume is V(x) = x3 . The actual volume is 
V(4.0 1 )  = (4.0 1)3 = 64.48 1 20 1  ft3 . Now dV = 3x2 dx, and by putting x = 4 and 
dx = 0.0 1 we have the approximate volume 

V(4.0 l )  = V(4) + dV = 43 + 3 -42(0.0 1 )  = 64.48 ft3, 

which is not bad. 

Example 5 If the earth's radius were increased by 1 ft, approximately how much 
would its surface area increase? 

Solution The surface area of a sphere of radius r is A = 41Tr2, and the earth's 
radius is about 4000 mi.* If we approximate the actual increment M of the sur
face area by the differential dA evaluated at r = 4000 with dr = 1 ft, we get 

�A = dA = 87Tr dr = 87T(4000) · 52
1
80 mi2, 

since 1 ft = 1/5280 mi. By doing the arithmetic we find that LlA = 19.04 mi2. 
This is close to the area of Manhattan Island, which is about 22 mi2 . 

Example 6 If the earth's  radius were to shrink by 1 in, approximately how much 
would its volume decrease? 

Solution The volume of a sphere of radius r is V = f7rr3, so dV = 47TT2 dr and 

� V = dV = 47T( 4000)2 . ( 1 2  
�

5
1
280 ) 

= -3 173.32 mi3. 

The minus sign appears here because r decreases, so the answer is that the vol
ume decreases about 3 1 73 .32 mi3 . 

Remark 1 One of our standard notations for the second derivative of a function 
y = f(x) is d2y!dx2. In view of our work in this section it is desirable to point out 
that the numerator, d2y, and the denominator, dx2, have absolutely no meaning 

'In this example and the next we ignore minor irregularities like mountain ranges and deep ocean 
trenches, and the ellipsoidal shape of the earth, and assume that the earth is a perfect sphere of ra
dius 4000 mi. 
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(x + dx, y + dy) 

Slope = c!2:' 
dx 

Figure 5.4 The Leibniz myth. 

INDEFINITE INTEGRALS AND DIFFERENTIAL EQUATIONS 

by themselves and will never be given such a meaning. The expression d2yldx2 
is an inseparable symbol representing the second derivative and is written this 
way for reasons explained in the second paragraph of Section 3.6. 

Remark 2 The Leibnizian myths about curves and differentials. The modem 
concept of limit did not arise until the early nineteenth century, so no definition 
of the derivative resembling equation ( 1 )  was possible for Leibniz or his imme
diate successors. What were the early ideas about the nature of derivatives and 
differentials? 

Most of the fruitful mathematical thinking of the period was based on one form 
or another of the notion of the "infinitely small." Leibniz's attitude toward the 
equation 

dy = Jim �y 
dx Lil-->O � 

would have been essentially as follows: As Lil approaches zero, both �y and Lil 
become "infinitely small" or "infinitesimal" together. It is therefore reasonable 
to think of the limit dy/d.x as the quotient of two infinitesimal quantities denoted 
by dy and dx and called "differentials." In Leibniz's imagination, an infinitesimal 
was a special kind of number that is not zero and yet is smaller than any other 
number. 

There was also a geometric version of these ideas, in which a curve was thought 
of as consisting of an infinite number of infinitely small straight line segments 
( Fig. 5 .4) .  A tangent was a line containing one of these tiny segments. To find 
the slope of the tangent at a point (x, y), we move an infinitesimal distance along 
the curve to a point (x + dx, y + dy) and observe that the slope of the infinites
imal segment joining these two points is the quotient of two infinitesimals, dy/dx. 

We have suggested that Leibniz introduced his differentials dx and dy to de
note corresponding infinitesimal changes in the variables x and y. To get an idea 
of how these differentials were used, let us suppose that the variables x and y are 
related by the equation 

y = xz. 
Leibniz would then replace x and y by x + dx and y + dy to obtain 

y + dy = (x + dx)2 = x2 + 2x dx + dx2, 
which in view of ( 14) yields 

dy = 2x dx + dx2. 

( 1 4) 

( 1 5) 

At this stage Leibniz would simply discard the term d.x2 and arrive at our famil
iar formula 

dy = 2x dx, 
which after division by dx takes its fractional form 

dy . dx = 2x. 

( 1 6) 

( 1 7) 

He would j ustify this step by claiming that any square of an infinitely small num
ber is "infinitely infinitely small," or "an infinitesimal of higher order," and there
fore entirely negligible. For Leibniz the derivative was a genuine quotient, a quo-
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tient of infinitesimals as calculated in formula ( 1 7) and illustrated in Fig. 5 .4, 
and his form of calculus came to be widely known as "infinitesimal calculus." 

It may be instructive to compare this Leibnizian use of infinitesimals with the 
modem approach based on limits. Thus, with the function y = x2, if ilx is a given 
nonzero change in x and Lly is the corresponding change in y, then by essentially 
the same calculation as above we obtain 

�y = 2x ilx + ilx2. 

Instead of discarding the term il.x2 as Leibniz would have done, in the modem 
approach we divide through by ilx to obtain the quotient Lly/Llx and then define 
the derivative to be the limit of this quotient as ilx approaches zero, 

dx
dy 

= lim �� = lim (2x + iix) = 2x. 
LU-->0 UA LU-->0 

This produces formula ( 1 7) in a way that replaces the use of infinitesimals by a 
limit calculation. 

The ideas of Leibniz worked with almost miraculous ease and effectiveness, 
and dominated the historical development of calculus and the physical sciences 
for almost 1 50 years. However, these ideas were flawed by the fact that infini
tesimals in the sense described above clearly do not exist, for there is no such 
thing as a positive number that is smaller than all other positive numbers. 
Throughout this period of more than a century the enormous success of calculus 
as a problem-solving tool was obvious to all, and yet no one was able to give a 
logically acceptable explanation of what calculus is. The fog that obscured its 
fundamental concepts was at last dispelled in the early nineteenth century by the 
classical theory of limits. Fortunately the early mathematicians of the modem pe
riod-Leibniz himself, the Bemoullis, Euler, Lagrange-had sound intuitive 
feelings for what was reasonable and correct in the problems they studied. Even 
though their arguments often lacked rigor from the modem point of view, these 
pioneers rarely went astray in their conclusions. 

If a myth is a veiled, condensed, symbolic expression of a more complicated 
and perhaps partially hidden truth, then mathematics has its myths just as his
tory and literature do. Leibniz's differentials were banished from "official calcu
lus" by the theory of limits, but nevertheless they remain a living part of the 
mythology of the subject.* 

*It should be added that a logically acceptable concept of infinitesimals was constructed in the 1 960s 
by the American mathematician Abraham Robinson [see his book Non-Standard Analysis (North
Holland Publishing Co., 1 966), especially Sections I . I  and 10. l ] .  While Robinson's achievement is 
of great interest to logicians and mathematicians, his ideas depend on mathematical logic and ab
stract set theory and are not likely to have much influence on the teaching or learning of calculus. 

PROBLEMS 

Calculate each of the following. 
1 d(7x9 - 3x5 + 34). 2 

3 d(x2�). 4 

d(�). 5 d(Y 4x - x2). 

d (�) . x + 3  7 d(3x213 + 1 0x115 - 1 7x). 

6 d (�) . 
8 d [ (� � �;3 J 
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9 

1 1  

1 2  

1 3  

1 4  

1-i lS t:_:_;_;j 

d(x2�). 10 d(Yx + Vx+l). 
Use differentials to find dy/dx, given that 

3u - I y = u2 - u and u = (x3 + 2)5. 

Use differentials to find dy/dx, given that 

u + 1 y = -;=I' 
v3 + 6 v  - 2 u = -----

Vv"=I v = x4 + 5x2 - 3. 

Consider a circle of radius r and area A = Trr2 .  If the ra
dius is increased by a small amount !:ir, find the incre
ment tiA and the differential dA. Draw a sketch, and ob
serve that tiA is the area of the thin circular ring between 
two concentric circles .  Use the fact that the inner circle 
has circumference 2Trr to understand geometrically why 
dA is a good approximation to tiA. 
A sphere of radius r has volume V = f7rr3 and surface 
area A = 4Trr2. If the radius is increased by a small 
amount !:ir, find ti V and dV. In the spirit of Problem 1 3 ,  
understand geometrically why dV i s  a good approxima
tion to tiv. 
A coat of paint of thickness 0.02 in is applied to the faces 
of a cube whose edge is 1 0  in, thereby producing a 

slightly larger cube. Use differentials to find approximately 
the number of cubic inches of paint used. Also find the exact 
amount used by computing volumes before and after paint
ing. 

IEJ In Problems 16-23, use differentials to find approximate val
ues for the given quantities. In each case use a calculator to 
find the value correct to six decimal places, and compare. 
1 6  \'.183. 17 65213. 
1 8  Vi02. 19 80314. 
20 \/li9. 21 �. 
22 sin 59°. (Remember: First translate into radians.) 
23 cos 32°. 

IEJ In Problems 24-26, find the approximate amount by which 
the radius of the earth would have to be increased to produce 
additional surface area the size of each of the given states. 
24 Rhode Island (=  1 2 1 5  mi2). 
25 Colorado (= 1 04,250 mi2). 
26 Alaska (= 580,400 mi2). 
27 Suppose a red ribbon is wrapped tightly around the earth 

at the equator. Approximately how much must the rib
bon be lengthened if it is to be strung on poles 20 ft above 
the ground all the way around the earth? 

5 . 3 
If y = F(x) is a function whose derivative is known, say, for example, 

d 
INDEFINITE INTEGRALS. dx F(x) = 2x, ( 1 )  

INTEGRATION BY 
SUBSTITUTION 

can we discover what the function F(x) i s?  It doesn't take much imagination to 
write down one function with this property, namely, F(x) = x2. Moreover, adding 
a constant term doesn' t  change the derivative, so each of the functions 

and more generally 

x2 + 1 , x2 - V3, x2 + 5Tr, 

x2 + c 
where c is any constant, also has the property ( 1 ) . Are there any others? The an
swer is no. 

The justification for this answer lies in the following principle: 

If F(x) and G(x) are two functions having the same derivative f(x) on a certain inter
val, then G(x) differs from F(x) by a constant, that is, there exists a constant c with the 
property that 

G(x) = F(x) + c 
for all x in the interval. 

To see why this statement is true, we notice that the derivative of the difference 
G(x) - F(x) is zero on the interval, . 
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d d d dx [G(x) - F(x)] = dx G(x) - dx F(x) = f(x) - f(x) = 0. 

It now follows that this difference itself must have a constant value c, so 

G(x) - F(x) = c or G(x) = F(x) + c, 
which is what we wanted to establish.* 

This principle allows us to conclude that every solution of equation ( 1 )  must 
have the form x2 + c for some constant c. 

The problem just discussed involved finding an unknown function whose de
rivative is known. If f(x) is given, then a function F(x) such that 

d dx F(x) = f(x) (2) 

is called an antiderivative of f(x), and the process of finding F(x) from f(x) is 
antidi.fferentiation. We have seen that f(x) does not have a single, uniquely de
termined antiderivative, but if we can find one antiderivative F(x), then all oth
ers have the form 

F(x) + c 

for various values of the constant c. For example, tx3 is one antiderivative of x2, 
and the formula 

fx3 + c 

comprises all possible antiderivatives of x2 . 
For historical reasons, an antiderivative of f(x) is usually called an integral of 

f(x), and antidifferentiation is called integration. The standard notation for an in
tegral of f(x) is 

J t<x) dx, 

which is read "the integral of f(x) dx." The equation 

J f(x) dx = F(x) 

(3) 

is therefore completely equivalent to (2). The function/(x) is  called the integrand. 
The "elongated S" symbol in (3) is called the integral sign, and was introduced 
by Leibniz in the earliest days of calculus. Its origin will become clear in the 
next chapter. 

To illustrate a point of usage, we remark that the formulas 

Jx2 dx = fx3 and I x2 dx = tx3 + c (4) 

are both correct, but the first provides one integral while the second provides all 
possible integrals. For this reason the integral (3) is usually called the indefinite 

*The crucial step in this reasoning can be expressed in several different ways: for instance, if the rate 
of change of a function is always zero, then the function cannot change and therefore must be con
stant; or equivalently, if every tangent line to a graph is horizontal, then the graph can neither rise 
nor fall and therefore must be a horizontal straight line. The theoretical basis for this inference is 
called the Mean Value Theorem and is examined more closely in Section 2.6. 

1 7 1  
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integral, in contrast to the definite integrals discussed in the next chapter. The 
constant c in the second formula of (4) is called the constant of integration and 
is often referred to as an "arbitrary" constant. Our previous discussion shows that 
to find all integrals of a given function /(x), it suffices to find one integral by any 
method that works-calculation, intelligent guessing, or asking a knowledgeable 
friend-and then to add an arbitrary constant at the end. 

Every derivative that we have ever calculated can be reversed and rewritten as 
an integral. In particular, the power rule 

becomes 

For our present purposes the formula 

d xn+ I - -- = xn 
dx n + I  

is a more convenient version of the power rule. This gives the form of the inte
gral that we shall memorize and use, 

f Xn+ I 
x" d.x = -n + I '  n =t- - 1 . (5) 

In words :  To integrate a power, add 1 to the exponent and divide by the new ex
ponent. 

Example 1 The following integrals are all special cases of (5) : 

f x4 I x3 dx = - = - x4 4 4 , f xs13 I xsn d.x = __ = _ x573 
573 573 ' 

f d.x = Jx-5 d.x = x-4 = __ I_ 
x5 -4 4x4 ' 

f f xm 2 Vx d.x = xl l2 dx = T = 3 x312. 2 

The reader will notice that when n = - 1 ,  the right side of (5) has zero de
nominator and is therefore meaningless. The treatment of this case, that is, the 
determination of the integral 

f �, 
is one of the most important and fascinating parts of calculus, with a wide vari
ety of applications. We return to this problem in Chapter 8. 

The following additional integration rules are also slightly disguised versions 
of familiar facts about derivatives: 

J cf(x) d.x = c J j(x) d.x (6) 

and 

J [f(x) + g(x)] dx = J f(x) dx + J g(x) dx. (7) 
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The first says that a constant factor can be moved from one side of the integral 
sign to the other. It is important to understand that this does not apply to vari
able factors, as can be seen from the fact that 

J x2 dx i= x J x dx, 

since the left and right sides are, respectively, tx3 and x · fx2 = fx3. Formula (7) 
says that the integral of a sum is the sum of the separate integrals. This applies 
to any finite number of terms. 

To verify (6) and (7), it is enough to notice that they are equivalent to the dif
ferentiation formulas 

and 

d d dx cF(x) = c dx F(x) 

d d d dx [F(x) + G(x)] = dx F(x) + dx G(x), 

where (d/dx)F(x) = f(x) and (d/d.x)G(x) = g(x). 

Example 2 When rules (5), (6), and (7) are combined, they enable us to inte
grate any polynomial. For instance, 

J(3x4 + 6x2) dx 
= 3 J x4 dx + 6 J x2 dx 

= tx5 + 2x3 + c 

and 

J (5-2x5 + 3x1 1 ) dx 
= 5 J dx 

- 2 J x5 dx + 3 J x1 1  dx 

= Sx - }x6 + fx12 + c. 
Observe that J dx = J I  dx = x. In each of these calculations an arbitrary con
stant is added at the end so that all possible integrals are included. 

Example 3 We can also integrate many nonpolynomials that are expressible as 
linear combinations of powers: 

JV dx 
= J x213 dx = tx513 + c; 

f 2x3 - x2 - 2 J x2 dx = (2x - 1 - 2x-2) dx 

2 
= x2 - x + - + c; x 

x x dx = (5x- ll6 - 2x-516) dx ! 5 113 _ 2 - 113 f 
Vx 

= 6x516 - 12x116 + c. 
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The formula 

J un+ I  
u" du = -n + l '  n -:/=  - 1 , (8) 

appears to be a trivial variation of (5) in which the letter x is replaced by u. How
ever, let us think of u as some function f(x) of x and take du seriously as the dif
ferential of u, so that 

u = f(x) 

and 

du = f'(x) dx. 

Then (8) becomes 

n -:/=  - 1 , (9) 

which is a far-reaching generalization of (5). 

Example 4 In practice, we usually exploit this idea by explicitly changing the 
variable in order to reduce a given complicated integral to an integral of the sim
ple form (8).  For instance, in the case of 

J(3x2 - 1 ) 1 134x dx, 

we notice that the differential of the expression in parentheses is 6x dx, which 
differs from 4x dx only by a constant factor, so we write 

u = 3x2 - 1 ,  

du = 6x dx, 
x dx = -/;du. 

These equations constitute a small "dictionary" that enables us to translate the 
given integral from the x-notation to the u-notation, as follows: 

f C3x2 - 1 ) 1134x dx = Ju113 · 4 · -I;  du = f Ju113 du 

= f .  tu4/3 + c = ±u413 + c; 

and by returning to the x-notation we obtain our result, 

f C3x2 - 1 ) 1134x dx = ±C3x2 - 1 )413 + c. 

This method is called integration by substitution, because it depends on a sub
stitution or change of variable to simplify the problem. As formula (9) suggests, 
the success of the method depends on having an integral in which one part of 
the integrand is essentially the derivative of another part-where "essentially" 
means "except for a constant factor." 

Remark 1 The integral in Example 4 was deliberately constructed so that the 
method of substitution works. To emphasize this point, we observe that the sim
i lar integral 
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J<3x2 - 1 ) 113 dx ( 10) 

seems to be "simpler" than the one in Example 4 but is actually much more dif
ficult because the integrand lacks the important factor x. If we try the substitu
tion that worked before, we get 

J (3x2 _ 1 ) 113 d.x = Ju 1 13 . :: , 

and there is no practical way to get rid of the x in the denominator. Jn a later 
chapter we will study deeper methods that succeed in this type of problem, but 
just now there is nothing further we can do. 

Remark 2 Many students are tempted to try to integrate ( 10) by writing 

J(3x2 - l ) l /3 dx = (3x2 - 1 )4/3 = l (3x2 - 1 )4/3 + c 4D 4 ' ( 1 1 ) 

which is incorrect. To understand why this is incorrect, recall that in calculating 
integrals we can always check our work quite easily, for if we have a suspected 
integral of a function f(x), we can test it by computing its derivative to see if the 
result really equals f(x). It is clear that ( 1 1 )  fails  this  test, because the derivative 
of the right side is  

i · �(3x2 - l ) l /3 · 6x = (3x2 - 1 ) 1136x, 

which is certainly not the integrand of ( 10) .  

Finally, our derivative formulas for the sine and cosine yield the following im
portant integration formulas: 

J cos u du = sin u + c ( 1 2) 

and 

J sin u du = -cos u + c. ( 1 3) 

These are tools with innumerable applications, ranging from the theory of prob
ability to the propagation of sound waves. 

Example S (a) To integrate 

J cos 3x d.x, 

we look at ( 1 2) and see that we must put u = 3x so that du = 3 dx and dx = I  du. 
We then write 

J cos 3x dx = J cos u · t du = t J cos u du 

= t sin u + c = t sin 3x + c. 

(b) To integrate 

Jx sin ( 1  - x2) dx, 
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we put u = 1 - x2 so that du = -2x dx and x d.x = -± du, and then use ( 1 3) :  

f x sin ( I  - x2) dx = f s in  u · (-I du) = -t f s in  u du 

= I cos u + c = I cos ( I  - x2) + c. 

Remark 3 It is clear from Examples 4 and 5 that the notation of differentials is 
extremely useful for calculating indefinite integrals by the method of substitu
tion. This method strikes many students as a kind of magic. To understand why 
it is legitimate (magic is not allowed in mathematics ! ), Jet us consider the form 
of integral to which the method applies: 

f f[g(x)]g ' (x) dx. ( 1 4) 

What we have done above is put u = g(x) and then write du = g'(x) d.x. The in
tegral ( 1 4) now takes the new form 

J f[g(x)]g' (x) dx = J f(u) du. 

If we can integrate this ,  so that 

J f(u) du = F(u) + c 

or 

F'(u) = f(u), 

then since u = g(x) we want to be able to integrate ( 1 4) by writing 

ff[g(x) ]g ' (x) dx = ff(u) du = F(u) + c = F[g(x)] + c. ( 1 5 ) 

All that is needed to justify this procedure is to observe that ( 1 5) is a correct re
sult, because 

! F[g(x)] = F' [g(x)]g ' (x) = f[g(x)]g'(x) 

by the chain rule. It is therefore the chain rule that allows us to work with the 
symbols dx and du after the integral signs as if they were differentials.  This 
smooth compatibility with the chain rule is the main reason for the extraordinary 
value of the differential notation in calculus. 

Finally, it may be helpful to students if we give a formal outline of the process 
of integration by substitution: 

1 Make a careful choice of u, say u = g(.x) . 
2 Compute du = g' (.x) dx. 
3 Substitute g(x) = u and g' (x) dx = du in the given integral. At this point the 

integral must be wholly in terms of u, and no x's should be present. If this is 
not the case, try another choice of u. 

4 Calculate the integral obtained in Step 3 .  
5 Replace u by g(x) to express the final result wholly in terms of x. 
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PROBLEMS 

In Problems 1-36, compute the integrals. Be sure to include 
the constant of integration in each answer. 

I f (x + 1 )  dx. 2 J(3x - 2) dx. 
3 f(x2 + x3 + x4) dx. 4 f x7 dx. 

5 J �· 6 Jc3x2 + 2x + 1 )  dx. 

7 Jx314 dx. 

J dx 9 
� · 

13 J 3 �x dx. 

15  f x2( 1  + x3) dx. 
17 J(7 + x) dx. 
19 f(4x5 + 6x - 5) dx. 
21 J x� dx. 

23 J( Vx - 14x512 + ;2 ) dx. 

24 J (txl12 - 5) dx. 

26 J(v- �) dx. 

28 flO dx. 
30 f( l 2x5 - 3x-2) dx. 

32 J (2x + 3)2 dx Vx . 
34 f x4(5 - l 2x55) dx. 
36 f� dx. 

8 f x2(x2 - 1 )  dx. 
10 J (600x - 6x5) dx. 

1 2  J(2x - 7 ) dx. 

14 Jx2Vx dx. 
16 f x715 dx. 
1 8  J :6 dx. 

20 J( l - 2x2 - 3x3) dx. 

22 J(:4 + 2x312 - 5) dx. 
25 f ()13 - )14 ) dx. 

27 J( � - +x713) dx. 

29 f (4x3 - 8x + 17) dx. 
31 f x113(x + 2)2 dx. 

33 J Vx(2 - 3x2)2 dx. 

35 f l OOx499 dx. 

In Problems 37-44, compute the integrals by using the given 
substitutions. 
37 JY3 + 4x dx, u = 3 + 4x. 
38 f� x dx, u = 3x2 + 1 .  

J dx 
39 (2x _ 3)2 , u = 2x - 3 .  

40 Jx2( 1  - 4x3) 115 dx, u = 1 - 4x3. 
41 J x dx _ 2 �' u - 5 - 4x . 

2 
42 Jx213(2 - x513)-5 dx, u = 2 - x513. 

43 JO +:;:;) 1 14 dx, u = 1 + Vx. 

J (2 + 3x) dx _ 2 44 \! , u - 1 + 4x + 3x . 1 + 4x + 3x2 
In Problems 45-58, compute the integrals by using substitu
tions of your own devising. 

45 f Vx2 + x4 dx. 
47 J dx 

(7 - x)7 ' 
49 Jx� dx. 

J 3x2 dx 
5 1  

w-=s · 
53 f( lOx + 1 0) 10 dx. 
55 JxY(3x2 + 4)3 dx. 
57 J ( 1 8x2 - 2) dx

. 
Y3x3 - x + 2 

46 J dx 
(x - 7)7 ' 

J 4 dx 
48 v(x'-=-i)3 . 
50 f 24x( 4x2 - 1 )9 dx. 

J 40 dx 
52 (4x + 5)6 ' 
54 f x6(x7 + 8)9 dx. 
56 Jx2� dx. 

58 J (4 + 12x) dx 
v1 - 2x - 3x2

. 

59 Integrate f (x3)4 · 3x2 dx as f u4 du and also as f3x 14 dx, 
and compare your results. 

60 Integrate f(x3 + 1 )2 · 3x2 dx as f u2 du and also by mul
tiplying out, and compare your results. 

61  Find the integral of  3x2 that has  the value 1 0  when x = 2. Hint: Since every integral of 3x2 has the form 
y = x3 + c, find the value of c that makes y = 1 0  when x = 2. 

62 Find the integral F(x) of Vx with the property that F(9) = 9. 
63 Find the following integrals :  

(a) f cos 2x dx; 
(b) f sin 5x dx; 
(c) f(4 cos 2x + 1 5  sin 5x) dx; 
(d) J(sin 2x + cos 5x) dx. 

64 Construct an example to show that 

J f(x)g(x) dx = (f f(x) dx )(f g(x) dx) 
is not a valid integration formula. 

65 (a) Show that 

is not true. 
(b) Calculate 

Jsin2 x dx = t sin3 x 

Jsin2 x dx 

by using the half-angle formula sin2 x = t( 1 -
cos 2x). 

(c) Use differentiation to verify the correctness of your 
answer in (b). 
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66 Find the following integrals: 
(a) f sin(2 - x) dx; 
(b) f x cos x2 dx; 
(c) f x3 sin x4 dx. 

67 Find the following integrals :  
(a) f sin4 x cos x dx; 
(b) f cos5 x sin x dx; 
(c) f cos x cos( sin x) dx. 

5 . 4 
DIFFERENTIAL 

EQUATIONS . 
SEPARATION OF 

VARIABLES 

INDEFINITE INTEGRALS AND D IFFERENTIAL EQUATIONS 

68 Show that both of the following integrals are correct: 

J dx I 
( 1  - x)2 = I - x and f dx x 

( I  - x)2 = 1 - x · 

Explain. 
69 Calculate f sin x cos x dx 

(a) by using the substitution u = sin x; 
(b) by using u = cos x. 
Reconcile your answers in (a) and (b) . 

We have seen that the equation 

J f(x) dx = F(x) 

is equivalent to 

d 
dx F(x) = f(x). 

This statement can be interpreted in two ways. 

( I )  

(2) 

(a) In accordance with the explanation in Section 5 .3, we can think of the sym
bol 

f . .  . dx 

as operating on the function f(x) to produce its integral, or antiderivative, F(x). 
From this point of view the integral sign and the dx go together as parts of a sin
gle symbol; the integral sign specifies the operation of integration, and the only 
role of the dx is to tell us that x is the "variable of integration." 

(b) A second interpretation is suggested by our treatment of Examples 4 and 
5 in Section 5 .3 .  Let us write (2) in the form 

dF(x) = f(x) dx, 

so thatf(x) dx is explicitly seen to be the differential of F(x). If we now take dx 
in ( 1 )  at its face value, as the differential of x, then the integral sign in ( 1 )  acts 
on the differential of a function F(x), namely, on f(x) dx, and produces the func
tion itself. Thus, the symbol J for integration (without considering the dx as part 
of the symbol) stands for the operation which is the inverse of the operation de
noted by the symbol d. 

We shall use both interpretations. However, the second is particularly conve
nient, not only for the actual procedures used in computing integrals, but also for 
solving certain simple differential equations. 

A differential equation is an equation involving an unknown function and one 
or more of its derivatives. The order of such an equation is the order of the high
est derivative that occurs in it. 

In the process of integration we have been solving first-order differential equa
tions of the form 

�� = f(x), 

where f(x) is a given function. Thus, the equation 
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dy 
= 3x2 dx is equivalent to 

and we integrate to obtain the solution, 

Jdy = J3x2 dx or 

dy = 3x2 dx, 

y = x3 + c.  

Notice that a constant of integration arises on both sides here, 

(3) 

(4) 

but this can be written as y = x3 + (c2 - c1 ) , and no generality is lost by re
placing c2 - c1 by c. Accordingly, it suffices to add a constant of integration to 
one side only, as we have done in (4). 

We can also handle more complicated differential equations. Let us find y if 

dy = - 2xy2 dx . 

If we set aside the obvious trivial solution y = 0, this can be written as 

- d; = 2x dx. y 
Integration now yields 

or 

1 - = x2 + c y 

I y = x2 + c · 

(5) 

(6) 

This is called the general solution of (5), and different choices of c give differ
ent particular solutions. 

We were able to solve equation (5) by the method of separation of variables, 
that is, by isolating the y's from the x's and integrating. In general, if a first
order differential equation can be written in the form 

g(y) dy = f(x) dx, 
with its variables separated, and if we can carry out the integrations, then we 
have the solution 

J g(y) dy = jJ(x) dx + c. (7) 

It should be noted that only in very special cases can the variables be separated 
in this way. For instance, the differential equation 

cannot be solved by this method. 

dy = x + y  
dx x - y (8) 

Each of the solutions (4) and (6) of equations (3) and (5) consists of a family 
of curves corresponding to various values of the constant c. These families are 
shown in Figs. 5 .5  and 5.6. The arbitrary constant that appears in the general so
lution of a first-order equation is given a specific numerical value by prescrib-
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ing, as an initial condition, the value of the unknown function y = y(x) at a sin
gle value of x, say y = y0 when x = xo. In geometric language, an initial condi
tion means that the solution curve is required to pass through a specific point in 
the plane. Thus, in Fig . 5 .6 the upper and lower solid curves correspond to the 
initial conditions 

y = 1 when x = 0 and y = - 1 when x = 0, 

respectively. We shall see in the next section that this terminology is particularly 
suitable for mechanical problems, where time is the independent variable and the 
initial positions or initial velocities of moving bodies are specified. 

In the problems just discussed, equation (7) was easily solved for y to yield 
the solution of the given differential equation as a family of functions. It is of
ten convenient not to press this point, and to accept a family of equations as the 
general solution, without demanding explicitly displayed functions. 

We illustrate by finding the most general curve whose normal at each point 
passes through the origin 0, and also the particular curve with this property 
through the point (2, 3) .  The normal OP has slope y/x (see Fig. 5 .7),  and the 
slope of the tangent is the negative reciprocal of this, so our differential equation 
is 

dy = x 
dx y 

Separating variables gives y dy = -x dx, and by integrating we get 

ty2 = -fx2 + c. 
If we put r2 = 2c, our general solution of (9) takes the neater form 

x2 + y2 = r2 . 

(9) 

This is the family of all circles with center at the origin, as the reader has prob
ably foreseen. By setting x = 2 and y = 3, we find that r2 = 13, so 

x2 
+ y2 

= 13 

is the particular solution of (9) passing through the point (2, 3) .  It is clearly more 
reasonable to leave this solution as it is than to insist that it be solved for y. 

Remark I By rights, differential equations should perhaps be called derivative 
equations. However, as we saw in Section 5.2, in the early days of calculus dif
ferentials were the primary concepts and derivatives were secondary, so the term 
arose in a natural way. In any case, it has been in standard use for hundreds of 
years and no one dreams of changing it now. 

Remark 2 The mathematical description of a physical (or biological or chemi
cal) process is usually given in terms of functions that show how the quantities 
involved change as time goes on. When we know such a function, we can find 
its rate of change by calculating the derivative. Often, however, we are faced with 
the reverse problem of finding an unknown function from given information about 
its rate of change. This information is usually expressed in the form of an equa
tion involving derivatives of the unknown function. These differential equations 
arise so frequently in scientific problems that their study constitutes one of the 
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main branches of mathematics. We continue with some important applications of 
this subject in the next section, and return to it from time to time throughout the 
rest of our work. 

PROBLEMS 

1 8 1  

Find the general solution of each of the following differential 
equations. 

1 : = 6x2 + 4x - 5. 2 : = (3x + 1 )3. 

In Problems 14- 19, verify that the given function is a solu
tion of the given differential equation for all choices of the 
constants A and B. 

3 : = 24x3 + 1 8x2 - 8x + 3 . 
dy x + Vx 

5 dx = y - vy·  

7 
dy = J__ + x  dx x2 · 

4 : = 2Vy. 

6 
dy = Jl._ dx ,:; ;· 

Find the particular solution of each of the following differen
tial equations that satisfies the given initial condition. 

8 �� = l Ox + 5, y = 1 5 when x = 0. 

14 y = x + Ax2, dy x - = 2y - x  dx . 

15 y = Ax +  x3, x : = y + 2x3. 

16 y = x + A�, 

17  y = Ax + �, 

dy (x2 + 1 )  dx = xy + 1 .  
dy 1 x - = y -dx � -

B d2y dy 
1 8  y = Ax + �, x 2  dx2 + x dx - y = 0 .  

d2y dy 
1 9  y = Ax + Bx2, x2 dx2 - 2x dx + 2y = 0. 

9 
dy - 2xy2 y = 1 when x = 2. dx - ' 
dy x 

10  dx = y' y = 3 when x = 2 .  

1 1  y: = x(y4 + 2y2 + 1 ), y = 1 when x = 4. 
dy 5 + 3x2 

1 2  dx = 2 + 2y , y = 2 when x = -2. 

13 
dy = �xy y = 64 when x = 9 . 

20 In a certain barbarous land, two neighboring tribes have 
hated one another from time immemorial. Being bar
barous peoples, their powers of belief are strong, and a 
solemn curse pronounced by the medicine man of the 
first tribe deranges the members of the second tribe and 
drives them to murder and suicide. If the rate of change 
of the population P of the second tribe is -VP people 
per week, and if the population is 676 when the curse is 
uttered, when will they all be dead? 

dx ' 

Much of the original inspiration for the development of calculus came from the 
science of mechanics, and these two subjects have continued to be inseparably 
connected down to the present day. Mechanics rests on certain basic principles 
that were first laid down by Newton. The statement of these principles requires 
the concept of the derivative, and we shall see in this section that their applica
tions depend on integration and the solution of differential equations. 

Rectilinear motion is motion along a straight line. In contrast, motion along a 
curved path is sometimes called curvilinear motion. Our present purpose is to 
study the rectilinear motion of a single particle, that is, of a point at which a 
body of mass m is imagined to be concentrated. In discussing the motion of phys
ical objects, such as cars, bullets, falling rocks, etc., we often ignore the size and 
shape of the object and think of it as if it were a particle. 

The position of our particle is completely determined by its coordinate s with 
respect to a conveniently chosen coordinate system on the line ( Fig. 5 .8) .  Since 
the particle moves, s is a function of the time t, as measured from some conve
nient initial instant t = 0. We symbolize this by writing s = s(t). As we know 
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from the discussion in Section 2.4, the velocity v of the particle is the rate of 
change of its position, 

ds v = dt' 
and the speed is the absolute value of the velocity.* In general, the velocity of a 
moving particle changes with time, and the acceleration a is the rate of change 
of velocity, 

dv d (ds ) d2s a - - - - - - -- dt - dt dt - dt2 . 

This is positive or negative according as v is increasing or decreasing. 
The basic assumption of Newtonian mechanics is that force is required in or

der to change velocity; that is, acceleration is caused by force. The concept of 
force originates in the subjective feeling of effort that we experience when we 
change the velocity of a physical object, for instance, when we push a stalled car 
or throw a rock. In the case of rectilinear motion, we assume that a force can be 
expressed by a number, which is positive or negative according as the force acts 
in the positive or negative direction. 

Newton 's second law of motion states that the acceleration of a particle is di
rectly proportional to the force F acting on it and inversely proportional to its 
mass m, 

or equivalently, 

F a = m ' 

F =  ma. 

( 1 )  

(2) 
[The units of measurement for these quantities are always chosen so that the con
stant of proportionality in equation ( 1 )  has the value 1, as shown.] Thus, if the 
force is doubled, then by ( 1 )  the resulting acceleration is also doubled; and if the 
mass is doubled, the acceleration is cut in half. In this context, the mass of a 
body can be interpreted as its capacity to resist acceleration. t 

From one point of view, equation (2) can be considered as nothing more than 
a definition of force, because the right side is a quantity that can be calculated 
by measuring the mass and observing the motion, and this determines the force. 
On the other hand, the force F is often known in advance from fairly simple phys
ical considerations. The innocent-looking equation F = ma then becomes the 
second-order differential equation 

(3) 

This equation has profound consequences, for in principle we can find the par-

•we have pointed out before that even though the words "velocity" and "speed" are more or less syn
onymous in ordinary usage, in physics (and mathematics) they have different meanings. The dis
tinction lies in the fact that the velocity v is sometimes positive and sometimes negative, depending 
on whether s is increasing or decreasing. On the other hand, the speed is Iv I , and hence is never neg
ative. 
t Newton 's first law of motion asserts that if no force acts on a particle, then its velocity does not 
change, that is, its acceleration is zero. This is clearly a special case of (I ) .  
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ticle's position s at any time t by solving {3) with appropriate initial conditions.* 

Example I Find the motion of a stone of mass m which is dropped from a point 
above the surface of the earth. 

Solution The most important example of a known force is the familiar "force 
of gravity." From direct experimental evidence, we know that the force of grav
ity acting on the stone (this is the weight of the stone) is directed downward and 
has magnitude F = mg, where g is the constant acceleration due to gravity near 
the surface of the earth (g = 32 ft/s2 or 9.80 m/s2, approximately). If s is the 
stone's position as measured along a vertical axis, with the positive direction 
pointing downward and the origin at the initial position of the stone ( Fig. 5.9), 
then equation (3) is 

Integrating this equation twice gives 

ds 

or 

u =  - = gt +  C 1 , dt (4) 

(5) 

where c1 and c2 are constants of integration. Since the stone is "dropped" (that 
is, released with no initial velocity) at time t = 0 from the point chosen as the 
origin, the initial conditions are 

u =  0 and s = O  when t = 0. 

The condition v = 0 when t = 0 gives c1 = 0, and s = 0 when t = 0 gives c2 = 
0. We therefore have 

v = gt, (6) 

(7) 
at least until the stone hits the ground. If we change the situation and require that 
the stone be thrown downward with an initial velocity v0 from the initial posi
tion s = s0 at time t = 0, then the initial conditions are 

v =  v0 and S = So when t = 0, 

and (4) and (5) become 

V = gt +  Vo, 
s = fgt2 + v0t + s0. 

It should be pointed out that in this discussion we have ignored the effect of 
air resistance, and have assumed that the only force acting on the falling stone 

*The intellectual impact of Newton's F = ma on the seventeenth and eighteenth centuries was even 
greater than that of Einstein's E = mc2 on the twentieth century. 
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is the force of gravity. It is possible to take the air resistance into account, but in 
this case equation (3) is  too complicated for us to cope with here. We return to 
this topic in Chapter 8 .  

We also remark that if distance is  measured in feet and time in seconds, so 
that g has the numerical value 32, then (6) and (7) become 

v =  32t and s = 1612. 
It is clear from the first of these equations that the velocity of the stone increases 
by 32 ft/s during each second of fall, and of course this is what is meant by the 
statement that the acceleration due to gravity is 32 feet per second per second 
( ft/s2). 

Example 2 A stone is thrown upward with an initial velocity of 1 28 ft/s from 
the roof of a building 320 ft high. Express its height above the ground as a func
tion of time. Find the maximum height the stone attains. Assuming that the stone 
misses the building on its way down, how long does it take to hit the ground? 
W!J.::� ::;:c ��c ·;cl0.:: ii:y .:uill ;:,pccu vi li1c: sLUne ar rne moment It hits the ground? 

Solution We place the s-axis with its origin on the ground and the positive di
rection pointing upward ( Fig. 5 . 10). Since the force of gravity is directed down
ward, and by equation (2) the force and acceleration have the same sign, the ac
celeration of the stone is given by 

d2s 
a =  d[l = - 32. 

Integrating this equation yields 

ds 
v =  - = -321 + CJ dt , 

and by using the initial condition v = 1 28 when t = 0, we get 

ds 
v =  dt = -321 + 1 28. 

A second integration gives 

S = - 1612 + 1 281 + C2, 

and since s = 320 when t = 0, we obtain 

s = - I 612 + 1 281 + 320 
as the height of the stone above the ground at any time t. 

(8) 

(9) 

( 10) 

To find the maximum height attained by the stone, we write (9) in the form 

v = -32(1 - 4). 

This tells us that for t < 4, the velocity is positive, so the stone is moving up
ward. When t = 4, the velocity is zero and the stone is motionless for an instant. 
For t > 4, the velocity is negative and the stone is falling. We therefore find the 
maximum height by putting t = 4 into equation ( 1 0). This gives s = - 16 · 1 6  + 
1 28 · 4 + 320 = -256 + 5 12 + 320 = 576 as the maximum height. 
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The stone hits the ground when s = 0. By using equation ( 1 0) we see that this 
leads us to the sequence of equivalent equations 

- I 6t2 + 1 28t + 320 = 0, 
- 16(t2 - St - 20) = 0, 

(t - IO)(t + 2) = 0. 
Thus s = 0 when t = 10 or t = -2. The second answer is meaningless in the cir
cumstances, and can be discarded. Therefore the stone hits the ground 10 s after 
being thrown. 

To find the velocity of the stone at the moment it hits the ground, we put 
t = 10 into equation (9) : v = -32 · 10 + 128  = -320 + 1 28 = - 192. The ve
locity at that moment is therefore - 192 ft/s, and the minus sign tells us that the 
stone is moving downward. The speed at that moment is \ - 1 92 \  = 192 ft/s. 

In these examples we have treated the acceleration due to gravity as if it were 
a constant. This is almost true for moving bodies that stay fairly close to the sur
face of the earth. However, to study the motion of a body that moves away from 
the earth into space, we must take account of the fact that the force of gravity 
varies inversely as the square of the distance from the center of the earth. 

Example 3 Suppose a rocket is fired vertically upward with initial velocity v0 
and thereafter coasts with no further expenditure of energy. For larger values of 
v0 it rises higher before coming to rest and falling back to earth. What must vo 
be in order for the rocket never to come to rest, and thereby to escape completely 
from the earth's gravitational attraction? 

Solution According to Newton 's law of gravitation, any two particles of mat
ter in the universe attract each other with a force that is jointly proportional to 
their masses and inversely proportional to the square of the distance between 
them. In the present situation (see Fig. 5 . 1 1 ) , this means that the force F attracting 
the rocket back to earth is given by the inverse square law 

F =  -G Mm 
s2 ' 

where G is a positive constant, M and m are the masses of the earth and the 
rocket, and s is the distance from the center of the earth to the rocket.• 

We begin our detailed analysis of the problem by observing that in this case 
Newton's second law of motion F = ma becomes 

so 

d2s Mm m -d 2  = - G -2-, t s 

( 1 1 )  

'It can be proved-and will be proved in a later chapter-that the gravitational attraction exerted 
on the rocket by the earth as a whole is the same as that which would be exerted by a particle of 
mass M located at the center of the earth. In other words, the entire mass of the earth can be treated 
as if it were concentrated at its center. 
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This tells us at the outset that the motion of the rocket does not depend on the 
rocket's own mass. We can put the constants here into a more convenient form 
by noticing that the acceleration d2s/dt2 has the value -g when s = R, where R 
is the radius of the earth. This gives 

GM 
- g  = -R2 or 

and since d2s/dt2 = dvldt, we can write ( 1 1 )  as 

dv gR2 
dt -7· ( 1 2) 

Our next step is to eliminate t from this equation by using the chain rule to write 

Equation ( 1 2) now becomes 

dv dv ds dv 
dt = ds dt = ds v. 

dv gR2 v - = ---ds s2 · 
By separating variables and integrating, we obtain 

or 

J v dv = gR2 J- �� 
R2 tv2 = L_ + c. s ( 1 3) 

To evaluate the constant of integration c, we use the initial condition that 
v = vo when s = R, so 

tvo2 = gR + c 
and 

c = tvo2 - gR. 

With this value of c, equation ( 1 3) becomes 

I 2 gR2 I 2 2v = - + (2vo - gR). s ( 1 4) 

Our final conclusion emerges from ( 14) as follows :  For the rocket to escape from 
the earth, it must move in such a way that ±v2 is always positive, for if ±v2 van
ishes, the rocket stops moving and then falls back to earth. But the first term on 
the right of ( 1 4) evidently approaches zero as s increases. Therefore, in order to 
guarantee that ±v2 is positive no matter how large s is, we must have ±v02 -
gR 2: 0. This is equivalent to v02 2: 2gR or v0 2: '\fiiR.. The quantity V2gR is 
usually called the escape velocity for the earth. We can easily estimate its value 
by using the approximations g = 32 ft/s2 and R = 4000 mi: 

V2gR = Y2 · 32 ft/s2 · 4000 mi 

= Y 2 · 32 · 52180 mi/s2 • 4000 mi 

= 7 mils = 25,000 mi/h. 



5.5 MOTION UNDER GRAVITY. ESCAPE VELOCITY AND BLACK HOLES 1 87 

Remark 1 In just the same way as in this example, the quantity \/2i'if is the 
escape velocity for any planet, satellite, or star, where R' and g' are understood 
to be the radius and the acceleration due to gravity at the surface. If the radius 
of such a body is decreased while the mass is unchanged, the escape velocity at 
the surface increases. Why? 

Remark 2 Most normal stars are maintained in their gaseous, puffed-up state 
by radiation pressure from within, which is generated by the burning of nuclear 
fuel. When the nuclear fuel gives out, the star undergoes gravitational collapse 
into a very much smaller sphere of essentially the same mass. The crushed, de
generate matter of these collapsed stars can sustain two types of equilibrium, de
pending on the mass of the star. White dwarfs are those that result when the mass 
is less than about 1 .3 solar masses, and neutron stars arise when the mass is be
tween 1 .3 and 2 solar masses. For heavier stars no equilibrium is possible, and 
collapse continues until the escape velocity at the surface reaches the speed of 
light. Collapsed stars of this type are completely invisible, since no radiation can 
ever escape. These are the so-called black holes. 

PROBLEMS 

1 In Example 2, how long after the stone is thrown does it 
pass the roof of the building on its way down? What are 
the velocity and speed at that moment? 

2 In Example 2, if the stone were simply dropped from the 
roof, what would s be as a function of time? How long 
would the stone fall? 

3 In Example 2, the origin of the s-axis is at ground level. 
If the origin is placed at the top of the building, what are 
the formulas for v and s that correspond to (9) and ( 1 0)? 

4 A ball is thrown upward from the top of a cliff 96 ft high 
with an initial velocity of 64 ft/s. Find the maximum 
height of the ball above the ground below. Assuming that 
the ball misses the cliff on its way down, how long does 
it take to hit the ground? 

S A bag of ballast is accidentally dropped from a balloon 
which is stationary at an altitude of 4900 m. How long 
does it take for the bag to hit the ground? 

6 With what velocity must an arrow be shot upward in or
der to fall back to its starting point 10  seconds later? How 
high will it rise? 

7 A boy at the top of a cliff 299 ft high throws a rock 
straight down, and it hits the ground 3f seconds later. 
With what velocity does the boy throw the rock? 

8 A woman standing on a bridge throws a stone straight 
up. Exactly 5 seconds later the stone passes the woman 
on the way down, and 1 second after that it hits the wa
ter below. Find the initial velocity of the stone and the 
height of the bridge above the water. 

9 A stone is dropped from the roof of a building 256 ft 
high. Two seconds later a second stone is thrown down
ward from the roof of the same building with an initial 

velocity of v0 feet per second. If both stones hit the 
ground at the same time, what is v0? 

10 How much time does a train traveling 1 44 km/h take to 
stop if it has a constant negative acceleration of 4 m/s2? 
How far does the train travel in this time? 

1 1  A man standing on the ground throws a stone straight 
up. Neglecting the height of the man, find the maximum 
height of the stone in terms of initial velocity v0. What 
is the smallest value of v0 that will make it possible for 
the stone to land on top of a 144-ft building? 

1 2  O n  the surface o f  the moon the acceleration due to grav
ity is approximately i that at the surface of the earth, and 
on the surface of the sun it is approximately 29 times as 
great as at the surface of the earth. If a person on earth 
can jump with enough initial velocity to rise 5 ft, how 
high will the same initial velocity carry that person (a) 

•
13 l!!!!J 

on the moon? (b) on the sun? 
Newton's law of gravitation implies that the acceleration 
due to gravity at the surface of a planet (or the moon or 
the sun) is directly proportional to the mass of the planet 
and inversely proportional to the square of the radius. 
(a) If gm denotes the acceleration due to gravity at the 

surface of the moon, use the fact that the moon has 
approximately -ft the radius and fi- the mass of the 
earth to show that gm is approximately g/6. 

(b) Use part (a) to show that the escape velocity for the 
moon is approximately 1 .5 mils. 

14 Show that the point between the earth and the moon 
where the two exert equal but opposite gravitational 
forces on a particle is fo of the way from the center of 
the earth to the center of the moon. 
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CHAPTER 5 REVIEW: CONCEPTS, METHODS 

Define, state, or think through the following. 
1 Differentials dx and dy. 
2 Tangent line approximation. 
3 Indefinite integral (or antiderivative). 
4 Integrand and constant of integration. 
5 Integration formulas. 
6 Integration by substitution. 
7 Differential equation. 
8 Order of a differential equation. 

ADDITIONAL PROBLEMS FOR CHAPTER 5 

SECTION 5.3 
Compute the following integrals. Be sure to include the con-
stant of integration in each answer. 

1 J(3x4 - 7x3 + 1 0) dx. 2 

3 J x3 - 3x2 : x - 2Vx dx. 
4 J(x + �y dx. 
5 f x(x + 1 )2 dx. 6 

7 Jc5 1x2 - 108x3) dx. 8 

9 f (2 - Vx)(3 + Vx) dx. 1 0  

I 1 f�dx. 12 
13  f(5x + 2) 1 64 dx. 14 

15 J 5x dx 
�- 16 

17 J x2 dx 
� -

18 

19  J (x - 1 ) dx . Vx2 - 2x + 3 20 

21 J x dx 
vc2 - x2)2 . 22 

23 J( 1 + �)2 ��- 24 

25 f (x2 + 2x + 1 )213 dx. 26 

27 Jx � dx. 28 

J�. 

f(x + 3)(x2 - 1 )  dx. 
f3

x� 2 dx. 
fVx(7x2 - 5x + 3) dx. 
J(3 + 7x2)95x dx. f (3 - 4x)314 dx. 
f V3x2 - 2 x dx. 

f vo:+ 3)2 · 
Ix�· 
J x dx . Vcx2 - 4)3 J x2 dx 
(2 + 3x3)3 · 

Jx�dx. 
JY2x6 + x4 

x dx. 
29 f (x3 + x + 32)912(3x2 + 1 )  dx. 
30 f(x2 + 1 )7x3 dx. 
3 1  f(x3 - l ) Ii3x5 dx. 

9 General solution, particular solution. 
10 Separation of variables. 
1 1  Initial condition. 
1 2  Rectilinear motion. 
13 Velocity, speed, acceleration. 
14 Newton's second law of motion. 
15 Newton's law of gravitation. 
1 6  Escape velocity. 

SECTION 5.4 

32 Find the general solution of each of the following dif
ferential equations: 

(a) ix = 2y2(4x3 + 4x-3); 
(b) ix = Y(x2 - x-2)2 + 4. 

33 Find the indicated particular solution of each of the fol
lowing differential equations: 

(a) dy = 
x( l + y2)2 y = 1 when x = 2; dx y( l + x2)2 ' 

(b) ix = V xy - 4x - y + 4, y = 8 when x = 5 . 
34 The equation x2 = 4py represents the family of all 

parabolas with vertex at the origin and axis the y-axis. 
Find the family of curves that intersect the curves of this 
given family at right angles. Hint: Show fust that the 
slope of the tangent at every point (x, y) (y =F 0) on each 
curve of the given family is 2y/x. 

35 Solve Problem 34 if the given family is xy = c. 
36 Find y as a function of x if dyldx + ylx = 0. 
37 Equation (8) in Section 5.4 can be written as 

dy I + ylx dx = 1 - y/x ' 
and this suggests the substitution z = ylx. Use this idea 
to replace y by z as the dependent variable, and show 
that the variables can be separated in the resulting dif
ferential equation. Notice that the necessary integra
tions are beyond our capacity at the present stage, so 
in spite of our progress we have reached a temporary 
dead end. 

SECTION 5.5 
38 A ball is thrown vertically upward with an initial veloc

ity of 78 ft/s from the roof of a building 400 ft high. Find 
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39 

40 

41 

42 

43 
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the distance s from the ground up to the ball t seconds 
later. If the ball misses the building on the way down, 
how long does it take to hit the ground? 
(a) A bullet is fired downward with a velocity of 400 ft/s 

from an airplane 20,000 ft above the ocean. Ne
glecting air resistance, how long does it take the bul
let to reach the water, and what is its velocity at the 
moment of impact? 

(b) If the bullet is merely dropped from the airplane, how 
long does it take to fall, and what is its velocity on 
impact? 

Show that a rock thrown straight up from the ground 
takes just as long to rise to its highest point as it does to 
fall back to its initial position. How is the velocity with 
which it hits the ground related to its initial velocity? An
swer the same question for its speed. 
A ball is dropped out of a window 1 9.6 m above the 
ground. At the same time another ball is thrown straight 
down from a window 79.6 m above the ground. If both 
balls reach the ground at the same moment, find the ini
tial velocity of the second ball. 
An automobile is traveling in a straight line at a veloc
ity of v0 feet per second. The driver suddenly applies the 
brakes, and the car stops in T seconds after traveling S 
feet. If the brakes produce a constant negative accelera
tion of -a0 ft/s2, find formulas for T and S in terms of 
Vo and ao. 
An astronaut stands on the edge of a cliff and drops a 
stone. She observes that it takes 4 seconds for the stone 
to fall to the ground at the bottom. On earth, this would 
mean that the cliff is 256 ft high. How high is the cliff 
(a) if the astronaut is on the moon, where the accelera
tion due to gravity is approximately 5.5 ft/s2? (b) if she 
is on Jupiter, where the acceleration due to gravity is ap
proximately 85 ft/s2? 
The results of Problem 1 3  in Section 5.5 are given in the 
second column of the following table: 

Earth Moon Jupiter Saturn Sun 

Mass (earth = 1 )  I 317  95 332,000 ST 
Radius (mi) 4000 1 100 43,000 36,000 432,000 
Acceleration of gravity g g/6 2.6g l .2g 29g 
Escape velocity (mils) 7 1 .5 38 23 400 
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Verify the rough approximations given in the third and 
fourth rows for Jupiter, Saturn, and the sun. 
If the sun could be crushed into a smaller sphere with 
the same mass, estimate what its new radius would have 
to be in order to increase the escape velocity at its sur
face to the speed of light (approximately 1 86,000 mils 
or 300,000 km/s). What would the new radius have to be 
in the case of the earth? 
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Estimate the escape velocity from the surface of a white 
dwarf, a type of star in which a mass about equal to that 
of the sun is compressed into a volume about equal to 
that of the earth. 
Estimate the escape velocity from the surface of a neu
tron star, a type of star in which a mass about equal to 
two solar masses is compressed into a sphere of radius 
about 4 mi. 

48 According to currently accepted ideas among as
tronomers, the universe came into existence about 15 bil
lion years ago in an explosion called the Big Bang. Ever 
since that time the universe has been expanding in such 
a way that the velocity v of a galaxy at distance R from 
our galaxy (the Milky Way) is given by Hubble's law 
v = HR, where H is Hubble's constant, about 16 km/s 
per million light-years (a light-year is about 9.47 x 
10 12 km). No one knows whether this expansion of the 
universe will continue indefinitely. If the universe con
tains enough matter, then the gravitational forces exerted 
by this matter on itself will ultimately slow down and 
stop the expansion. Then there will be a period of con
traction ending in a complete gravitational collapse 
called the Big Crunch, in which the universe as we know 
it-space, time, matter, energy-will cease to exist. 
(a) Show that the universe will continue to expand for-

ever if the present density of matter 8 (mass per unit 
volume) is less than the critical density Oc = 
3H2!87TG.* Hint: What is the escape velocity at a dis
tance R from our galaxy, due to the matter inside a 
sphere of radius R centered on us? EJ (b) Estimate the value of the critical density Be. given 
that the gravitational constant G is approximately 
6.67 x 1 0-20 km3/(kg·s2). 

49 Newton's second law of motion F = ma = m dvldt can 
be viritten in the form F = dldt (mv) in terms of the mo
mentum mv of a particle of mass m and velocity v, and 
remains valid in this form even if m is not constant, as 
assumed so far. Suppose a spherical raindrop falls  
through air saturated with water vapor, and assume that 
by condensation the mass of the raindrop increases at a 
rate proportional to its surface area, with c the constant 
of proportionality. If the initial radius and velocity of the 
raindrop are both zero, show that the drag exerted by the 
condensation of the water vapor has the effect of mak
ing the raindrop fall with acceleration tg. Hint: Show 
that d/dr (r3v) = (8/c) r3g, where r is the radius of the 
raindrop and 8 is its density. 

*It would be interesting to know the ultimate fate of the universe, but 
unfortunately no one knows the present density of matter. 
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INTRODUCTION 

DEFINITE 
INTEGRALS 

At the beginning of Chapter 2 we described calculus as the study of methods for 
calculating two important quantities associated with curves, namely, 

Slopes of tangent lines to curves, and 
2 Areas of regions bounded by curves. 

Of course, this description gives an oversimplified view of the subject, for it 
emphasizes calculus as a tool in the service of geometry but says nothing about 
its indispensable role in the study of science. Nevertheless, it explains the tradi
tional division of calculus into two distinct parts: differential calculus, which 
deals with slopes of tangent lines, and integral calculus, which is concerned 
with areas. 

The problem of areas was of great interest to the ancient Greeks. They knew 
a good deal about the areas of triangles, circles, and related configurations, but 
any other figure presented a new and usually insoluble problem. Archimedes was 
able to apply a technique called the method of exhaustion to calculate the area 
of a segment of a parabola, and also to calculate a few other particular geomet
ric quantities. But for almost 2000 years this handful of calculations by 
Archimedes stood as the isolated achievement of a great genius, unmatchable by 
others. However, by the middle of the seventeenth century several European 
thinkers-most notably Fermat and Pascal-began to push the method of ex
haustion beyond the point where Archimedes had left it. The decisive break
through was achieved a little later by Newton and Leibniz, who showed that if a 
quantity can be computed by exhaustion, then it can also be computed much more 
easily by using antiderivatives. This crucial discovery is called the Fundamental 
Theorem of Calculus. It binds together the two parts of the subject, and is un
doubtedly (as we have said before) the most important single fact in the whole 
of mathematics. 

This is the path we follow in the present chapter. Since calculations will seem 
to play a prominent part in our work, it is even more necessary than usual for 
students to keep firmly in mind that the underlying ideas are more important than 
the calculations. 
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6.2 THE PROBLEM OF AREAS 
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Figure 6.1 Figure 6.2 

Every rectangle and every triangle has a number associated with it called its area. 
The area of a rectangle is defined to be the product of its height and its base, and 
the area of a triangle is one-half the product of the height and the base (Fig. 6. 1 ) . 
Since a polygon can always be decomposed into triangles (Fig. 6.2), its area is 
the sum of the areas of these triangles. 

The circle is a more difficult figure. The Greeks solved the problem of find
ing its area in a very natural way. First, they approximated this area by inscrib
ing a square (Fig. 6.3). Then they improved the approximation step by step by 
doubling and redoubling the number of sides, that is, by inscribing a regular oc
tagon, then a regular 1 6-gon, and so on. The areas of these inscribed polygons 
evidently approach the exact area of the circle more and more closely. This idea 
yields the familiar formula 

A =  7Tr2 ( 1 )  

for the area A of a circle in terms of its radius r. The details of  the reasoning are 
as follows. Suppose that the circle has inscribed in it a regular polygon with a 
large number of sides (Fig. 6.4). Each of the small isosceles triangles shown in 
the figure has area ':ihb, and the sum of these areas equals the area of the poly
gon, which closely approximates the area of the circle. If p denotes the perime
ter of the polygon, then we see that 

Apolygon = thb + thb + · · · + thb 
= th(b + b + . . .  + b) = thp. 

Now let c be the circumference of the circle, so that c = 27Tr by the definition 
of 'TT. *  Then, as the number of sides of the polygon increases, h approaches r (in 
symbols, h � r), p � c, and therefore 

*That is, 7T is defined to be the ratio of the circumference to the diameter, so 7T = c/2r and therefore 
c = 2 7Tr. 
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Apolygon = fhp --> frc = fr(27Tr) = 7Tr2, 
which establishes ( 1 ) . The phrase "method of exhaustion" is clearly a good de
scription of this process, because the area of the circle is "exhausted" by the ar
eas of the inscribed polygons. 

We next examine the procedure by which Archimedes calculated the area of a 
parabolic segment, that is, the area of the part of the parabola in Fig. 6.5 bounded 
by the arbitrary chord AB and the arc ADCEB. There is no convenient way to in
scribe regular polygons in this figure, so Archimedes used triangles instead. His 
first approximation was the triangle ABC, where the vertex C is  chosen as that 
point where the tangent to the parabola is parallel to AB. His second approxi
mation was obtained by adding to the triangle ABC the two triangles ACD and 
BCE, where the vertex D is the point where the tangent is parallel to AC and the 
vertex E is the point where the tangent is parallel to BC. To obtain his third ap
proximation, he inscribed triangles in the same way in each of the four regions 
still not included (one such region is that between the arc CE and the chord CE), 
so his third approximation was the sum of the areas of the triangles ABC, ACD, 
BCE, and the four new triangles. By continuing to exhaust the parabolic segment 
in this way, he was able to show that its area is exactly four-thirds the area of 
the first triangle ABC. The details of his argument are a bit complicated; and 
since our interest here is mainly in the idea of the method of exhaustion, we omit 
these details. 

The general problem before us is that of finding the area of a region with a 
curved boundary. However, most of our work will be concentrated on a special 
case of this general area problem-namely, finding the area under the graph of 
a function y = f(x) between two vertical lines x = a and x = b, as shown in Fig. 
6.6. Such a region has a boundary that is curved only along its upper edge, and 
is therefore much easier to work with. A knowledge of this special case is often 
enough to enable us to cope with more complicated regions. To understand how 
this is possible, notice in Fig. 6.7 that the area of a region whose entire bound
ary is curved can often be obtained by subtracting the area under its lower edge 
from the area under its upper edge, where each of the latter areas is of the spe
cial type shown in Fig. 6.6. 

In Section 6.4 and thereafter, we will denote an area of the type shown in Fig. 
6.6 by the standard symbol 

r f(x) dx, (2) 

which is read "the definite integral from a to b of f(x) dx." The reason for this 
notation will become clear in Section 6.4. For the present, however, we warn stu
dents in advance not to confuse the definite integral (2) with the indefinite inte
gral (or antiderivative) 

J f(x) dx (3) 

introduced in Chapter 5. In spite of the fact that these two integrals have the same 
family name and look very much alike, they are totally different entities: The 
definite integral (2) is a number, and the indefinite integral (3) is a function (or 
a collection of functions). 
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At first sight it might appear that the problem of calculating areas is a matter 
of geometry and nothing more-interesting to mathematicians, perhaps, but with 
no practical uses in the real world outside of mathematics. This is not the case 
at all. It will become clear in the next chapter that many important concepts and 
problems in physics and engineering depend on exactly the same kinds of ideas 
as those used in calculating areas. As examples we mention the concepts of work 
and energy in physics, and also the engineering problem of finding the total force 
acting against the face of a dam due to the pressure of the water in a reservoir. 
Finding areas is therefore much more than merely a game mathematicians play 
for their own diversion. Nevertheless, for the sake of clarity we confine our at
tention in this chapter to the area problem itself, and in Chapter 7 we begin to 
sample the immense range of applications of the underlying idea. 

Remark I As a matter of historical interest, it appears that the first person to 
find the exact area of a figure bounded by curves was Hippocrates of Chios, the 
most famous Greek mathematician of the fifth century B.C. To understand what 
he did, consider the circle shown in Fig. 6 .8 ,  with the points A, B, C, D at the 
ends of the horizontal and vertical diameters. Using C as a center, describe the 
circular arc AEB connecting A and B. The crescent-shaped figure bounded by the 
arcs ADE and AEB is called a lune of Hippocrates (Luna is Latin for "moon") ,  
after the man who made the remarkable discovery that its area is exactly equal 
to the area of the shaded square whose side is the radius of the circle. Thus Hip
pocrates "squared the lune," even though he was unable to square the circle it
self.* 

Remark 2 Most of us remember from school that the numerical value of 7T is 
approximately 3 . 14, and some of us even remember a more accurate approxi
mation, 7T = 3 . 14 159. Also, in one of his treatises Archimedes derived his fa
mous inequality 

which is the basis for the rough but widely used approximation 7T = ¥. Where 
do these values come from? 

The number 7T was defined above as the ratio of the circumference of a circle 
to its diameter. As we saw, this yields the formula A = w2, which tells us that 
7T is also the area of the unit circle (circle with unit radius) x2 + y2 = l .  The 
problem of computing 7T therefore amounts to the problem of finding the area of 
the unit circle. 

To accomplish this, let p11 and P 11 be n-sided regular polygons, with Pn inscribed 
in the unit circle and P11 circumscribed around it, as shown in  Fig. 6.9. To find 
the areas of these polygons, it suffices to find the areas of the isosceles triangles 
making up Pn and P11 and then to multiply by n. If (} is half the vertex angle, then 
(} is clearly the same for both isosceles triangles; and using degree measure, we 
have 

1 360° 1 80° () = - · - = --2 n n · 

*Hippocrates' exceedingly beautiful (but easy to understand) proof is given in the Appendix at the 
end of this chapter. 
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Figure 6.9 

II A( /1,,) A ( !',, ) 
6 2 .598076 3.464 1 02 

1 2  3.000000 3 . 2 1 5 390 
24 3 . 105829 3 . 1 59660 
48 3 . 1 32629 3 . 146086 
96 3 . 1 39350 3 . 1 427 1 5  

200 3 . 1 4 1 076 3 . 1 4 1 85 1  
400 3 . 1 4 1 463 3 . 1 4 1 657 
800 3 . 1 4 1 560 3 . 1 4 1 609 

1 600 3. 14 1 585 3 . 1 4 1 597 
3200 3 . 1 4 1 591  3 . 1 4 1 594 
6400 3 . 1 4 1 592 3 . 1 4 1 593 
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By examining the figure we see that the area of Pn is 

I 

I 
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I 
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( 2 1 • a a n . 2 "  n . 360° A Pn) = n · · 2 sm u cos u = 2 sm u = 2 sm -n-

and the area of P n is 

(4) 

I 180° A(P n) = n · 2 · 2 tan f) = n tan --. (5) n 
By substituting convenient values of n in formulas (4) and (5) , and using a cal
culator, we easily fill in the values shown in the adjoining table. Because 

A(pn) :::=; 7T :::=; A(Pn) 
for all n, it is clear that 1T = 3 . 14 159, correct to five decimal places. In Section 
14.4 we describe other methods that have made it possible to compute 7T to more 
than 500,000 decimal places. 

In order to clarify our discussion of definite integrals in the next section, we in
troduce here a standard mathematical notation used for abbreviating long sums. 
This is called the sigma notation, because it uses the Greek letter l, (sigma). In 
the Greek alphabet the letter I corresponds to our letter S, which is the first let
ter of the word "sum." This helps us to remember the purpose of the sigma no
tation, which is to suggest the idea of summation or addition. 

Thus, if a i ,  a2, . . .  , an are any given numbers, their sum is denoted by 

( 1 )  

This symbol is read "the sum from k = 1 to n of ak." The idea compressed in ( 1 )  
is that w e  are to write down each of the numbers ak as the subscript k varies from 
1 to n (namely, a1 , a2, . . .  , an) and then add all these numbers together: 

n 

L Gk = Gt + G2 + · · · + G11• 
k� l  

We write k = 1 below the I in ( 1 ), and n above it, to say that the sum starts with 
the term ak with k replaced by 1 ,  and stops with the term ak with k replaced by 
n. The letter k used as the subscript here is called the index of summation. Any 
other letter (i or j, for instance) would do just as well. Thus, 
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k= I 

5 "' ·3 L._, l , 
i= l 

and 
j= I 

all represent the same sum, namely, 1 3  + 23 + 33 + 43 + 53 = 225 .  
We give a few additional specific examples of the sigma notation: 

3 k 1 2 3 I k2 + I = l2+T + 22 + I + 32 + 1 ;  k= I 

n L k = I + 2 + · · · + n; k= I 
n 
I 2k = 2 + 4 + . . .  + 2n; 

k = I 
n 

L (2k - I )  = I + 3 + · · · + (2n - 1 ) . 
k= I 

Notice particularly in the second sum the use of the factor (- l )k+ 1 to produce the 
alternating signs +,  - , + ,  - as the index of summation k takes the values 1 ,  2, 3, 
4. The last three of these sums are evidently the sum of the first n positive inte
gers, the sum of the first n even numbers, and the sum of the first n odd numbers. 

The following are some formulas from elementary algebra that will be needed 
in the next section: 

n 
. n(n + I )  I k = 1 + 2 + · · · + n =  ; 

k= J 2 
I k2 = 1 2 + 22 + . . .  + n2 = n(n + 1 )(2n + 1 ) ; 
k= I 6 

I k3 = 13 + 23 + . . .  + n3 = [n(n + 1 ) ]2· k= J 2 

(2) 

(3) 

(4) 

These formulas can be proved by the method of mathematical induction. How
ever, an easier way to establish (2) is to write the sum once in the natural order, 
as shown, and then again in reverse order, 

s = 1 + 2 + · · · + n, 
s = n + (n - 1 )  + · · · + 1 . 

By adding these equations and noticing that each column on the right adds up to 
n + 1 and there are n columns, we get 2s = n(n + 1 ), from which (2) follows 
at once. 

There is yet another way of proving (2) that is worth knowing about because it 
can easily be adapted to yield (3) and ( 4) as well, and further formulas of the same 
type. It depends on the simple fact that (k + 1 )2 = k2 + 2k + 1 ,  or equivalently 

(k + 1 )2 - k2 = 2k + 1 .  (5) 

If we let k = 1 ,  2, 3, . . .  , n in (5), and write the resulting equations one below 
the other, we obtain 

22 - 12 = 2 · 1 + 1 , 
32 - 22 = 2 .  2 + 1 ,  

1 95 
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42 - 32 = 2 . 3 + 1 ,  

( n  + 1 )2 - n2 = 2 · n + 1 .  

On the left here we have 22 and -22, 32 and -32, . . .  , n2 and -n2. Therefore, 
when these equations are added with due attention to the cancellations on the 
left, the result is 

(n + 1 )2 - 1 2 = 2 (�1k) + n; 

and solving for the sum in parentheses yields (2): 

PROBLEMS 

Find the numerical value of 
5 

ca) I i2; 
i= l 

8 
(d ) I c- 1 )k; k= I 

6 
Cg) I cos 27Tk. k=O 

5 
(b) I 2j; j= l  

500 
ce) I c- 1 );; i= I  

53 
cc) I k; k=50 

300 
(f) I 5 ;  

j= l 

Hint: Write the sums out, and examine them carefully. 
2 Use the sigma notation to write the following sums com

pactly: 
(a) 3 + 9 + 27 + 8 1 ;  
(b) 3 - 5 + 7 - 9 + 1 1  - 1 3 ;  
(c) + + Yo + fs- + · · · + fs-; 
(d) I + 2 + 22 + · · · + 2200; 
(e) a5 + a6 + a7 + · · · + a 10; 
(f) t - t + t - 1o + -& - f.-; 
(g) 1 + 22 + 33 + 256. 

3 Prove formula (3) by using the expansion (k + 1 )3 = 
k3 + 3k2 + 3k + I and the method suggested in the text. 

4 Prove formula (4) similarly, by using the expansion (k + I )4 = k4 + 4k3 + 6k2 + 4k + 1 .  
5 Use (2), (3) , and (4) to find closed formulas for the sum 

of the first n - 1 (instead of the first n) integers, squares, 
and cubes*: 
(a) l + 2 + · · · + (n - 1) = ? 
(b) 1 2 + 22 + · · · + (n - 1 )2 = ? 
(c) J 3 + 23 + . . .  + (n - 1 )3 = ? 

*The indicated sums in (2), (3), and (4) are called open because the 
three-dot notation is used to suggest many terms that are present but 
not written. In contrast to this, the formulas on the right sides of these 
equations are called closed. 

n L k = f[(n + 1 )2 - 12 - n] = f[n2 + n] k=l 
n(n + 1 )  

2 

6 Use the method suggested in the text to discover and 
prove closed formulas for (a) 14 + 24 + · · · + n4; (b) 
l 5 + 2s + . . . + n5. 

7 By doing a little arithmetic we see that 

13 + 23 = ( I  + 2)2, 

1 3  + 23 + 33 = ( I  + 2 + 3)2, 
and 

1 3  + 23 + 33 + 43 = ( I  + 2 + 3 + 4)2. 

Show that 
1 3 + 23 + · · · + n3 = ( I  + 2 + · · · + n)2 

for every positive integer n. 
8 There is a wonderful geometric proof of formula (4) that 

was known to the Arab mathematicians more than a thou
sand years ago. It depends on the square shown in Fig. 
6. 1 0, which is constructed as follows. Beginning at the 
point 0, lay off successive segments of lengths I , 2, 3, 
etc . ,  and finally one of length n extending up to the point 
A. Do the same on a line OB perpendicular to OA, so that 

OA = OB = 1 + 2 + · · · + n 

= 
n(n + I )  t 

2 

tThis formula for the sum of the first n positive integers is proved 
and used in the writings of Archimedes, and was presumably dis
covered by him. This formula was therefore known to the Arab math
ematicians of the Middle Ages, who translated, honored, and pre
served the works of Archimedes during those dark centuries when 
most Europeans could not read or write and knew nothing of math
ematics, and those few who could read and write lived in monaster
ies and were submerged in piety. 
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B and thereby complete this proof of formula (4). 
I 
I L,, I 

The results of the next two problems will be needed in Sec
tion 6.5. 

, / 
I 

9 (a) Use the product formula 
I 

Ls 

L4 

/ 
/ sin mfJ cos nfJ = t [sin (m + n)fJ + sin (m - n)fJ] 

(Additional Problem 63 in Chapter l )  to show that 

2 sin ix cos kx = sin (k + t)x - sin (k - t)x. ...-'-; ...-
/ 

� 
0 I 2 3 4 5 n A 

(b) By adding the identities in part (a) for k =  1 ,  2, . . . , 
n and exploiting cancellations as in the text, estab
lish the formula 

Figure 6.10 

The area S of the square is therefore given by the formula 

" I cos kx = 
k� I 

sin (n + t)x - sin tx 

2 sin tx 

where x is not an integer multiple of 27T. s = [ n(n; l )r 
However, the square is the sum of n L-shaped regions, 
as indicated: 

(c) Use the product formula in (a) again to write the sum 
in (b) in the form 

II sin tnx cos ten + I )x 
I cos kx = 

S = L 1  + Li + · · · + L11 . k� I 

Use the fact that L,, can be split into the two rectangles 
in the figure to show that 

10 Use the method of Problem 9 to establish the corre
sponding formula 

II 

L sin kx = 
sin tnx sin ten + I )x 

. I sin 2x 
so that k� I 

S = 1 3  + 23 + · · · + n3, where x is not an integer multiple of 27T. 

We begin by restating the problem we are trying to solve. Let y = f(x) be a given 
nonnegative function defined on a closed interval a :5 x :5 b, as shown in Fig. 
6 . 1 1 .  How do we calculate the area of the shaded region in the figure, that is, the 
area of the region under the graph, above the x-axis, and between the vertical 
lines x = a and x = b? 

Closed intervals like the one mentioned here will occur quite often in our dis
cussion, so we use the briefer notation [a, b ]. Also, most of the functions we 
study will be continuous. The reader will recall that this means t.he following: 
From the intuitive point of view, the graph consists of a single piece, with no 
gaps or holes; and more precisely, for each point c in [a, b] we must have 

lim f(x) = f(c). 
x->c 

Such a function has several basic properties that we wish to recognize explicitly : 
It is bounded, in the sense that there exists a constant K such that IJCx) I :5 K for 
all x in [a, b] ; and it assumes maximum and minimum values, in the sense that 
the graph has a highest point and a lowest point.*  

We return to Fig. 6 . 1 1 ,  with the specific assumption that the function y = f(x) 
is continuous on [a, b] .  How do we find the area of the shaded region? If we take 

·see the discussion of the Extreme Value Theorem in Section 2.6. 
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Figure 6.1 2  Approximating the area. 

DEFINITE INTEGRALS 

n = 4 n = 8  n = 1 6  

the nature of this region into account-that is, the fact that only the upper edge 
is curved-then the method of exhaustion suggests the following approximation 
procedure using thin rectangles. 

Let n be a positive integer and divide the interval [a, b] into n equal subinter
vals. Using each subinterval as a base, construct the tallest rectangle that lies en
tirely under the graph. Write down the sum Sn of the areas of all these thin rec
tangles. This sum approximates the area under the graph, and the approximation 
is improved by taking larger values of n, or equivalently, by dividing [a, b] into 
a larger number of smaller subintervals. Finally, calculate the exact area under 
the graph by finding the limiting value approached by the approximating sums 
Sn as n approaches infinity: 

area of region = Jim Sn · n-.� 
( l )  

The effect of this procedure i s  suggested i n  Fig. 6. 12, showing a larger and larger 
number of thinner and thinner rectangles. 

We now describe this idea with greater precision by introducing some suitable 
notation. 

Again, let n be a positive integer and divide the interval [a, b] into n equal 
subintervals by inserting n - l equally spaced points of division x1 , x2, . . .  , Xn- I 
between a and b. If we denote a by x0 and b by Xn, then the endpoints of these 
subintervals are 

a = xo < X1 < Xz < . . .  < Xn- I < Xn = b, (2) 

and the subintervals themselves are 

[xo, xi ] ,  [x1 , xz] ,  . . .  , [Xn- 1 , X11], (3) 

as shown in Fig. 6. 13 .  We denote the length of the kth subinterval by !ixk, so 

(4) 

Since the subintervals are equal in length, it is clear that !ixk = (b - a)!n. Let 
mk denote the minimum value of f(x) on the kth subinterval [xk- 1 , xd. Then this 
minimum value is assumed at some point xk in the subinterval: 

For the particular curve shown in Fig. 6. 1 3, xk is easily seen to be the left end
point of the subinterval when the curve is rising and the right endpoint when it is 
falling. Since the area of each inscribed rectangle is the product of its height and 
its base, the approximating sum Sn of the areas of all these rectangles is clearly 
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sn = f(x1 )  Lili + f(x2) Lil2 + · · · + f(xk) Lixk + · · · + f(xn) llxn. 

If we use the sigma notation to abbreviate this sum, we get 

and ( 1 )  becomes 

ll 

sn = L f(xk) Llxk> 
k= I  

n 

area of region = lim L f(xk) Llxk. n�oo k= I 

(5) 

(6) 

This formula is all right as far as it goes, but from several points of view it is in
convenient and unduly restrictive. We broaden its scope and deepen its meaning 
in a series of remarks. 

Remark 1 It is not necessary that the subintervals (3) must be equal in length. 
In fact, the underlying theory is greatly simplified if this restriction is removed. 
We therefore allow the subintervals (3) to be equal or unequal in length, so that 
the increments (4) may be different from one another. In formula (6), it is now 
no longer enough to require that n approaches infinity; we must also require that 
the length of the longest subinterval approaches zero. Since the latter condition 
includes the former, we replace (6) by 

n 
area of region = Jim L f(xk) Llxk, max �,-->Ok= 1 

where max /::,.xk denotes the length of the longest subinterval. 

(7) 

Remark 2 The sum (5) is called a lower sum because it uses inscribed rectan
gles and approximates the area of the region from below. We can also approxi
mate the area from above, as follows. Roughly speaking, we now use each subin
terval as a base, as before, but this time we construct the shortest rectangle whose 
top lies entirely above the curve. 

To express this in symbols, let Mk denote the maximum value of f(x) on the 
kth subinterval [Xk- 1 , xk] . As before, this maximum value is assumed at some 
point xk in the subinterval: 

Figure 6. 1 3  Using lower sums. 
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Figure 6. 1 4  Using upper sums. 
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/ / / / / / 

The sum of the areas of the circumscribed rectangles is therefore 
II 

s" = I f(xk) t::..xk. k= I 
(8) 

This is called an upper sum because it approximates the area of the region from 
above, as shown in Fig. 6. 14 .  Geometric intuition tells us that the area of our re
gion can just as well be obtained as the limit of upper sums, so we have 

II 

area of region = lim L f(xk) t::..xk. max LU"k-70 k= 1 
(9) 

However, entirely apart from intuition-which is sometimes misleading-it can 
be rigorously proved as a theorem of pure mathematics that the limits in (7) and 
(9) both exist and have the same value for any continuous function. t 

Further, if x% is taken to be any point in the kth subinterval [xk- " xd, then we 
clearly have 

II 

Sn :S L f(x'k) l:::..xk :S Sn. 
k= I 

It therefore follows from the theorem just stated that both (7) and (9) can be re
placed by the formula 

n 
area of region = lim L f(xk.) t::..xk, max arA:-70 k= I 

where the only restriction placed on xt is that Xk- I ::5 xt ::5 Xk. 

( 10) 

Remark 3 The limit in ( 1 0) -or in (7) or (9)-is symbolized by the standard 
Leibniz notation 

r f(x) dx, ( 1 1 )  

tThe details of this proof are not appropriate for an introductory course in calculus, where most stu
dents already have quite enough to think about. However, for the sake of the few exceptionally skep
tical and tenacious students who might be interested in pursuing the matter, these details are given 
in Appendix A.5 .  
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which is read (as we said in Section 6.2) "the definite integral from a to b of 
f(x) dx." If we write down the definition of ( 1 1 ), 

lb n 
f(x) dx = Jim L f(x'k) t:..xk. a max axk----tO k= I 

( 1 2) 

then every part of the symbol on the left side is intended to remind us of the cor
responding part of the approximating sum on the right side. The integral sign J 
is an elongated letter S, as in "sum," chosen because of the similarity between a 
definite integral and a sum of small quantities ;  the passage to the limit in (12) is 
suggested by replacing the letter k by the symbol J. Also, the usual symbol Ll 
for an increment is replaced by the letter d to remind us of this limit operation, 
just as in the Leibniz notation dy!dx for the derivative. Thus, with the passage to 
the limit in ( 12), 

f(x*,J 
t:..xk 

becomes 

becomes 

becomes 
f(x) , 
dx. 

The numbers a and b attached to the integral sign are called the lower and up
per limits of integration. t Limits of integration are always present in a definite 
integral, and help distinguish it from the similar-appearing but very different in
definite integral 

J f(x) dx. 

The function f (x) in ( 1 1 ) is called the integrand-the thing being integrated
and the variable x is the variable of integration. The role of the dx as an impor
tant intuitive component of definite integrals will become much clearer in the 
next chapter. 

Remark 4 In our discussion so far, we have adopted the naive but reasonable 
attitude that the area of the region under the graph clearly exists, and that all we 
have to do is devise a method for computing it. However, the following exam
ple shows that the situation is more complicated than this. 

Consider the function f(x) defined on [0, 1] by 

f(x) = {� if x is rational, 
if x is irrational. 

The graph is suggested in Fig. 6. 15 ,  and the very discontinuous nature of this 
function is shown by the fact that at least one irrational number lies between 
every pair of rationals and at least one rational number lies between every pair 
of irrationals. What is the area of the region under this graph? It is quite easy to 
see that every lower sum is 0 and every upper sum is 1 ,  so the area calculated 
by (7) is 0 and the area calculated by (9) is 1 .  Also, the limit on the right of ( 1 2) 

tHere the word "limit" has nothing to do with the limit concepts that are the basis of calculus. It is  
used in its loose, everyday sense, meaning "border" or "boundary." The limits of integration tell us  
where the integration begins and where it ends; they specify the left and right endpoints of the in
terval over which the integration is carried out, and remind us of k = l and k = n in the approxi
mating sum. 
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• :.o;: �: :.��:� "'"'" , 
deeper influence on the mathematics of the modern era than 
Bernhard Riemann ( 1826-1 866), the son of a poor country 
minister in northern Germany. This influence was especially 
profound in geometry, number theory, and the theory of 
functions. 
From 1 846 to 185 1  he studied at the universities of Berlin 

and Gottingen. In 1851 he obtained his doctorate at Gottin
gen under Carl Friedrich Gauss-at that time universally 
considered to be the greatest mathematician in the world
with his celebrated dissertation, "Foundations for a General 
Theory of Functions of a Complex Variable." In this path
breaking work he set forth an approach that is now familiar 
to all students of this subject, based on general principles 
and geometric ideas rather than formulas and calculations. 
In number theory his only published work was a brief but 

exceedingly profound paper of less than 1 0  pages devoted 
to the distribution of the prime numbers. This mighty effort 
started tidal waves in several branches of pure mathematics, 
and its influence will probably still be felt a thousand years 
from now. Every advanced course on number theory given 
at any university in the world today is saturated with Rie
mann's ideas. 
In 1 854 he was appointed Privatdozent (unpaid lecturer) 

at Gottingen, which at that time was the necessary first step 
on the academic ladder. Before he could be appointed, how
ever, he was required to present a trial lecture to the faculty. 
It was the custom for the candidate to offer three titles, and 
the head of his department usually accepted the first. Rie
mann rashly listed as his third topic the foundations of geom
etry, a subject on which he was unprepared but which Gauss 
had been turning over in his rnind for 60 years. Naturally, 

Gauss was curious to see how this particular candidate would 
cope with such a challenge, and to Riemann's dismay he 
designated this as the subject of the lecture. Riemann quickly 
tore himself away from his other interests at the time-"my 
investigations of the connection between electricity, mag
netism, light, and gravitation" -and wrote his lecture in the 
next 2 months. The result was one of the great classical mas
terpieces of mathematics, and probably the most important 
scientific lecture ever given. In it he greatly extended Gauss's 
own investigations of 30 years earlier and created a vast gen
eralization of all known geometries which is now known as 
Riemannian Geometry. Some 50 years later these ideas 
turned out to be indispensable tools for Albert Einstein in 
his creation of the General Theory of Relativity. It is 
recorded that even Gauss -who had seen everything, math
ematically speaking, had thought of most of it himself, and 
was almost impossible to impress-was surprised and en
thusiastic. 
We have merely scratched the surface of Riemann's great 

influence on the history of mathematics. In view of this 
it is quite surprising that his collected works fill only one 
average-sized volume. However, his writings were brief and 
powerful and pregnant with meaning for future generations, 
not routine publications of routine research that is dead the 
moment the printer's ink dries. 
His short life was plagued by ill health aggravated by the 

abominable climate of northern Germany. He died of tuber
culosis in Italy at the age of only 39, trying to escape the 
cold and rain and ice of Gottingen. His gravestone was in
corporated into the wall of a village cemetery in Italy, and 
in 1 906 his remains could no longer be found. However, he 
lives almost everywhere in modern mathematics. 

--®�,---------------------------

does not exist. Does the concept of area have any meaning in a situation like 
this? 

This bizarre example suggests the following indirect but more logical approach 
to the problem of area. If we are given a bounded nonnegative function f(x) de
fined but not necessarily continuous on [a, b] ,  we begin by examining the limit 
on the right of ( 12). If this limit exists, then we define its value to be the area 
of the region under the graph, and we say that the function f(x) is integrable on 
[a, b]. And if this limit does not exist, then it is meaningless to speak of the area 
of the region. Almost all the functions we encounter in practice are continuous, 
and the theorem stated in Remark 2 guarantees that every continuous function is 
integrable, so these logical fine points will have little practical significance for 
most of our work. Nevertheless, these issues are interesting and important from 
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the point of view of the theory of calculus, and students should be aware of them 
even though we choose not to emphasize them. 

The definite integral which is defined here is often called the Riemann inte
gral, in honor of the nineteenth-century German mathematician who was the first 
to give a careful discussion of integrals of discontinuous functions. Also, the sums 
on the right of ( 1 2) are often called Riemann sums. 

The concepts discussed in Section 6.4 suggest an actual procedure for calculat
ing areas. We now examine how this procedure works in a few specific cases. 

Example I Consider the function y = f(x) = x on the interval [0, b]. The region 
under this graph ( Fig .  6 . 16) is a triangle with height b and base b, so its area is 
obviously b2/2. However, it is of some interest to verify that our limit process 
gives the same result, but more important, to understand how the limit process 
gives this result. 

Let n be a large positive integer and divide the interval [0, b] into n equal 
subintervals by means of n - 1 equally spaced points 

b x, = -, n 2b x2 = -, n Xn- l  = (n - l )b 
n ( 1 )  

The bases of the rectangles are �xk = bin, and if we use upper sums a s  shown 
in Fig. 6. 16, then the heights of the rectangles are 

and we have 

b f(x1 )  = -, n 
nb f(xn) = -, n 

Sn = (�)(�) + ( 2:)(�) + . . .  + ( n:)(�) 
b2 

= 2 ( 1  + 2 + · · · + n). n 
By using formula (2) i n  Section 6 .3 ,  we can write thi s  as 

y = f(x) = x 

0 = x0 X 1 X2 • • • • • • • X n - 1  Xn = b  
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We therefore conclude that 

f . 1· s 1 · b2 ( 1 ) b2 
area o reg10n = Im n = Im -2 I + - = -2 , n�� n�� n 

which we knew at the beginning. In the notation of definite integrals, this result 
is 

fb b2 
Jo x dx = 2· (2) 

In this example we chose to use equal subintervals and upper sums. There was 
no compulsion to make these choices; our motive was only to make the calcula
tions as easy as possible. 

Example 2 Now consider the function y = f(x) = x2 on the interval [0, b] , as 
shown in Fig. 6. 17 .  Let n be a large positive integer and again divide the inter
val [O, b] into n equal subintervals of length !:::..xk = bin by using the points of di
vision ( I ) . We again use upper sums Sn, so the heights of the successive rectan
gles are easily seen to be 

and we have 

( 2b )2 
f(x2) = -;;- , 

b3 
= 3 ( 1 2 + 22 + . . . + n2). n 

This time we use formula (3) in Section 6.3 to write 

y = f(x) = x2 

(nb )2 
f(xn) = ----;; , 

0 = x0 X 1  X2 " • • • • • • Xn - 1  Xn == b  
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S = Ji}_ . n(n + 1 )(2n + 1 )  = Ji}_ . !!._ .  _n_+_l . _2n_+_l 
n n3 6 6 n n n 

As n � oo this clearly yields 

or equivalently, 

f . 1· s b3 area o region = 1m n = -3 
, n-->� 

Lb b3 
x2 dx = o 3 

. 

This calculation produces a result which we did not know at the beginning. 

In Problem 1 we ask students to show in the same way that 

Lb b4 x3 dx = -0 4 . 

It is natural to conjecture from (2), (3), and (4) that the formula 

Lb bn+ I 
xn dx = --0 n + 1 

(3) 

(4) 

(5) 

is probably true for all positive integers n = 1 ,  2, 3 ,  . . . . The validity of (5) was 
established for the cases n = 3, 4, . . .  , 9 by the Italian mathematician Cavalieri 
in 1 635 and 1647, but his laborious geometric methods bogged down at n = 10. 
A few years later Fermat discovered a beautiful argument that proves (5) at one 
stroke for all positive integers. This argument is somewhat aside from our main 
purpose here; it can be found in Section B .5 of the book Calculus Gems men
tioned earlier. 

Example 3 Next, we find the area under the cosine curve y = cos x from x = 0 
to x = b, where 0 < b :s 'TTl2 ( Fig. 6 . 1 8). Again we let n be a large positive in
teger and divide the interval [0, b] into n equal subintervals of length tuk = bin 
by using the points of division ( 1 ) .  This time we use lower sums Sm and since 
the function is decreasing, the points xk are the right endpoints of the subinter
vals. The heights of the successive rectangles are therefore 

and we have 

b cos n '  2b cos n '  nb cos n '  

sn = (cos 1;)(1;) + (cos 2:)(1;) + · · · + (cos n:)(1;) = ; �1 cos k:. 
To calculate the limit of this as n � oo, we use the formula of Problem 9 in 
Section 6.3, 

" 

I cos kx = k� J 
with x = bin. We therefore have 

sin +nx cos +<n + l )x 
. I sm 2x 

0 

Figure 6.18 

b 
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area of region = lim sn 
n-->� 

I . b 
. 1 b  [ <n + l )b ] sm 2 cos 2n 

= 1m - ·  
n�oo n sin (b/2n) 

To calculate this limit we begin by observing that 

[ (n + l )b ] ( I ) b b cos 2n = cos l + -;;- 2 --'> cos 2 as n �  oo, 

(6) 

since the cosine is continuous. Next, if we put fJ = b/2n, then fJ � 0 as n � oo, 

and by using the limit (3) in Section 2.5 we see that 

PROBLEMS 

b I = 2 . bl2n = 2 . _e_ --'> 2 n sin (b/2n) sin (b/2n) sin (} 

These facts enable us to write (6) as 

as 

f · r 2 · b b · b  area o region = 
n:_

n;!, Sn = sm 2 cos 2 = sm , 

or equivalently, 

r cos x dx = sin b. 

Use upper sums to show that the area under the graph of 
y = x3 over the interval [O, b] is b4/4. 

It is easy to see from Example 2 that 
(b b3 Jo ax2 dx = a 3· 

n �  oo, 

2 Find the area under the graph of y = x over the interval 
[O, b) by using lower sums instead of the upper sums of 
Example l .  

3 Find the area under the graph of y = x2 over the interval 
[O, b] by using lower sums instead of the upper sums of 
Example 2. 

Use this to prove the theorem of Archimedes stated in Sec
tion 6.2 for the special case in which the chord AB is per
pendicular to the axis of the parabola. 

4 Solve Problem l by using lower sums instead of upper 
sums. 

5 As we know, every parabola with vertex at the origin 
which opens upward has an equation of the form y = ax2. 

6 Find the area under the curve y = sin x from x = 0 to x = 
b, where 0 < b < 7T. Hint: Use equal subintervals, take the 
points xk to be the right endpoints of the subintervals, and 
apply Problem 10 in Section 6.3 . 

6 . 6  
THE FUNDAMENTAL 

THEOREM OF 
CALCULUS 

As our main achievement so far in this chapter, we have formulated a rather com
plicated definition of the definite integral of a continuous function as the limit 
of approximating sums, 

lb 
n 

f(x) dx = lim L f(xk) tuk. a max llx,-->O k= I 
( l )  

We have also considered several examples of the use of  this definition in calcu
lating the values of certain simple integrals, such as 

(b b2 Jo x dx = Z' lb b3 x2 dx = o 3 '  and 
(b b4 Jo x3 dx = 4· (2) 
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a b a x 

These calculations have had two purposes: to emphasize the essential nature of 
the integral by giving students some direct experience with approximating sums, 
and also to suggest the severe limitations of this method as a practical tool for 
evaluating integrals. Thus, for example, how can we possibly use limits of sums 
to find the numerical values of such complicated integrals as 

( ' x4 dx 
Jo v1 + .x5 

and (2 ( 1 + _!_)4 dx? 
J, x x2 (3) 

This i s  clearly out of the question, so where do we go from here? What i s  evi
dently needed is a much more efficient and powerful method of computing inte
grals, and we find this method in the ideas of Newton and Leibniz. 

The Newton-Leibniz approach to the problem of calculating the integral ( 1 )  
depends o n  an idea that seems paradoxical at first sight. I n  order to solve this 
problem, we replace it by an apparently harder problem. Instead of asking for 
the fixed area on the left in Fig. 6. 1 9, we ask for the variable area produced when 
the edge on the right side of the figure is considered to be moveable, so that the 
area is a function of x, as suggested on the right in Fig. 6 . 1 9. If this area func
tion is denoted by A(x), then clearly A(a) = 0 and A(b) is the fixed area on the 
left in the figure. Our aim is to find an explicit formula for A(x), and then to de
termine the desired fixed area by setting x = b. There are several steps in this 
process, which we consider separately for the sake of clarity. 

STEP 1 We begin by establishing the crucial fact that 

dA dx = f(x). (4) 

This says that the rate of change of the area A with respect to x is equal to the 
length of the right edge of the region. To prove this statement, we must appeal 
to the definition of the derivative, 

dA 
= lim A(x + 6x) - A(x) dx <ix-->O 6x 

Now A(x) is the area under the graph between a and x, and A(x + Lix) is the area 
between a and x + Lix. Hence the numerator A(x + Lix) - A(x) is the area be
tween x and x + Lix (see the shaded region in Fig. 6.20). It is easy to see that 
this area is exactly equal to the area of a rectangle with the same base whose 
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height is f(x), where x is a suitably chosen point between x and x + Lix.* This 
enables us to complete the proof of (4) as follows: 

dA 
= Jim A(x + �x) - A(x) 

= Jim JCx) �x 
dx Ax-.O �x Ax-.o �x 

= Jim f(x) = f(x), 
Ax->0 

since f(x) is continuous. To explain the last step here in a bit more detail, we 
point out that Lix � 0 is equivalent to x + Lix � x; since x is caught between x 
and x + Lix, we also have x � x, and the continuity of the function now yields 
the conclusion that f(x) � f(x). 

STEP 2 Equation (4) makes it possible for us to achieve our goal of finding a 
formula for the area function A(x). The reasoning goes this way. By (4), A(x) is  
one of the antiderivatives of f(x). But if F(x) is any antiderivative of f(x), then 
we know from Chapter 5 that 

A(x) = F(x) + c (5) 

for some value of the constant c. To determine c, we put x = a in (5) and obtain 
A(a) = F(a) + c; but since A(a) = 0, this yields c = - F(a). Therefore 

A(x) = F(x) - F(a) 
is the desired formula. 

STEP 3 All that remains is to observe that 

I: f(x) dx = A(b) = F(b) - F(a), 

by (6) and the meaning of A(x). 

(6) 

We summarize our conclusions by formally stating the Fundamental Theorem 
of Calculus: 

If f(x) is continuous on a closed interval [a, b], and if F(x) is any antiderivative of f(x), 
so that (dldx) F(x) = f(x) or equivalently 

J f(x) dx = F(x), (7) 

then 

Lb f(x) dx = F(b) - F(a). 
{/ 

(8) 

This theorem transforms the difficult problem of evaluating definite integrals by 
calculating limits of sums into the much easier problem of finding antideriva
tives. To find the value of Jg f(x) dx, we therefore no longer have to think about 
sums at all; we merely find an antiderivative F(x) in any way we can-by in-

*When this statement is expressed in formal language, it is called the First Mean Value Theorem of 
Integral Calculus. Loosely speaking, if the top of the rectangle is at just the right level, then the part 
of the area protruding above it exactly balances the deficiency below it. 
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spection, routine calculation, ingenious calculation, or looking it up in a book
and then compute the number F(b) - F(a). 

For instance, in Section 6.5 we used a good deal of algebraic ingenuity to ob
tain the formulas (2). Now, with the aid of the Fundamental Theorem, we see 
these formulas as obvious consequences of the following simple facts : 

J x2 x dx = Z' J x3 x2 dx = -3 , and J x4 x3 dx = 4· 

More generally, for any exponent n > 0 we clearly have 

Lb xn dx = � - an+ I ,  
a n + I  n + l  because J x"+ I  x" dx =--. n + I 

Remark 1 In the process of working problems, it is often convenient to use the 
bracket symbol, 

F(x) J: = F(b) - F(a), (9) 

which is read "F(x) bracket a, b." This symbol means exactly what (9) says it 
does: To find its value, we write the value of F(x) when x has the upper value b, 
and subtract the value of F(x) when x has the lower value a. For example, 
x2H = 42 - 32 = 1 6  - 9 = 7. By using this notation, (8) can be written in the 
form 

r f(x) dx = F(x) J:. 

Remark 2 It should be clear from this discussion that any antiderivative of f(x) 
will do in (8). In case students are in doubt about this, they should recall that if 
F(x) is one antiderivative, then any other can be obtained by adding a suitable 
constant c to form F(x) + c; and since 

F(x) + cJ: = [ F(b) + c] - [F(a) + c] = F(b) - F(a), 
the constant c has no effect on the result. We may therefore ignore constants of 
integration when finding antiderivatives for the purpose of computing definite in
tegrals. (Nevertheless, these constants of integration remain indispensable when 
we are working with differential equations, as we saw in Section 5 .4.) 

Example 1 Evaluate each of the following definite integrals :  

(a) f1 x4 dx; (27 , l/ 
(c) Js v x dx; ll4 (d) (x - 1 3) 1 0 dx. 13 

Solution In each case an antiderivative is easy to find by inspection: 

(a) x4 dx = -x5 = - (32 - ( - 1 )] = -; J2 1 ]2 1 33 
- I  5 - I  5 5 

(b) - = 2Vx = 2(4 - 1 )  = 6 ;  
l l6 dx ] ' 6 
I Vx I 
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(c) Vx dx = - x413 = - (81  - 16) = -· L27 ) 3 ]27 3 1 95 
8 4 8 4 4 ' 

(d) (x - 1 3) 1 0  dx = - (x - 13) 1 1 = - ( 1  - 0) = -. fi 14 1 ] 14 1 I 
1 3 1 1  13 1 1  1 1  

The Fundamental Theorem establishes a strong connection between definite 
integrals and antiderivatives. This connection has made it customary to use the 
integral sign to denote an antiderivative, as in (7), and to replace the word "an
tiderivative" by the term "indefinite integral." The reader is familiar with these 
usages from Chapter 5 .  From this point on we will often drop the adjective (in
definite, definite) and use the word "integral" alone to refer to either the func
tion (7) or the number (8), relying on the context and the reader's understanding 
of what is going on i n  order to avoid confusion. As an infallible aid in keeping 
track of which is which, we emphasize that a definite integral always has limits 
of integration attached to it, and that an indefinite integral never has such limits. 

We apologize again for any confusion that may be caused by using such sim
ilar notations, f f(x) dx and Jg f(x) dx, for such very different concepts. How
ever, these notations have been with us for 300 years, and trying to change them 
now would be as futile as asking the wind not to blow. [Some years ago, one au
thor tried to introduce the notation A[f(x)] for the antiderivative to replace f f(x) 
dx. His book disappeared from view faster than yesterday's newspaper.] Rather, 
it is the responsibility of students to read the symbols f f(x) dx and Jg f(x) dx 
carefully. We all read words carefully, and distinguish between such similar-ap
pearing words as "peak" and "peek," "venal" and "venial," "manor" and "man
ner." Mathematics must be read with even more care. 

From our experience in Chapter 5, we know-or can calculate-many in
definite integrals, and therefore many definite integrals are now within our reach. 
In particular, the definite integrals (3) are not at all difficult to compute, as we 
now show. 

Example 2 Evaluate r01 x4 dx 
Jc Yj7 + XS . 

Solution For the sake of clarity, we consider separately the problem of finding 
the indefinite integral. The substitution 

yields 

u = 7 + x5, du = 5x4 dx 

J x4 dx 
= J (7 + x5)- 113x4 dx = J u- 113 (1- du) = _!_ J u- 113 du Y/7 + x5 5 5 

= _!_ . l u213 5 2 

= 1
3
0 (7 + x5)2/3 . 

By the Fundamental Theorem we therefore have 
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--- = - (7 + xs)213 = - (4 -7213) = - (4 - '\'l49). L
I X4 dx 3 J I 3 3 3 

o 'Y/7 + x5 1 0 o 10 1 0 
Example 3 Evaluate 

l + - -. i2 ( 1 )4 dx I X x2 
Solution Here we have 

so 

l u = l + x ' dx du = -2, x 
J ( l + � r � = J u4(-du) = -t u5 

= -t (1 + �y. 
The Fundamental Theorem now yields 

(2 ( i + _!_)4 dx 
= _ _!_ ( 1 + _!_)5]2 J 1 X x2 5 X I 
= _ _!_ ( 243 - 32) = 

78 1  
5 32 160 ' 

Example 4 Find the area under the curve y = cos x from x = 0 to x = b, where 
0 < b $ 71"/2. 

Solution This area (see Fig. 6. 1 8) is given by the definite integral 

J: cos x dx. 

But the indefinite integral of cos x is familiar to us, 

J cos x dx = sin x, · 

so we immediately have 

J: cos x dx = sin x J: = sin b - sin 0 = sin b. 
A comparison with Example 3 in Section 6 .5 demonstrates the power of the Fun
damental Theorem with particular clarity. The calculation in Example 3 was dif
ficult and depended on an obscure trigonometric identity, whereas the calcula
tion here is very easy indeed-but only because the Fundamental Theorem is 
available to us and we know a little about indefinite integrals. 

Remark 3 Newton and Leibniz are commonly credited with discovering calcu
lus at about the same time but independently of each other. Yet the concepts of 
the derivative as the slope of the tangent, and the definite integral as the area un-

2 1 1 
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lb bn + l  0n + l  
x" dx = - - -

n + I  n + I  

a b 

Figure 6.2 1 

PROBLEMS 
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der a curve, were familiar to many thinkers who preceded them. Under these cir
cumstances, why are Newton and Leibniz given the lion's share of the credit for 
creating this new branch of mathematics, which played such a central role in the 
rise of science as the dominant feature of Western civilization? Mostly because 
they were the principal discoverers of the Fundamental Theorem of Calculus. 
They, and they alone, understood its importance and began to construct the nec
essary supporting machinery, and also applied it with spectacular success to prob
lems in science and geometry. 

Nevertheless, historians of science have traced the roots of the Fundamental 
Theorem back to hints in  the earlier geometric work of Barrow and Pascal, whose 
writings are known to have influenced Newton and Leibniz. As Newton said in 
one of his rare moments of self-deprecation-he was not a modest man-"If I 
have seen farther, it is by standing on the shoulders of giants." One of these gi
ants was Fermat, who was the first to prove the area formula stated in Fig. 6.21 .  
This suggests-as we look back with 20-20 hindsight-that he must therefore 
have known the Fundamental Theorem itself, which seems such a short step away. 
But unfortunately he failed to notice it. 

The Fundamental Theorem of Calculus is unquestionably one of the greatest 
achievements of the human mind. It is also one of the most influential, when we 
consider how much of the subsequent development of mathematics and the phys
ical sciences depends upon it. Before it was discovered, from the time of 
Archimedes in the third century B.C. to the time of Fermat in the middle of the 
seventeenth century, problems of finding areas, volumes, and lengths of curves 
were so difficult that only people of genius could hope to solve them, and there 
are very few of these in any generation. But now, equipped with the great arse
nal of systematic methods that Newton and Leibniz and their followers built on 
the foundation of the Fundamental Theorem, we will see in the following chap
ters that these problems are open to all of us. 

A sketch is a necessary part of the solution of almost any prob
lem involving a geometric quantity, and students should form 
the habit of drawing one as a matter of routine. If drawn with 
reasonable (but not excessive) care, such a sketch can help us 
avoid errors by reminding us of what we are doing, and of
ten acts as a valuable source of ideas. 

In Problems 6- 1 0, each curve has one arch above the x-axis. 
Find the area of the region under the arch. 

6 y = -x3 + 4x. 
7 y = x3 - 9x. 
8 y = 2x2 - x3. 
9 y = x4 - 6x2 + 8. 

Use integration to find the area of the triangle bounded 
by the line y = 2x, the x-axis, and the line x = 3 .  Check 
your answer by elementary geometry. 

2 Use integration to find the area of the triangle bounded 
by the axes and the line 3x + 2y = 6. Check your an
swer by elementary geometry. 

In Problems 3-5, find the area between each parabola and the 
x-axis. 
3 x2 + y = 4. 
4 4x2 + 9y = 36. 
5 4x2 + 1 2y = 24x. 

10 y = x3 - 5x2 + 2x + 8 .  
In Problems 1 1-2 1 ,  find the area bounded by the given curve, 
the x-axis, and the given vertical lines. 
1 1  y = x2, x = -2 and x = 3 .  
12  y = x3, x = 0 and x = 2.  
13 y = 3x2 + x + 2,  x = I and x = 2.  
14 y = x2 - 3x, x = - 3 and x = - 1 .  

1 
15  y = 2x + 2• x = 1 and x = 3. x 

I 
16  y = x = I and x = 6 Vx"+} '  . 



1 7  y = 3x2 + 2, x = O and x = 3. 
18  y = 2x  + 3 ,  x = 0 and x = 3 .  
19 y = v2x+3, x = - l and x = 3 .  

1 20 y = x = - I and x = 3 

21 

v2x+3' . 

y = (2x + 3 )2 , x = - 1  and x = 3. 

22 If n is positive, then 

6.7 PROPERTIES OF DEFINITE INTEGRALS 

27 L2 V4x+J dx. 

fa x dx 29 (x2 _ a2)2 · 2a 
31 LI (x - x2) dx. 
33 r (a2x - x3) dx. 

28 

30 

32 

34 

f 1 (x + 1 )2 dx. 

rb x dx 
o Vx2 + b2 . 

2 1 3  

t ( I + x)(2 - x) dx. 
L1 (x + 1 )9 dx. 

J I xn+ I J I x" dx = -- . - I n + [ - I  

35 I: (Vb - Vx)2 dx. 36 L1 x2( 1  - x2) dx. 

Why is this calculation incorrect if n is a negative num
ber -=/= - 1 ? 

In Problems 23-42, find the value of each definite integral. 

37 

39 

L1 x2( 1 - x)2 dx. 

r/4 0 sin 4x dx. 
38 f (x + �y dx. 

f"/4 40 sin t dt. 17/6 
J213 dx 

11 23 , ;;:;--:---;;; . 24 (2x + 3) dx. 41  L"/2 0 (2 sin () + cos 8) d8. 
- 1/3 V jX -t- L 0 

25 rl 7x6 dx. 26 r Vx dx. 

ALGEBRAIC AND GEOMETRIC AREAS 

42 L"13 sin () -- d() 
o cos2 () · 

In the previous sections we considered the area of the region under the curve y = 
f(x) between x = a and x = b, and two assumptions were more or less explicit: 
( l ) f(x) 2': 0 throughout the interval, and (2) a <  b. However, the formula defin
ing the definite integral as the limit of approximating sums, namely, 

lb II f(x) dx = lim L f(x'k.) llxk> a max lll,--?0 k= 1 

is independent of these assumptions. 

( 1 )  

For example, suppose that the curve lies below the x-axis, as shown on the left 
in Fig. 6.22. In this case we would hesitate to speak of the region "under the 
curve," but we can certainly describe it as the region "bounded by the curve and 
the x-axis, between x = a and x = b." Each term of the sum ( 1 )  is clearly nega
tive because f(xk) < 0. Accordingly, f(xk) tlxk i s  the negative of the area of the 
shaded rectangle, the integral is the negative of the area of the region, and con
sequently 

area of the region = -r f(x) dx. 

6 . 7  
PROPERTIES OF 
DEFINITE INTEGRALS 

Figure 6.22 
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Similarly, if the curve lies partly above the x-axis and partly below it, as shown 
on the right in Fig. 6.22, then the integral ( 1 )  can be thought of as a sum of pos
itive and negative terms ,  corresponding to parts of the region lying above and be
low the x-axis: 

(2) 

where the areas A 1 , A2, A3, A4 are understood to be positive. The integral (2) is 
often called the algebraic area of the region bounded by the curve and the 
x-axis ,  because it counts areas of regions above the x-axis with a positive sign 
and areas of regions below the x-axis with a negative sign.* The actual area of 
the region bounded by the curve and the x-axis, with each part counted as a pos
itive number, is called the geometric area: 

A I + Az + A3 + A4 = r 
-

r + I: - t (3) 

To find the geometric area, we must sketch the graph, locate the crossing points, 
and calculate each integral on the right of (3) separately so that they can be com
bined with the correct signs. 

MISCELLANEOUS PROPERTIES 

If we drop the condition a < b and instead assume that a > b, we can still re
tain the purely numerical definition ( 1 )  for the definite integral. The only change 
is that as we traverse the interval from a to b the increments t::.xk are negative. 
This yields the equation 

r f(x) dx = 
-
r f(x) dx, (4) 

which is valid for all numbers a and b (a * b). Also, since (4) says that inter
changing the limits of integration changes the sign of the integral, it is natural to 
take the equation 

r f(x) dx = 0 (5) 

as the definition of the integral on the left. 
If a < b, and if c is any number between a and b, it is easy to see from ( 1 )  

that 

J: f(x) dx = r f(x) dx + r f(x) dx. (6) 

Properties (4) and (5) allow us to conclude that (6) is true for any three numbers 
a, b, c, regardless of their relation to one another. 

We list several further properties of definite integrals that follow in a routine 
way from the definition ( 1 ) : 

'The discussion in Section 6.6 leading to the Fundamental Theorem of Calculus extends without es
sential change to integrals of this type. An alternative proof of the Fundamental Theorem, based on 
entirely different ideas, is given in Appendix A.6. 
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r cf(x) dx = c r f(x) dx; (7) 

r [f(x) + g(x)] dx = r j(x) dx + r g(x) d.x; (8) 

if f(x) :'.S g(x) on [a, b] , then r f(x) dx :'.S r  g(x) dx. (9) 

In words, property (7) says that a constant factor can be moved across the inte
gral sign, and (8) says that the integral of a sum is the sum of the separate inte
grals. 

VARIABLE LIMITS OF INTEGRATION 

We have used x as the "variable of integration" in writing the definite integral 

r f(x) d.x. ( 1 0) 

However, ( 10) is a fixed number whose value does not depend on which letter is 
used for this variable. Instead of ( 1 0) ,  we could equally well write 

J: j(t) dt, J: f(u) du, 

or any similar expression, and the meaning would be the same. Letters used in 
this way are often called dummy variables. 

In most situations it doesn' t  matter what letters are used, as long as the ideas 
are clearly understood. However, sometimes we wish to construct a new func
tion F(x) by integrating a given function f(x) from a fixed lower limit to a vari
able upper limit, as in 

F(x) = r f(x) dx. ( 1 1 )  

It is evident that this usage can be confusing, because the letter x is used with 
two different meanings on the right: as the upper limit of integration above the 
integral sign, and as a dummy variable behind the integral sign. For this reason, 
it is customary to write ( 1 1 )  in the form 

F(x) = r f(t) dt, ( 1 2) 

with t used as the dummy variable in place of x. 
The function F(x) defined by ( 1 2) has two properties that make it important. 

First, it exists whenever the integrand is continuous on the interval between a 
and x. And second, we proved in Section 6.6 that the derivative of this function 
is simply the value of the integrand at the upper limit: 

d d rx dx F(x) = dx la f(t) dt = f(x). ( 1 3) 

This provides a satisfactory theoretical solution of the problem of finding an in
definite integral for any given continuous function f(x). As a practical matter, it 
may be very difficult-or even impossible-to calculate 

2 1 5  
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J f(x) dx = F(x) 
in any recognizable form involving familiar functions. But even if we can't find 
a formula for F(x), it i s  at least some consolation to know that in principle an in
definite integral of a continuous function always exists, namely, the function de
fined by ( 12). 

Example 1 The problem of finding an explicit formula for the indefinite inte
gral 

f � = F(x) 
is beyond our reach now, and will always be beyond our reach. However, if we 
don't require an explicit formula, but only a well-defined function, then 

(x dt F(x) = Jo � 

will do. 

Example 2 Let us try to calculate 

d ( rx dt ) 
dx Jo I + t2 . 

At this stage of our work we have no way of carrying out the integration to find 
a formula for the function in parentheses so that this function can be differenti
ated. But this doesn't matter. By ( 1 3) we immediately have 

d ( (x dt ) 1 
dx Jo l + t2 = I + x2 ' 

so no preliminary integration is necessary before the differentiation can be car
ried out. 

PROBLEMS 

1 In each of the following cases, compute the geometric area of the region bounded by the x-axis and the given curves: (a) y = 3x - x2, x = 1 ,  x = 4; (b) y = x2 - 2x, x = I , x = 4; (c) y = 4 + 4x3, x = -2, x = l ;  
8 (d ) y = x - 2· x = 1 ,  x = 4. x 

2 Find the area bounded by the axes and the given curve: (a) y =�; (b) Yx + vY = Va. 
3 Find the area bounded by y2 = x3 and x = 4. 
4 Find the area enclosed by the loop of y2 = x(x - 4)2. 
5 If a <  c < b andf(x) 2: 0 on [a, b], draw a suitable pie-

6 

7 

8 

ture and explain why equation (6) i s an obvious relation among areas. If f(x) 2: 0 on [a, b] and c > 0, draw a suitable picture and explain why equation (7) is an obvious statement about areas. Do the same for equations (8) and (9) if both f(x) and g(x) are nonnegative on [a, b]. If f(x) is an even function, that i s, if f( -x) = f(x), show geometrically or otherwise that 
ra f(x) dx = 2 r f(x) dx. 

Verify the equation in Problem 7 by calculating the fol-lowing integrals of even functions: 
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and J l9 ( I  + x24) dx. - 19 
9 If f(x) is an odd function, that is, if f(-x) = -f(x) ,  show 

geometrically or otherwise that 

ra f(x) dx = 0. 

10 Verify the equation in Problem 9 by computing the fol
lowing integrals of odd functions: 

J2 x5 dx -2 and 

1 1  The graph of y = x2, x � 0, can be considered to be the 
graph of x = Vy, y � 0. Show by geometry that this im
plies the validity of the equation 

(a (a2 Jo x2 dx + Jo vY dy = a3, 

Check this by calculating the integrals. 

a >  0. 

12 Generalize Problem 1 1  by finding and checking a simi
lar equation for y = x", where n is any positive number. 

13  Use the known area of  a circle to find the value of  the 
integral 

CHAPTER 6 REVIEW: CONCEPTS, METHODS 

Define, state, or think through the following. 
1 Sigma notation. 
2 Special sums. 
3 Area under a curve; lower sums and upper sums. 
4 Definite integral as a limit of sums. 
5 Limits of integration, integrand, variable of integration. 

ADDITIONAL PROBLEMS FOR CHAPTER 6 

SECTION 6.5 
1 Show that 

r Vx dx = fb3/2 

by taking xk = k2bln2 and xk = Xk in formula ( 1 2) of Sec
tion 6.4. Notice that this problem illustrates the calcula
tion of an integral as a limit by using subintervals of dif
ferent lengths. 

*2 Show that 

(b _!__ dx = 1 - _!_ J1 x2 b 

by using equal subintervals and taking xk = � in 
formula ( 1 2) of Section 6.4. (Why is Xk- l  < x'k < xk?) 

14 The graph of the equation 

x2 y2 
a2 + b2 = 1 ,  a >  b > 0, 

is called an ellipse. Sketch it, and use the result of Prob
lem 1 3  to find the enclosed area. 

1 5  Show that 
d Lb (a) dx x f(t) dt = -f(x); 
d lu(x) du (b) dx a f(t) dt = f(u(x)) dx .  

1 6  In each of the following, compute the indicated deriva
tive: 

d ix+2 dt (a) - -· dx I t ' 
d (x dt (c) dx J1 l+t; 

d (5 (b) dx 1zx t3 dt; 
d LI dt (d ) dx x 1 + t4 ; 

d ix2 dt 
(e) -dx 

I Vt + \/f+l "  

6 Integrable function. 
7 Every continuous function is integrable. 
8 Fundamental Theorem of Calculus. 
9 Indefinite integral. 

10 Algebraic and geometric areas. 
1 1  Variable limit of integration. 

Hint: It will be necessary to use a variation of the idea 
behind the formula 

1 1 1 1 -- + -- + -- +  . . .  + ---
1 · 2 2 · 3 3 · 4 n(n + 1 )  

= ( + - +) + (t - t) + (+ - -}) + . . .  

*3 Show that 

+ (_!_ - _I_) 
= 1 - _l_. n n + l n + I 

r � dx = 2(Vb _ 1 )  

by using equal subintervals and taking 
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* _ Xk- 1 + Xk + � _ ( � + � )2 Xk - 4 - 2 
in formula ( 12) of Section 6.4. Remember to check that 
Xk- I :S Xk :S Xk. 

SECTION 6.6 
4 Find the area between each parabola and the x-axis: 

(a) x2 + 3y = 9; 
(b) 3x2 + 4y = 48; 
(c) x2 + 4x + 2y = 0. 

5 The part of the curve b2y = 4h(bx - x2) that lies above 
the x-axis forms a parabolic arch with height h and base 
b. Sketch the graph and check these statements. Use in
tegration to show that the area under this arch is two
thirds the area of the rectangle with the same height and 
base. 

6 Each curve has one arch above the x-axis. Find the area 
under this arch. 
(a) y = 1 0  - x - 2x2. 
(b) y =  -x3 - 4x2 - 4x. 
(c) y = x3 + 2x2 - 8x. 
(d)  y = x4 - 6x2 + 9. 
(e) y = x�. 

7 Find the area bounded by the given curve, the x-axis, and 
the given vertical lines: 
(a) y = x2 + 2x + 1 ,  x = - l and x = I ; 
(b) y = Vx+l, x = 2 and x = 7; 
(c) y = �. x = -5 and x = 3; 
(d) y = x�, x = 0 and x = Vs; 

x (e) y =  (xz + l )2 , x = O and x = 3. 
8 Find the value of each definite integral: 

(a) J� x(x2 + 2)3 dx; (b) r I 3x2(3 + x3)2 dx; 

(c) J: xYa2 - x2 dx; (d ) J: xYa2 + x2 dx; 

(e) f 2 (8 - 4x + x2) dx; 
f
2
7 (f) J8 (2x-2t3 + 8xli3) dx; 

(g) J� Y9 - 8x dx; 

(h) L3 (3x � 5 )s12 ; 

(i) 
J,V3 x dx 

0 V4 - x2 ; 

(j) f2 � x2 dx· Jo ' 
(k) I: (b2/3 - x2'3)3 dx. 

S ECTION 6.7 

9 In each of the following cases, compute the geometric 
area of the region bounded by the x-axis and the given 
curves: 
(a) y = 6 - 3x2, x = 0, x = 2; 
(b) y = x2 + 2x, x = -3, x = O; 
(c) y = x2 - x - 2, x = 1 ,  x = 3 ;  
(d)  y = x3 - 3x, x = -2, x = 3 .  

10 In each of the following cases, compute both the alge
braic and geometric areas of the region bounded by the 
x-axis and the given curves: 
(a) y = 3x5 - x3, x =  - 1 , x =  1 ;  
(b) y = (x2 - 4)(9 - x2). 

1 1  Compute 
d lx4 dt (a) dx o l+t; 
d lx3 dt 

(c) dx o vJt+7 ;  
1 2  Verify the results obtained i n  parts (c) and (d ) of Prob

lem 1 1  by actually carrying out the integration and then 
differentiating. 

APPENDIX: 
THE LUNES OF 
HIPPOCRATES 

According to one tradition, Hippocrates of Chios (ca. 430 B.C.)-not to be con
fused with his better-known contemporary, the physician Hippocrates of Cos
was originally a merchant whose goods were stolen by pirates .*  He then went to 
Athens, where he lived for many years, studied mathematics, and compiled a 
book on the elements of geometry that strongly influenced Euclid more than a 
century later. 

•Aristotle, who rarely missed a chance to express his scorn for mathematicians, gives a more de
meaning account of Hippocrates' misfortune. "It is well known," he wrote with relish, "that people 
brilliant in one particular field may be quite foolish in most other things. Thus Hippocrates, though 
skilled in geometry, was so stupid and spineless that he let a tax collector of Byzantium cheat him 
out of a fortune." This, from the man who asserted that heavier bodies fall to the ground more rapidly 
and that men have more teeth than women. 



APPENDIX : THE LUNES OF HIPPOCRATES 

We recall Hippocrates' discovery as stated in Section 6.2: The lune (crescent- D 
shaped region) in Fig. 6.23 bounded by the circular arcs ADE and AEB (the lat
ter having C as its center) has an area exactly equal to the area of the shaded 
square whose side is the radius of the circle. (Hippocrates also found the areas 
of two other kinds of Junes, but we do not discuss these here.) 

This astonishing theorem seems to be the earliest precise determination of the 
area of a region bounded by curves. Its proof is simple but ingenious and de
pends on the last of the following three geometric facts, each of which implies 
the next: (a) The areas of two circles are to each other as the squares of the radii 
( Fig. 6.24 ) ; (b) sectors of two circles with equal central angles are to each other c 
as the squares of the radii ( Fig. 6.25); ( c) segments of two circles with equal Figure 6.23 

central angles are to each other as the squares of the radii ( Fig. 6.26). We shall 
need ( c) in the special case of right angles at the center. 

The proof of Hippocrates' theorem now proceeds as follows. Redraw the lune 
as shown in Fig. 6.27. The chords joining D with A and B are tangent to the arc 
AEB and divide the lune into three regions with areas a 1 , a2, a3. If the radius of 
the smaller circle is denoted by r, then the Pythagorean theorem tells us that the 
radius of the larger circle is v'2r. It is easy to see that a 1 and a2 are equal seg
ments of the smaller circle and that a4 is a segment of the larger circle, all with 
right angles at the center. We now use statement ( c) to infer that 

This yields 

so 

It now follows that 

and the argument is complete. 

� r2 I 
a4 (v2r)2 2 · 

and 

= area of triangle ABD 

= r2 = area of square OBFC, 

Hippocrates was a contemporary of Pericles, the great political and cultural 
leader of Athens during its Golden Age. But nothing Pericles achieved has the 

Figure 6.24 Figure 6.25 Figure 6.26 

2 1 9  
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Figure 6.27 
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C F 

enduring quality of this beautiful geometric discovery ; even the Parthenon, whose 
design and construction he supervised, is crumbling away. The reasoning of Hip
pocrates is a paragon of mathematical proof, untouched by time: In a few ele
gant steps it converts something easy to understand but difficult to believe into 
something impossible to doubt. 



APPLICATIONS 
OF INTEGRATION 

7 . 1 
In Chapter 6 we accomplished two major purposes. First, we approximated the 
area under a given curve by certain sums and found the exact area by forming 
the limit of these sums. And second, we learned how to calculate the numerical 
value of this limit by using the much more powerful method provided by the 
Fundamental Theorem of Calculus. Almost the whole content of Chapter 6 can 
be compressed into the following statement: If f(x) is continuous on [a, b], then 

INTRODUCTION. THE 
INTUITIVE MEANING 
OF INTEGRATION 

n 

Lb Jim L f(xk) tl.xk = f(x) dx 
max A.xr·'O k= 1 a 

= F(x)J: = F(b) - F(a), 

where F(x) is any indefinite integral of f(x) . 

( 1 )  

There are many other quantities in geometry and physics that can be treated 
in essentially the same way. Among these are volumes, arc lengths, surface ar
eas, and such basic physical quantities as the work done by a variable force act
ing over a given distance. In each case the process is the same: An interval of 
the independent variable is divided into small subintervals, the quantity in ques
tion is approximated by certain corresponding sums, and the limit of these sums 
yields the exact value of the quantity in the form of a definite integral-which 
is then evaluated by means of the Fundamental Theorem. 

Once we have seen the details of this limit-of-sums process being carried out 
for the area under a curve, as was done in Chapter 6, it is unnecessary and bor
ing to think through these details over and over again for each new quantity that 
we meet. The notation needed for this is complicated and repetitive, and actually 
impedes the intuitive understanding that we wish to cultivate. 

In this spirit, we tum briefly to Fig. 7 . 1  and consider the easy, intuitive way 
of constructing the definite integral in ( 1 ). We think of the area under the curve 
as composed of a great many thin vertical rectangular strips. The typical strip 
shown in the figure has height y and width dx, and therefore area 

dA = y dx = f(x) dx, (2) 

since y = f(x). This area is called the differential element of area, or simply the 
element of area; it is located at an arbitrary position within the region, and this a dx 

position is specified by a value of x between a and b. We now think of the total Figure 7.1 
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7 . 2 
THE AREA BETWEE N  

TWO CURVES 

y = f(x) 

Figure 7.2 

APPLICATIONS OF INTEGRATION 

area A of the region as the result of adding up these elements of area dA as our 
typical strip sweeps across  the region. This act of addition or summation can be 
symbolized by writing 

A =  f dA .  (3) 

Since the element of area sweeps across the region as x increases from a to b, 
we can express the idea in (3) with greater precision by writing 

A = f dA = f y dx = r f(x) dx. (4) 
We reach a true definite integral only in the last step in (4), where the variable 
of integration and the limits of integration become visibly present. In this way 
we glide smoothly over the messy details and set up the definite integral for the 
area directly, without having to think about limits of sums at all. 

From this point of view, integration is the act of calculating the whole of a 
quantity by cutting it up into a great many convenient small pieces and then 
adding up these pieces. It is this intuitive Leibnizian approach to the process of 
integration that we intend to illustrate and reinforce in the following sections. 

Suppose we are given two curves y = f(x) and y = g(x), as shown in Fig. 7 .2, 
with points of intersection at x = a and x = b and with the first curve lying above 
the second on the interval [a, b] . In setting up an integral for the area between 
these curves, it is natural to use thin vertical strips as indicated. The height of 
such a strip is the distance f(x) - g(x) from the lower curve to the upper at the 
position x, and its base is dx. The element of area is therefore 

dA = [f(x) - g(x)] dx, 
and the total area is 

A = f dA = r [f(x) - g(x)) dx. ( 1 )  
We integrate from the smaller limit of integration a to the larger b s o  that the in
crement (or differential) dx will be positive. It should also be pointed out that a 
and b are the values of x for which the two functions yield the same y's; that is, 
they are the solutions of the equation f(x) = g(x), and to find them we solve this 
equation. 

We urge students not to be satisfied with merely memorizing formula ( 1 )  and 
applying it mechanically to area problems. Our aim is the mastery of a method, 
and this aim is better served by thinking geometrically and constructing the 
needed formula from scratch for each individual problem. The method applies 
equally well to finding areas by using thin horizontal strips, which are often more 
convenient. In this case the width of a typical strip will be dy, and the total area 
will be found by integrating with respect to y. 

As an aid to students we  give an outline of the steps that should be followed 
in finding an area by integration. 

STEP 1 Sketch the region whose area is to be found. Write down on the sketch 
the equations of the bounding curves and find their points of intersection. 
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STEP 2 Decide whether to use thin vertical strips that have width dx or thin hor
izontal strips that have width dy, and draw a typical strip on the sketch. 

STEP 3 By looking at the sketch and using the equations of the bounding curves, 
write down the area dA of the typical strip as the product of its length and its 
width. Express dA entirely in terms of the variable (x or y) appearing in the width. 

STEP 4 Integrate dA between appropriate x or y limits, these limits being found 
by examining the sketch. 

Example 1 The region bounded by the curves y = x2 and y = 4 is shown in Fig .  
7 .3 .  If  we use vertical strips, then the length of our typical strip is 4 - x2 and its 
area is dA = ( 4 - x2) dx. The total area of the region is therefore 

J2 (4 - x2) dx = 4x - fx3]2 -2 -2 
= (8 - t) - (- 8 + t) = ¥. 

We urge students to use symmetry whenever possible in order to simplify the 
calculations. In this case the left-right symmetry of the figure suggests that we 
integrate only from x = 0 to x = 2 to find the right half of the area, and then 
double the result to obtain the total area: 

2J: (4 - x2) dx = 2(4x - fx3)J: = 2(8 - t) = ¥. 

As this calculation shows, it is often an advantage (only a slight advantage in 
this case) to have 0 as one of the limits of integration. 

If we decide to use horizontal strips, then the length of the strip is the value 
of x (in terms of y) at the r�ht end minus the value of x at the left end. This is Vy - (-yY), so dA = [\/y - (-Vy)] dy = 2yY dy and the total area is 

J: 2vy dy = fy312 J: = ¥. 

The answer is the same as before, which is not surprising but is nevertheless re
assuring. 

We emphasize once again how important a good sketch is for understanding 
and carrying out these procedures. 

Example 2 The region bounded by the curves y = 3 - x2 and y = x + 1 i s  
shown in  Fig .  7 .4. We find where the curves intersect by  solving the equations 
simultaneously. We do this by equating the y's, which gives 

3 - x2 = x + 1 ,  x2 + x - 2 = 0, 
(x + 2)(x - 1 ) = 0, x = - 2, 1 .  

The points of intersection are thus (-2, - 1 ) and ( 1 , 2). The length of the indi

-2 

Figure 7.3 

cated vertical strip is (3 - x2) - (x + 1 )  = 2 - x2 - x so the area of the region Figure 7.4 

3 

x 2 
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y = COS X 

1T/6 7T/2 

Figure 7.5 

PROBLEMS 

APPLICATIONS OF I NTEGRATION 

is found by integrating the element of area dA = (2 - x2 - x) dx as x goes from 
-2 to 1 ,  

f 1 (2 - x 2  - x) dx = (2x - fx3 - tx2)] 1 -2 -2 
= (2 - t - i-) - ( -4 + t - 2) = 4±. 

It is inconvenient to use horizontal strips in this problem, because a horizontal 
strip clearly reaches from the left half of the parabola to the line if y < 2 and 
from the left half of the parabola to the right half if y > 2, and this means that 
different formulas for dA must be used according as y < 2 or y > 2. 

Example 3 Find the area of the region bounded by the curves y = cos x and y = 
sin 2x on the interval 0 :s x :s TTl2. 

Solution The curves are shown in Fig. 7.5 ,  and the region- consisting of two 
parts-is  shaded. The main feature of this example is that the curves cross each 
other, so that first one curve, and then the other, is the "upper" curve. To deal 
with this, we must begin by finding exactly where the curves cross, which means 
we must solve the equation cos x = sin 2x. We do this by writing 

Accordingly, 

. I 7T 
cos x = 2 sin x cos x, sm x = 2, x = 6· !(cos x - sin 2x) dx 
dA = 

(sin 2x - cos x) dx 

for 0 :s x :s .!!.., 6 

for 1T :s x :s 1T . 6 2 
The desired area is therefore 

17'/6 f "'12 (cos x - sin 2x) dx + (sin 2x - cos x) dx 0 -,,/6 

]
�6 

]
�2 = (sin x + t cos 2x) + c -t cos 2x - sin x) 

0 7'� 
= tl + ± - 0 - � + tl - I + ± + � = t 

In Problems 1- 19, sketch the curves and find the areas of the 
regions they bound. 

9 *9 y = 2x + 2• y = -2x + 13. x 
10 x = y2, y = x + 3 , y = -2, y = 1 .  
1 1  y = x2 - 4x, y = 2x. 

1 y = x2, y = 2x. 
2 y = x2, x = y2. 
3 y = x2 + 2, y = 4 - x2. 
4 y = 4x3 + 3x2 + 2, y = 2. 
5 y = x2 - 2x, y = 3. 
6 y = x3 - 3x, y = x (x :::::: 0). 
7 y = x4 - 4x2, y = -4. 
8 y = x3 - 4x, y = 5x (x :::::: 0). 

12 y = x3, y = 2x - x2. 
13 x = y2, x = 2y + 3 . 
14 x = y2, x = 2y . 
15 y = x2 + I, y = 3 - x2, x = -2, x = 2. 
16 y = x4 - 4, y = 3x2. 
17  x = 8 - y2, x = y2 - 8 .  
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18 y = x3 ,  x = y3. 
19 y = x3, y = 32Yx. 
20 Find the area in Example 2 by integrating with respect 

to y, first with one integrand from y = - l to y = 2, and 
then with another integrand from y = 2 to y = 3 .  

2 1  Find in two ways the area under y = x 2  from x = 0 to 
x = 4. 

22 Find in two ways the area under y = x3 from x = 0 to 
x = 2. 

23 Find the area bounded by 
(a) the x-axis and y = x2 - x3; 
(b) the y-axis and x = 2y - y2. 

24 The area between x = y2 and x = 4 is divided into two 
equal parts by the line x = a. Find a. 

*25 Find the area between y = x3 and its tangent at x = 1 .  
26 Find the area above the x-axis bounded b y  y = l /x2, 

x = 1, and x = b, where b is some number greater than 
I .  The result will depend on b. What happens to this 
area as b ---;. =? 

27 Solve Problem 26 with y = l /x 2  replaced by y = l /Yx. 
28 Solve Problem 26 with y = l/x2 replaced by y = l /xP, 

where p is a fixed positive number greater than I .  What 
happens if p is a fixed positive number less than 1 ?  

29 In each case find the area of the region bounded b y  the 
given curves over the stated interval : 
(a) y = sin x and y = cos x, 0 :'.'S x :'.'S 71'12; 
(b) y = sin x and y = cos 2x, 0 :'.'S x :'.'S 71'/4; 
(c) y = x and y = sin x, - 71'/4 :'.'S x :'.'S 71'/2. 

30 Sketch the graph of y = sin4 x cos x on the interval 
0 :'.'S x :'.'S 7r/2, and find the area of the region between 
the curve and the x-axis. 

31 A rectangle with sides parallel to the axes has one ver
tex at the origin and the opposite vertex on the curve 
y = ax" at the point where x = b (a > 0, n > 0, and 
b > 0). Show that the fraction of the area of the rec
tangle that lies below the curve depends on n but is in
dependent of a and b. 

32 By calculating the areas involved by integration, verify 
the theorem of Archimedes stated in Section 6.2 for the 
parabolic segment cut off from the parabola y = x2 by 
the line y = -x + 2. Hint: Begin by finding the points 
A, B, and C in Fig. 6.5. 

*33 The shaded region inside the square of side a shown in 
Fig. 7.6 consists of all points that are closer to the cen
ter of the square than to its boundary. Find the area of 
this region. 

a 

Figure 7.6 

If the region under a curve y = f(x) between x = a and x = b is revolved about 
the x-axis, it generates a three-dimensional figure called a solid of revolution. 
The symmetrical shape of this solid makes its volume easy to compute. 

7 . 3 
VOLUMES :  THE 
DISK METHOD 

The situation is i llustrated in Fig. 7 .7 .  On the left we show the region itself, 
together with a typical thin vertical strip of thickness dx whose base lies on the 
x-axis. When the region is revolved about the x-axis, this strip generates a thin 
circular disk shaped like a coin,  as shown on the right, with radius y = f(x) and 
thickness dx. The volume of this disk is our element of volume dV. Since the disk 
is a cylinder, its volume is clearly the area of the circular face times the thick
ness, 

dV = 'TT'Y2 dx = 'TT'f(x)2 dx. ( ! )  

We now imagine that the solid of revolution is filled with a very large number 
of very thin disks like this, so that the total volume is the sum of all the elements 
of volume as our typical disk sweeps through the solid from left to right, that is ,  
as x increases from a to b:  

v = I dV = I 'TT'Y2 dx = r 'TT'j(x)2 dx. (2) 
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Figure 7.8 

a ;  
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Figure 7.7 
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a b 

x I dx 

This is another fundamental formula that students should not memorize. Instead, 
it is much better to understand it so clearly that memorization is unnecessary. 

Some students may feel that formula (2) cannot give the exact volume of the 
solid, because it doesn't take into account the volume of the small "peeling" 
around the outside of the disk in Fig. 7. 7. However, just as in the calculation of 
areas, this slight apparent error visible in the figure-due to using disks instead 
of actual slices-disappears as a consequence of the limit process that is part of 
the meaning of the integral sign. We can therefore calculate volumes using for
mula (2) and have full confidence that our results will be exactly correct, not 
merely approximations. 

Example I A sphere can be thought of as the solid of revolution generated by 
revolving a semicircle about its diameter (Fig. 7 .8). If the equation of the semi-

Y = � circle is x2 + y2 = a2, y ;:::: 0, then y = Y a2 - x2 and the element of volume is 

a 

dx 

dV = Try2 dx = TT(a2 - x2) dx. 

By using the left-right symmetry of the sphere, we can find its total volume by 
integrating dV from x = 0 to x = a and multiplying by 2: 

V = 2 J: TT(a2 - x2) dx = 2TT(a2x - tx3) J: 
(3) 

This result confirms the well-known (but little-understood ) formula from ele
mentary geometry. If we integrate dV only from x = a - h to x = a, we obtain 
the formula for the volume of a segment of a sphere of thickness h, 

v = fa 7T(a2 - x 2) dx = 7T(a2x - tx3)]a k-h a-h 
= 7T { fa3 - [a2(a - h) - tea - h)3] ) 
= TTh2(a - th), 

after some algebraic simplification. It should be noticed that this formula reduces 
to (3) when h = 2a. 
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Example 2 Another important formula from elementary geometry states that a 
cone of height h and radius of base r has volume V = t7rr2h; or equivalently, the 
volume is one-third the volume of the circumscribed cylinder. To obtain this for
mula by integration, and thereby to understand the origin of the factor t, we think 
of the cone as the solid of revolution generated by revolving the right triangle 
shown in the first quadrant of Fig. 7.9 about its base on the x-axis. The hypotenuse 
of this triangle is clearly part of the straight line y = (rlh)x, so the element of 
volume is 

'TT'r2 dV = 'TT'y2 dx = � x2 dx. 

We now obtain the total volume by integrating dV from x = 0 to x = h, 

V = - x2 dx = - · - x3 = -7Tr2h Lh 'TT'r2 'TT'r2 I ]h I 0 h2 h2 3 0 
3 . (4) Figure 7.9 

For obvious reasons, the method of these examples is usually called the disk 
method. The same idea can be applied to solids of other types, in which the el
ement of volume is not necessarily a circular disk. Suppose that each cross sec
tion of a solid made by a plane perpendicular to a certain line is a triangle or 
square or some other geometric figure whose area is easy to find. Then our ele
ment of volume dV is the product of this area and the thickness of a thin slice, 
and we can calculate the total volume of the solid by the method of moving slices 
as suggested in Fig. 7 . 10: 

dV = A(x) dx, V = f dV = J: A(x) dx. 

Example 3 A wedge is cut from the base of a cylinder of radius a by a plane 
passing through a diameter of the base and inclined at an angle of 45° to the 
base. To find the volume of this wedge, we first draw a careful sketch (Fig. 7 . 1 1 ). 
A slice perpendicular to the edge of the wedge, as shown, has a triangular face. 
By using the notation established in the figure, we see that the volume of this 
slice is 

dV = t V a2 - y2 · V a2 - y2 dy 
= i<a2 - y2) dy, 

so the volume of the wedge is 

V = 2 J: i<a2 - y2) dy = a2y - fy3 J: 
= ta3. 

A vertical slice parallel to the edge of the wedge evidently has a rectangular face 
(students should draw their own sketches). If x is the distance from the edge to 
this slice, then with careful thought we can see that this time the element of vol
ume is 

dV = 2xYa2 - x2 dx, 

and therefore 

a 

Figure 7.10 

Figure 7.1 1  
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Figure 7. 1 2  

Figure 7.13 
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V = J: 2xYa2 - x2 dx 

as before. 

Remark I The following minor variation of the disk method is often useful and 
is necessary for many of the problems at the end of this section. Suppose the 
strip being revolved about an axis is separated from this axis by a certain dis
tance, as suggested on the left in Fig. 7 . 12. In this case the element of volume 
generated by the strip is a disk with a hole in it- what might be described as a 
washer (this washer is moved out to the right in the figure for the sake of clar
ity). The volume of this washer is the volume of the disk minus the volume of 
the hole, 

dV = 7T(Y1 2 - yz2) dx. 
The total volume of the solid of revolution is therefore 

V = f dV = J: 7T(y1 2 - yz2) dx, 
where y1 and y2, the outer and inner radii of the washer, are determined as func
tions of x from the given conditions of the problem. This procedure for calcu
lating volumes is called-naturally enough-the washer method. It applies to 
solids of revolution that have hollow spaces inside them. 

Remark 2 Both of the formulas obtained in Examples 1 and 2 can be vividly 
expressed and easily remembered by stating the volumes of the cone and sphere 
as simple fractional parts of the volumes of the circumscribed cylinders (Fig. 
7 . 1 3) .  

Remark 3 Formula (3) for the volume of a sphere was discovered by Archimedes 
in the third century B .C. Since he used a very beautiful and ingenious early form 
of integration, we give his argument in the Appendix at the end of this chapter 
for those who wish to examine it. 

vcone = t vcylinder Vsphere = t Vcylinder 



7.3 VOLUMES : THE DISK METHOD 229 

PROBLEMS 

Find the volume of the solid of revolution generated 
when the area bounded by the given curves is revolved 
about the x-axis: 
(a) y = Yx, y = 0, x = 4; 
(b) y = 2x - x2, y = 0; 
(c) y3 = x, y = 0, x = 1 ; 
(d ) y = x, y = 1 ,  x = O; 
(e) x = 2y - y2, x = O; 
(f) x213 + y213 = a213 ,  first quadrant. 

2 Problem 14 in Section 6.7 is concerned with the ellipse 

x2 y2 
a2 + b2 = 1 ,  a >  b > 0. 

If the area inside this ellipse is revolved about the 
x-axis, the resulting solid (which resembles a football) 
is called a prolate spheroid. Find its volume. [If a < b, 
the solid is called an oblate spheroid. Observe that the 
volume formula is the same regardless of how a and b 
are related to each other, and also that it reduces to for
mula (3) when b = a . ]  

3 The horizontal cross section of a certain pyramid at a 
distance x down from the top is a square of side (blh)x, 
where h is the height of the pyramid and b is the side 
of the base. Show that the volume of the pyramid is 
one-third the area of the base times the height. 

4 A horn-shaped solid is generated by a moving circle 
perpendicular to the y-axis whose diameter lies in the 
xy-plane and extends from y = 27x3 to y = x3. Find the 
volume of this solid between y = 0 and y = 8. 

S The square bounded by the axes and the lines x = 2, 
y = 2 is cut into two parts by the curve y2 = 2x. Show 
that these parts generate equal volumes when revolved 
about the x-axis. 

6 The two areas described in Problem 5 are revolved about 
the line x = 2. Find the volumes generated. 

7 A tent consists of canvas stretched from a circular base 
of radius a to a vertical semicircular rod fastened to the 
base at the ends of a diameter. Find the volume of this 
tent. 

8 The base of a solid is a quadrant of a circle of radius 
a. Each cross section perpendicular to one edge of the 
base is a semicircle whose diameter lies in the base. 
Find the volume. 

9 The base of a certain solid is the circle x2 + y2 = a2. 
Each plane perpendicular to the x-axis intersects the 
solid in a square cross section with one side in the base 
of the solid. Find its volume. 

10 If the area bounded by the parabola y = H - (HI �)x2 
and the x-axis is revolved about the y-axis, the result
ing bullet-shaped solid is a segment of a paraboloid of 
revolution with height H and radius of base R. Show 

that its volume is half the volume of the circumscrib
ing cylinder. 

1 1  If the circle (x - b)2 + y2 = a2 (0 < a <  b) is revolved 
about the y-axis, it generates a doughnut-shaped solid 
called a torus. Find the volume of this torus by the 
washer method. Hint: If necessary, use the result of 
Problem 13 in Section 6.7. (Notice the remarkable fact 
that the volume of the torus is the product of the area 
of the circle and the distance traveled by its center as it 
revolves about the y-axis .) 

12 Find the volume of the solid formed by revolving the 
area inside the curve x2 + y4 = 1 about (a) the x-axis ; 
(b) the y-axis. 

13 The base of a certain solid is an equilateral triangle of 
side a, with one vertex at the origin and an altitude along 
the x-axis. Each plane perpendicular to the x-axis in
tersects the solid in a square cross section with one side 
in the base of the solid. Find the volume. 

1 4  Each plane perpendicular to the x-axis intersects a cer
tain solid in a circular cross section whose diameter lies 
in the xy-plane and extends from x2 = 4y to y2 = 4x. 
The solid lies between the points of intersection of these 
curves. Find its volume. 

1 5  The base of  a certain solid i s  the region bounded by  the 
parabola x2 = 4y and the line y = 9, and each cross sec
tion perpendicular to the y-axis is a square with one side 
in the base. If a plane perpendicular to the y-axis cuts 
this solid in half, how far from the origin is this plane? 

*16 Two great circles lying in planes that are perpendicular 
to each other are drawn on a wooden sphere of radius 
a. Part of the sphere is then shaved off in such a way 
that each cross section of the remaining solid that is per
pendicular to the common diameter of the two great cir
cles is a square whose vertices lie on these circles. Find 
the volume of this solid. 

*17 The axes of two cylinders, each of radius a, intersect at 
right angles. Find the common volume. Hint: Drawing 
this figure is nine-tenths of the problem. To do this, draw 
the usual x-axis and y-axis, and also a z-axis "coming 
out of the paper," so that the xz-plane is horizontal. Let 
the axis of one cylinder be the x-axis and the axis of 
the other the z-axis, but draw only the quarter of the 
first cylinder that lies in front of the xy-plane and above 
the xz-plane, and the quarter of the second that lies to 
the right of the yz-plane and above the xz-plane. Their 
intersection is one-eighth the total volume and is not 
difficult to sketch. Now consider horizontal cross sec
tions. 

18 Consider the area in the first quadrant under the curve 
x2y3 = 1 and to the right of x = 1 .  By integrating from 
x = 1 to x = b and then letting b � =, show that this 
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area is infinite, but that on revolving it about the x-axis we 
obtain a finite volume. 
19 A birdbath 4 in deep has the shape of a segment of a 

sphere of diameter 1 6 in. It contains a decorative lead 
cannonball of diameter 6 in. If the birdbath is filled with 
water to a depth of x inches, how much water does it 
contain? 

20 In Example 3, find the volume of the wedge if the plane 
through a diameter of the base is inclined at an angle 
of 30° to the base. 

21 Cavalieri 's principle states that if two solids have the 
same height H, and if sections made by planes parallel 
to the bases and at the same distance x from these bases 
always have equal areas A (x) and B(x), then the two 
solids have equal volumes.t 
(a) Prove this by integration. 
(b) Use this principle and the formula for the volume 

of a cone (Example 2) to derive the formula  for the 
volume of a sphere (Example 1) by examining Fig. 
7 . 14. (The figure on the right is a cylinder with two 
conical hollows in it whose common vertex is at the 
center.) 

22 Water evaporates from an open bowl of unspecified 
shape at a rate proportional to the area of the water sur
face; that is, 

dV 
= - cA (h) dt , 

where V is the volume of water, A(h) is the area of the 
water surface when the depth is h, and c is a positive 
constant. 

tsonaventura Cavalieri ( 1 598-1 647), the Italian mathematician men
tioned in Section 6.5, was a disciple of Galileo and clearly had many 
excellent ideas of his own. 

area = 7rj2 
Figure 7.14 = 1T(a2 - x2) 

(a) Show that 

dh dt = -c, 
so that the water level drops at a constant rate 
regardless of the shape of the bowl. Hint: 
V = J3 A(x) dx. 

(b) If h = ho when t = 0, when will the bowl be empty? 
23 A cylindrical drinking glass of height h and radius of 

base a is full of water. The glass is tilted, and the 
water spilled, until the remaining water just covers the 
bottom of the glass. Use rectangular cross sections to 
calculate how much water remains in the glass. 
Hint: f"._a Ya2 - x2 dx = t7Ta2, because the integral 
represents the area of a semicircle of radius a. 

24 Solve the preceding problem without calculation, by us
ing only common sense and geometry. 

25 The clepsydra, or ancient water clock, was a bowl from 
which water was allowed to escape through a small hole 
in the bottom. It was often used in Greek and Roman 
courts to time the speeches of lawyers in order to keep 
them from talking too much. Let y = f(x) be a curve 
that rises from the origin into the first quadrant of the 
xy-plane, and assume the clepsydra has the shape of the 
surface obtained by revolving this curve about the 
y-axis. According to Torricelli 's law, water flows out 
through the hole in the bottom of the clepsydra at the 
speed it would acquire in falling freely from the water 
level to the level of the hole. Find what the function y = 

f(x) must be in order to guarantee that the water level 
falls at a constant rate. Hint: By equations (6) and (7) 
in Section 5.5, Torricelli's law implies that the exit speed 
of the water through the hole is proportional to the 
square root of the depth of the water. 
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There is another method of finding volumes that is often more convenient than 
those described in Section 7.3 .  

To understand this method, consider the region shown on the left in Fig. 7. 15 ,  
that i s ,  the region in the first quadrant bounded by the axes and the indicated 
curve y = f(x). If this region is revolved about the x-axis, then the thin vertical 
strip in the figure generates a disk, and we can calculate the total volume of the 
solid by adding up (or integrating) the volumes of these disks from x = 0 to x = 
b. This, of course, is the disk method described in Section 7.3. However, if the 
region is revolved about the y-axis, as shown in the center of the figure, then we 
get an entirely different solid of revolution and the vertical strip generates a thin
walled cylindrical shell. This shell can be thought of as resembling a soup can 
whose top and bottom have been removed, or perhaps a thin-walled cardboard 
mailing tube. Its volume dV is essentially the area of the inner cylindrical sur
face (277'X)')* times the thickness of the wall (dx), so 

dV = 27Txy dx. ( 1 ) 
As the radius x of  this shell increases from x = 0 to  x = b ,  we can see from Fig. 
7 . 1 5  that the resulting series of cylindrical shells fills the solid of revolution from 
the axis outward, in much the same way as the cylindrical growth layers in the 
trunk of a tree fill the trunk from the axis outward. The total volume of this solid 
is therefore the sum-or integral-of the elements of volume dV, 

v = I dV = I 27TXy dx = r 27Txf(x) dx, (2) 
since y =f(x). In principle, this volume V can also be found by using horizontal 
disks generated by thin horizontal strips; however, this could turn out to be dif
ficult, since the given equation y = f(x) would have to be solved for x in terms 
of y. 

Just as in our other applications of integration, formulas ( 1 )  and (2) give brief 
expression to a complex process involving limits of sums; and as usual, we omit 
the details of this process in the interests of clarity. 

Also as usual, we suggest that students would be wise not to memorize for
mula (2). This formula is somewhat similar to the corresponding formula for the 
disk method, and students who try to memorize them and use them without think-

*Remember: The curved surface area of a cylinder of radius x and height y is obtained by "unrolling" 
the cylinder so that it becomes a rectangle of base 21Tx and height y; see the right side of Fig. 7 . 15 .  

y y 
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y = � 

a 

Figure 7.16 

Figure 7. 17  
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ing about their meaning will almost certainly confuse them and come to grief. It 
is better to sketch a figure and construct ( 1 )  directly from the visible evidence of 
this figure, and then form (2) by integration. Also, this approach has the further 
advantage that we are not tied to any particular notation, and can easily adapt the 
basic idea to solids of revolution about various axes. 

Example 1 In Example 1 of Section 7 .3 we calculated the volume of a sphere 
by the disk method. We now solve the same problem by the shell method (see 
Fig. 7 . 1 6). The volume of the shell shown in the figure is 

dV = 27Tx(2y) dx 

= 4'1Txv' a2 - x2 dx. 

The volume of the sphere is therefore 

V = 4'1TJ: xv' a2 - x2 dx = 47T(-t)(a2 - x2)312 J: 
In this connection we can profitably consider a related problem: If a vertical hole 
of diameter a is bored through the center of the sphere, find the remaining vol
ume. For this, it clearly suffices to integrate dV as the radius x of the shell in
creases from x = a/2 to x = a, so 

V = 47T xv a2 - x2 dx = -- (a2 - x2)312 la , ro--:; 4'1T ]a 
� 3 � 

- 47T (l 2)3/2 - 47T ( 3v'3 3) - v3 3 - 3 4 a 
- 3 8 a - 2 ?Ta · 

This problem could be solved by the washer method, but the shell method is 
much more convenient. 

Example 2 The region in the first quadrant above y = x2 and below y = 2 - x2 
is revolved about the y-axis (Fig. 7 . 1 7). To find the volume by the shell method, 
we observe that the height of our typical shell is y = (2 - x2) - x2 = 2 - 2x2, 
so 

dV = 2'1Txy dx = 27Tx(2 - 2x2) dx 

= 47T(X - x3) dx; 

and since the curves intersect at x = ± 1 ,  we have 

V = 47T J� (x - x3) dx 

= 47T(fx2 - tx4) ]� = 'TT. 

Students often wish to set up this integral incorrectly by integrating from x = 
- 1  to x = 1 .  The reason why this is incorrect can be seen by understanding from 
the geometry that our typical shell sweeps through the solid from the axis out
ward: x is the radius of the shell, and this radius increases from 0 to 1 ,  not from 
- 1  to 1 .  
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Notice that if we attempt to solve this problem by the disk method, then it is 
necessary to calculate two separate integrals-one referring to the volume be
low the points of intersection of the two curves, and the other to the volume 
above. 

Example 3 Blood flow. The great artery of the human body-the aorta-is a 
tube about as large as the base of an average human thumb. The heart pumps 
blood through it so powerfully that blood particles near the center move at speeds 
of about 50 emfs (20 in/s). On the other hand, blood is a viscous liquid, and near 
the artery wall the blood tends to stick to the wall, and its speed there is essen
tially zero. The problem of calculating the total flow under these circumstances 
requires integration by the method of cylindrical shells. 

We begin with the very simple idea that if a liquid flows through a cylindri
cal tube with constant speed s0, then the volume of liquid passing a fixed point 
per unit time (the flow F) is soA, where A is the area of a cross section of the 
tube (Fig. 7 . 1 8) .  

However, we know that the flow of blood in an artery in the human body is 
much more complicated than this. Let us assume that the artery is a cylindrical 
tube with radius R and length L (Fig. 7. 19). Because of the viscosity mentioned 
above, the flow of blood takes place in thin cylindrical layers, with the blood in 
each layer moving at approximately constant speed and the blood in different 
layers moving at different speeds. In this so-called laminar flow the blood moves 
slowly near the artery wall and faster near the center, as suggested in Fig. 7 . 1 9, 
so that the inner layers slip past the outer ones (Fig. 7 .20). 

The precise relation between the speed s and the distance r from the center is 
given by the formula 

s = _!__ (R2 - r2) 4'TIL ' (3) 
where P is the pressure difference between the ends of the artery and T/ (eta) is 
the viscosity of blood.* We notice that this formula gives zero speed if r = R and 

*Formula (3) can be derived from general principles in the theory of viscous fluid dynamics. The de
tails can be found on pp. 39-41 of R. L. Whitmore, Rheology of the Circulation (Pergamon Press, 
1 968). 
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maximum speed PR2!4YJL if r = 0. It is customary to measure R, r, and L in cen
timeters (cm), P in dynes/cm2, and YJ in dyne-s/cm2, so that s is measured in 
emfs. A typical value for R in the human body is R = 0.2 cm, and a realistic 
value for the constant P/4YJL is 500. With these values formula (3) becomes 

s = 500(0.22 - r2) 
= 20 - 500r2 emfs. (4) 

The graph of this function is part of a parabola (Fig. 7 .21 ) ,  and this graph shows 
how quickly the speed of a blood particle approaches zero as its position ap
proaches the wall of the artery. Thus, at the center the speed s is 20 emfs, but 
when r = 0. 15 we see that s is only 20 - 500(0. 15)2 = 8.75 emfs. 

Now, to calculate the flow F (the total volume of blood passing a fixed point 
per unit time) we write down the element of flow dF in a thin cylindrical shell 
of radius r and thickness dr: 

dF = s · 2rrr dr 
p 

= -- (R2 - r2) · 2rrr dr 417l 
TTP 

= - (R2r - r3) dr. 217l 
All that remains is to add together these elements of flow over all the shells, that 
is, to integrate from 0 to R:  

This formula, 

J (R TTP 
F = dF = Jo 211l (R2r - r3) dr 

F = TTP R4 BriL ' (5) 

is called Poiseuille 's law in the field of cardiovascular physiology. It shows that 
the flow is proportional to the fourth power of the radius of the artery, so dou
bling this radius increases the flow by a factor of 1 6.* 

*Jean Poiseuille ( 1799-1 869) was a French physician-physiologist whose experimental studies of the 
flow of liquids through thin glass tubes have rarely been equaled since his classical paper of 1 846. 
By varying one parameter and holding all the others fixed, he learned from his experiments that P 
is directly proportional to the length L, to the viscosity 71, to the flow F, and inversely proportional 
to the fourth power R4 of the radius R, so that 

P = k . L71F 
R4 . 

Of course, the fact that Poiseuille's constant of proportionality k equals 8/7T can only be learned from 
the mathematics. See p. 1 34 of H. S. Badeer, Cardiovascular Physiology (Karger Publishing Co., 
1 984). For the somewhat surprising role of Isaac Newton in this subject, see pp. 50-5 1 of A. C .  Bur
ton, Physiology and Biophysics of the Circulation (Year Book Medical Publishers, 1 965). 
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PROBLEMS 

Solve the problem of the sphere with the hole bored 
through it (Example 1 )  by the washer method. 

2 Solve the problem in Example 2 by the disk method. 

In Problems 3-8, sketch the region bounded by the given 
curves and use the shell method to find the volume of the solid 
generated by revolving this region about the given axis. 
3 y = Vx, x = 4, y = O; the y-axis. 
4 x2 = 4y, y = 4; the x-axis. 
S y = x3, x = 3, y = O; the y-axis. 
6 x = y2, x2 = Sy; the x-axis. 

7 y = l, x = a, x = b (0 < a <  b), y = O; the y-axis. x 
8 y = x2, y = �(3x2 + l ) ; the y-axis. 
9 The region bounded by y = xi�, the x-axis, and 

the line x = 2 is revolved about the y-axis. Find the vol
ume of the solid generated in this way. (Observe that the 
washer method is not practical in this problem.) 

10 A hole of radius V3 is bored through the center of a 
sphere of radius 2. Find the volume removed. 

1 1  Consider the region i n  the first quadrant bounded by y = 4 - x2 and the axes. 
(a) Use both the disk method and the shell method to 

find the volume of the solid generated when this re
gion is revolved about the y-axis. 

*(b) Use both methods to find the volume of the solid 
generated when this region is revolved about the 
x-axis. 

1 2  Let r and h be positive numbers. The region bounded by 
the line xlr + y/h = 1 and the axes is revolved about the 
y-axis. Use the shell method to obtain the standard for
mula for the volume of a cone. 

13 A spherical ring is the solid that remains after drilling a 
hole through the center of a solid sphere. If the sphere 
has radius a and the ring has height h, prove the re
markable fact that the volume of the ring depends on h 
but not on a. 

14 The parabola a2y = bx2, 0 ::s y ::s b, is revolved about the 
y-axis. Use the shell method to show that the volume of 
the resulting paraboloid is one-half the volume of the 
cylinder with the same height and base. 

15  The region in the first quadrant above y = 3x2 and be
low y = 4 - 6x2 is revolved about the y-axis. Find the 
volume generated in this way. 

IOiiim] 16 � 

IOiiim] l7 � 

For the artery of radius 0.2 cm (about -& in) described 
by equation (4), calculate the flow F and also the total 
volume of blood passing a fixed point in 1 hour. 
High blood pressure is one of the consequences of nar
rowing of the arteries by unwelcome fatty deposits, be
cause to maintain the same flow to the tissues the heart 

must pump harder. If Po and Ro are normal values of the 
pressure and radius for a particular artery, and the ab
normal values due to narrowing are P and R, show that 
for the flow to remain constant we must have 

_!_ = (Ro)4 Po R . 
If the radius of the artery is reduced to seven-eighths of 
its normal value, how much is the pressure increased? 

18 A cylindrical can partly filled with water is rotated about 
its axis with constant angular velocity w. As the rotation 
proceeds, the water level rises along the wall and sinks 
in the center to form the concave surface shown in Fig. 7.22. Show that this surface has the shape of the surface 
of revolution formed by revolving the parabola 

w2 y = - x2 + h 2g 
about its axis, where g (as usual) is the acceleration due 
to gravity. Hint: The centripetal force acting on a parti
cle of water of mass m at the free surface is mxw2, where 
x is the distance from the axis, and this is the resultant 
according to the parallelogram law (as shown in the fig
ure) of the downward gravitational force mg and the re
action force R normal to the surface which is due to other 
nearby particles of water. 

Figure 7.22 
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h mg 
I 

x I 
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(a) Let Vo be the given volume of water, and by calcu
lating V0 by the method of cylindrical shells, express 
the depth h as a function of w. 
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(b) If the can rotates faster and faster, then either the bot
tom will be exposed, as in Fig. 7.23a, or water will 

begin to spill out the top, as in Fig. 7 .23b. If the can is orig
inally half full, which happens first? 

Figure 7.23 

7 . 5 
ARC LENGTH 

Figure 7.24 

(a) (b) 

An arc is the part of a curve that lies between two specific points A and B, as 
shown on the left in Fig. 7.24. Physically, the length of an arc is a very simple 
concept. Mathematically, it is somewhat more complicated. From the physical 
point of view, we merely bend a piece of string to fit the curve from A to B, mark 
the points corresponding to A and B, straighten out the string, and measure its 
length with a ruler. 

This process can be carried out by means of an approximation procedure that 
lends itself to mathematical treatment, as follows. Divide the arc AB into n parts 
by using points Po = A,  P 1 ,  P2, . . .  , Pn = B; place pins at these points; and let 
the string stretch in short straight-line paths from each pin to the next. We illus
trate this idea on the right in Fig. 7 .24 with n = 3. The part of this string be
tween A and B i s  evidently shorter than the arc, since a straight line is the short
est distance between two points. However, if we take larger and larger values of 
n, and at the same time require that the pins be placed closer and closer together, 
then the length of the string should approach the length of the arc. We now ex-

B 

A 
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press this idea in mathematical language and derive a practical method of cal
culating arc length by integration. 

Let us assume that the arc under discussion is the graph of a continuous func
tion y = f(x) for a ::::; x ::::; b. We partition the interval [a, b] into n subintervals 
by using points x0 = a, x1 ,  . . .  , Xk- 1 '  xk, . . .  , Xn = b, as shown in Fig. 7.25. We 
let Pk be the point (xk> Yk), where Yk = f(xk). The total length of the polygonal 
path PoP1 · · · Pk- 1Pk · · · P n i s  the sum of the lengths of the chords joining each 
point to the next. If we write 

and llyk = Yk - Yk- 1, k = 1 ,  2, . . . , n, 

then it is clear by the Pythagorean theorem that we have 

length of kth chord = V (/lxk)2 + (/lyk)2 

= J 1 + ( ��:)2 llxk> ( I ) 

by first factoring (�xk)2 out of the sum and then out of the square root sign. We 
now assume that y = f(x) is  not only continuous but also differentiable. This per
mits us to replace the ratio inside the radical, which is the slope of the chord 
joining Pk- I to Pk> by the value of the derivative at some point Xk between Xk- I 
and xk: 

The justification for this step lies in the fact that the chord is parallel to the tan
gent at some point on the curve between Pk- I and Pk.t This enables us to write 
( 1 )  as 

length of kth chord = Y 1 + [f' (xk)]2 llxh 

so the total length of the polygonal path is 

I Y 1 + [f' (xk) J2 llxk. 
k= l  

(2) 

We now obtain our conclusion by forming the limit of these sums as n approaches 
infinity and the length of the longest subinterval approaches zero: 

length of arc AB = Jim I Yl + [f'(xk)]2 /::;.xk 
max iU,--.o k= 1 

= r V1 + [f'(x)J2 dx, 

provided f' (x) is continuous so that this integral exists. 

(3) 

At first sight, formula (3) may appear to be rather hard to keep in mind. How
ever, if we use the Leibniz notation dy/dx instead off' (x), then the following in
tuitive approach makes this formula much easier to grasp and remember. Let the 

tThis highly plausible assertion is called the Mean Value Theorem. This theorem is one of the cor
nerstones of the theory of calculus and is discussed in Section 2.6. 
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letter s denote the variable arc length from A to a variable point on the curve, as 
shown in Fig. 7.26. Let s be allowed to increase by a small amount ds, so that 
ds is the differential element of arc length, and let dx and dy be the correspond
ing changes in x and y. We think of ds as so small that this part of the curve is 
virtually straight, and therefore ds is the hypotenuse of a tiny right triangle called 
the differential triangle. For this triangle the Pythagorean theorem says that 

ds2 = dx2 + dy2, (4) 
and this simple equation is the source of all wisdom in the calculation of arc 
lengths.t If we solve (4) for ds, then factor dx2 out of the sum and remove it from 
the square root sign, we clearly get 

ds = V dx2 + dy2 
(5) 

We now touch again on the basic theme of this chapter and point out that the to
tal length of the arc AB can be thought of as the sum-or integral-of all the 
elements of arc ds as ds sweeps along the curve from A to B. In view of (5), this 
yields 

length of arc AB = J ds = J: J1 + (2)2 dx, (6) 
which is (3). This formula tells us that x is the variable of integration and that y 
is to be treated as a function of x. However, it is sometimes more convenient to 
use y as the variable of integration and treat x as a function of y. In this case we 
replace (5) by 

ds = V dx2 + dy2 
= J(:� + 1 )  dy2 = J(:Y + I  dy, (7) 

which is obtained by factoring dy instead of dx out of the square root sign. With 
y as the variable of integration, the integral for the length of the arc AB is then 

I ds = r J(:Y + 1 dy. (8) 

which is sometimes easier to evaluate than (6). 
Most mathematicians remember formulas (6) and (8) not by memorizing them 

as they stand, but instead by starting with ( 4) and mentally performing as needed 
the simple manipulations in (5) and (7). This way, the whole package of ideas is 
harder to forget, and we win a small skirmish in the constant struggle of mem
ory against forgetting. 

Example Find the length of the curve y2 = 4x3 between the points (0, 0) and 
(2, 4v'2). 

1Parentheses are usually omitted in writing squares of differentials. Thus, ds2 means (ds)2 and not 
d(s2), etc. 
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Solution This curve is shown in Fig. 7 .27, and the arc in question is the indi
cated piece of the curve in the first quadrant. If we solve for y, then we get 

y = 2x312, so dy = 3x1 12 dx . 
Formula (6) now yields 

length of arc = J: \/l:t9x dx = i J: ( 1  + 9x)112 9dx 
= t · t( l + 9x)312 J: = -f7(1 9vl9 - 1 ) .  

This calculation should serve as a warning, for i f  we try to  find the length of  an 
arc on almost any familiar curve, then because of the presence of the square root 
in (6) the resulting integral will probably be impossible for us to work out. At Figure 7.27 
this stage we must choose our problems very carefully in order for the integrals 
to be computable. This should also make us aware of our urgent need for more 
integration techniques. Filling this need is the main purpose of the next three 
chapters. 

Remark 1 It is possible to give an example of a continuous curve y = f(x), a ::5 
x ::::; b, that does not have a length. This very surprising fact suggests that the un
derlying theory of arc length is more complicated than it seems. t In the preced
ing discussion we found it necessary to assume that the function y = f(x) has a 
continuous derivative. Such a curve is called a smooth curve, and the word "arc" 
is usually restricted to mean a piece of a curve with this property. A smooth curve 
is often described geometrically by saying that it has a "continuously turning tan
gent." 

Remark 2 Some students may have the impression that equations (4) and (5) 
- which are equivalent to each other-are only approximately correct, because 
the differential triangle in Fig. 7.26 is only a "quasi-triangle" whose "hypotenuse" 
is not even a straight-line segment. But this is not the case. These equations are 
exactly correct, as the following argument shows. We know that (3) is valid, so 
the arc length s in Fig. 7 .26 can be written as 

s = J: YI + [J' (t)]2 dt, 

using t as the dummy variable of integration. It is clear that s is a function of the 
upper limit x; and if we calculate the derivative of this function by using formula 
( 1 3) in Section 6.7, then we get 

: = YI + [f' (x)J2 = JI +  (:)2. 

which is equivalent to (5). 

tFor examples and a few additional ideas, see Appendix A.7. 
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PROBLEMS 

In Problems 1 -8 , find the length of the specified arc of the 
given curve. 

Show that each of these curves includes Problems 7 and 8 as special cases. 
1 y2 = x3 between (0, 0) and (4, 8). 
2 y = _!_ x4 + _I_ I ::s x ::s 2 4 8x2 ' · 

1 I 3 y = - x3 + -, I  ::s x ::s 3 .  3 4x 
4 y = f Vx(3 - x), 0 ::s x ::s 3 .  

I 1 
5 x = -z y3 + 6Y , J ::s y ::s 3. 
6 y = 1zx615 - tx4ts, I ::s x ::s 32. 
7 y = f(2 + x2)312, 0 ::s x ::s 3 .  
8 y = t( l + x2)312, 0 ::s x ::s 3 .  

10  The curve x213 + y213 = a213 is called an astroid or a 
hypocycloid of four cusps. Sketch it and find its total 
length. 

1 1  If 0 < a < b and n is not equal to I or - 1 ,  show that the 
length of 

xn+ I  
y = -;+! + 4(n - l )  

. xn- I  
between x = a and x = b can be calculated by means of 
an integral not involving a square root. Notice that Prob
lems 2 and 3 are special cases of this result. 

9 Let A, B, C be positive constants. Show that the length 
of an arc of the curve y = A (B + Cx2)312 can be calcu
lated by means of an integral not involving a square root 
if 

12  I n  each case set up  the integral for the arc length, but do 
not attempt to evaluate it (these integrals are beyond our 
capacity at the present stage of our work): 
(a) y = Vx, I ::s x ::s 4; 
(b) y = x2, 0 s x s l ;  
(c) y = x3, 0 s x s I ;  

(a) A = t and B2C = I ,  in which case the curve is 
y = (2/3B3)(B3 + x2)312; or 

(d ) the part of y = -x2 + 4x - 3 lying above the 
x-axis. 

(b) B = 2 and 3A Vc = 1 ,  in which case the curve is 
y = ( l /3Vc)(2 + Cx2)312 . 

7 . 6  
THE AREA OF A 

SURFACE O F  
REVOLUTION 

Figure 7.28 

Let us consider a smooth curve lying above the x-axis, as shown on the left in 
Fig. 7.24. When this curve is revolved about the x-axis, it generates a surface of 
revolution. We now set ourselves the problem of calculating the area of such a 
surface. 

For reasons that will become clear, we begin by considering a very simple sur
face of revolution, the curved lateral part of a cone whose base has radius r and 
whose slant height is L. If this cone is cut down the side from the vertex to the 
base-that is ,  along a generator-and laid out flat, as shown in Fig. 7.28, then 
we get a sector of a circle of radius L whose curved edge has length 27Tr, and 
the lateral area A of the cone equals the area of this sector. It is geometrically 
clear that the ratio of the area of the sector to the complete area of the circle 
equals the ratio of the length of the curved edge to the complete circumference 
of the circle, that is 

i \  --- t- - L A ----!-' � I 1 I 2 '  
_ _ _  -J _ _ _  _ - � - � --
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A 2Trr 
TrL2 2TrL ' so A =  TrrL. 

The lateral surface of the cone can evidently be thought of as the surface of rev
olution swept out by a generator as it revolves around the axis. If the formula is 
written as 

A = L · 2Tr{tr), 
then we see that the lateral area of a cone equals the product of the length of a 
generator and the distance traveled by the midpoint on its journey around the 
axis. 

Next, we generalize slightly and find the area of the surface of revolution gen
erated when a line segment of length L is revolved about an axis at a distance r 
from its midpoint.* This area is the lateral area of a frustum of a cone, as shown 
in Fig. 7 .29. If we denote this area by A, then A is the difference between the 
lateral areas of the two cones in the figure, so 

A = Trr1L1 - Trr2L2 = mnL1 - rzLz). 
By similar triangles, it is clear that 

!:1__ !::.J.. or 

With the aid of a bit of algebraic ingenuity, this enables us to write A in the form 

A = 7r(r1L1 - r1L2 + rzL1 - rzL2) = 7r[r1 (L1 - L2) + rz(L1 - L2)] ( r1 + rz ) = Tr(L1 - L2)(r1 + rz) = (L 1 - L2) · 2Tr --2- = L · 2Trr. 
We therefore conclude that in this case as well, the area of the surface of revo
lution equals the product of the length of the segment and the distance traveled 
by the midpoint on its journey around the axis. 

We now apply these ideas to the general area problem stated at the beginning 
of this section. Our approach will be intuitive and geometric. 

We begin by approximating the smooth curve y = f(x) by a polygonal path 
consisting of many short line segments connecting nearby points on the curve, 
as shown on the left in Fig. 7.30. The surface generated by revolving the curve 

*In the case of a cone, one end of the segment lies on the axis and forms the vertex of the cone. 
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Figure 7.31 
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about the x-axis will have approximately the same area as the surface generated 
by revolving this polygonal path about the x-axis (Fig. 7 .30, center). The latter 
surface is evidently made up of a number of pieces, each of which is shaped like 
a frustum of a cone. This situation suggests the fundamental idea illustrated on 
the right in the figure. If the element of arc length ds is revolved about the x
axis, then it generates a thin ribbonlike element of area dA; and if the midpoint 
of ds is at a distance y from the x-axis, then the above discussion tells us that 

dA = 2TTy ds = 27TyJI + (2)2 dx. 

We obtain the total area A of the surface by forming the sum-or integral-of 
all the elements of area dA as dA sweeps along the complete surface, 

where y is assumed to be known as a function of x [y = f(x)] . If we choose in
stead to revolve our curve about the y-axis, and thereby to generate an entirely 
different surface of revolution, then in the same way its area is given by 

A =  J 2TTx ds. 

The underlying idea in both of these formulas can be expressed by writing 

A = J 2TT(radius of revolution) ds. 

In using this formula to perform an actual calculation, the element of arc length 
ds must be written in terms of a convenient variable of integration and appro
priate limits of integration must be provided. 

Example Find the surface area of a sphere of radius a. 

Solution The surface of this sphere can be considered as the surface of revolu

tion generated by revolving the semicircle y = Y a2 - x2 about the x-axis (Fig. 
7.3 1 ) . Since 

d d -x -2'. = - (a2 _ x2) 112 = ----
dx dx Ya2 - x2 ' 

and ds sweeps along the arc of the circle in the first quadrant as x increases from 
0 to a, we can use the left-right symmetry of the figure and write 

A =  J 2TTy ds = 2 J: 2TTy J1 + (�)2 dx 

= 47T (a Ya2 - x2 Ji + _x_2- dx Jo a2 - x2 
= 4TT J: a dx = 4TTa2. 

It is also possible to use y as the variable of integration, because ds also sweeps 
along the arc in the first quadrant as y increases from 0 to a. The calculation is 
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a little more complicated, but it may be instructive for students to see how it 

works. Since x = Y a2 - y2 in the first quadrant, we have 

dx d ? 2 I/? -y - = - (a- - y ) - = dy dy Va2 - y2 ' 
and therefore 

as before. 

A =  J 2-rry ds = 2 J�' 27TyJ(:)2 + I dy 
= 4-rrf YJA + I dy = 4-rra r � o a - y o a2 _ y2 
= 4-rra(-i) J: (a2 - y2)- 112(-2y dy) = 4-rra(-i)2Y a2 - y2 J: 

Remark In addition to discovering the volume of a sphere, Archimedes also 
found its surface area by means of a brilliant piece of insight that links these two 
quantities to each other. His idea was to split up the solid sphere into a large 
number of small "pyramids," as follows. Imagine that the surface of our sphere 
of radius a is divided into many tiny "triangles," as suggested in Fig. 7.32. Of 
course, these little figures are not actually triangles, since there are no straight 
lines on the surface of a sphere. However, they are so small that each figure is 
nearly flat and they are nearly triangles. Let each such triangle be used as the 
base of a pyramid of height a whose vertex is the center of the sphere. If Ak is 
the area of the base of our tiny pyramid and Vk is its volume, for k = 1 ,  2, . . .  , n, 

then we know that Vk = tA�. (The fact that the volume of a pyramid is one
third the area of the base times the height was discovered by Democritus two 
centuries before the time of Archimedes.) By adding these equaticms for k = 
1 ,  2, . . .  , n, we obtain 

Since all our pyramids fill the solid sphere, this tells us that the volume V and 
surface area A of the sphere are related by the equation 

V =  iAa. 
But now Archimedes' discovery that V = �7Ta3 enables us to write this equation 
in the form 

so 

just as in the example. 
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PROBLEMS 

In Problems 1-6, find the area of the surface of revolution 
generated by revolving the given arc about the indicated axis. 

1 y = ± x4 + 
8
�

2
, l $ x s 2, the y-axis. 

2 y = ±Vx(3 - x), 0 $ x s 3, the x-axis. 
3 y = ±<2 + x2)312, 0 $ x s 2, the y-axis. 
4 y = x2, 0 s x $ 2, the y-axis. 
5 y = x3 , 0 s x $ I ,  the x-axis. 
6 y = 2Vx, 2 $ x $ 8, the x-axis. 
7 The arc of the parabola x2 = 4py between (0, 0) and 

(2p, p)  is revolved about the y-axis. Find the area of the 
surface of revolution (a) by integrating with respect to x; 
(b) by integrating with respect to y. 

8 The loop of 9y2 = x(3 -x)2 is revolved about the y-axis. 
Find the area of the surface generated in this way. 

9 Find the area of the surface generated by revolving the 
astroid (or hypocycloid of four cusps) x213 + y213 = a213 
about the y-axis. 

10 Consider a cylinder circumscribed about a sphere of  ra
dius a. Let two planes perpendicular to the axis of the 
cylinder intersect the sphere. If these planes are at a dis
tance h apart, show that the area of the spherical zane 
that lies between them on the sphere is 2 7Tah. (It is a re
markable fact that this is the same as the area between 
these planes on the lateral surface of the cylinder. Note 
also that if h = 2a this result yields the formula for the 
total surface area of the sphere.) 

1 1  If a curve lies above the x-axis, its moment around the 
x-axis is defined to be f y ds, where this integration is ex
tended over the complete length of the curve. The mo
ment of the curve around the y-axis is Jx ds. The point 
(i, y) is called the centroid of the curve (Fig. 7 .33) if its 
coordinates are defined by 

and 

_ Jx ds Jx ds 
x = -- = 

J ds length of curve 

- f y ds f y ds 
y = -- = -��---Ids length of curve · 

If the curve is thought of as a uniform metal wire, its 
centroid is its center of gravity, or balancing point. Find 
the centroid of the semicircle x2 + y2 = a2, y ;:::: 0. 

ds 

- -�-� 
Figure 7.33 
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1 2  In Problem 1 1 , let the curve be revolved about the x-axis 
and show that the area of the surface of revolution equals 
the length of the curve times the distance traveled by the 
centroid on its journey around the x-axis. 

13 Use the theorem proved in Problem 12 to find 
(a) y for the semicircular arc in Problem 1 1 ; 
(b) the surface area of the torus (a fancy name for a 

doughnut) obtained by revolving the circle x2 + 
(y - b)2 = a2, a s b, about the x-axis. 

7 . 7 
WORK AND ENERGY 

It is a common experience that in moving an object against a force acting on it, 
as in lifting a heavy stone, we have the sensation of expending effort or doing 
work. Even before we define the physical concept of work, we are convinced that 
it takes twice as much work to lift a 20-lb stone a given distance as it does to 
lift a 1 0-lb stone, and also that the work done in lifting a stone 3 ft is three times 
that done in lifting it 1 ft. These ideas point the way to our basic definition: If a 
constant force F acts through a distance d, then the work done during this process 
is the product of the force and the distance through which it acts, 

work = force · distance 

or 
W = F · d. ( I )  

It is understood here that the force acts i n  the direction of the motion. 
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As we know, the "weight" of an object is the force with which the object is 
attracted to the earth by gravity. For a given object moving at or near the surface 
of the earth, this force remains essentially constant in magnitude and is always 
directed toward the center of the earth. Thus, if a box of groceries weighing 20 
lb is lifted 3 ft from the floor and placed on a table, then definition ( 1 )  tells us 
that 60 ft-lb of work are done; but if the box is then carried into another room 
and placed on a shelf without raising it or lowering it, then this action accom
plishes no work because the box was moved a distance zero in the direction of 
the force. And if a tractor drags a boulder 1 8  in by applying a constant force of 
2 tons, then the tractor does 36 in-tons (or 3 ft-tons) of work.* 

This definition is satisfactory as long as the force F is constant. However, many 
forces do not remain constant during the process of performing work. In a situ
ation like this we divide the process into many small parts and calculate the to
tal work by integrating the elements of work corresponding to these parts. 

This idea is illustrated by the operation of stretching a spring, as follows. 

Example 1 A certain spring has a natural length of 1 6  in. When it is stretched 
x inches beyond its natural length, Hooke 's law states that the spring pulls back 
with a restoring force of F= kx pounds, where k is a constant. The constant of 
proportionality k is called the spring constant, and can be thought of as a mea
sure of the stiffness of the spring. For the spring under discussion, 8 lb of force 
are required to hold it stretched 2 in. How much work is done in stretching this 
spring from its natural length to a length of 24 in? 

Solution First, the fact that F = 8 when x = 2 allows us to find k. We have 
8 = k · 2, so k = 4 and F = 4x. To clarify our ideas, we draw a picture of the 
spring in its unstretched condition, and also after it has been stretched x inches 
( Fig. 7.34). Now, if we imagine that the spring is stretched a very small addi
tional distance d.x, then the force changes very little over this increment of dis
tance and can be treated as essentially constant. The work done against the pull 
of the spring over this increment of distance is 

dW = F dx = 4x dx, 

and the total work done during the complete stretching process is 

W = J dW = J F dx = fo8 4x dx = 2x2 J: = 1 28 in-lb, 

(2) 

since x increases from 0 to 8 as the length of the spring increases from 1 6  to 24. 

In a similar way, we can consider the work done by any variable force that 
acts in a given direction as its point of application moves in this direction. If 
we coordinatize the line of action by introducing an x-axis, and if the point of 

*If force is measured in pounds and distance in feet, work is measured in foot-pounds. This is the 
English or engineering system. In science the terms are as follows. In the centimeter-gram-second 
(cgs) system, the unit of force is the dyne, defined as the force that imparts an acceleration of 1 cm/s2 
to a mass of 1 gram, while in the meter-kilogram-second (mks) system, the unit of force is the new
ton, defined as the force that imparts an acceleration of 1 m/s2 to a mass of 1 kilogram. The corre
sponding units of work are the dyne-centimeter, or erg, and the newton-meter, or joule. For conver
sion I ft-lb == 1 .356 joules and I joule = 1 07 ergs. 
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Figure 7.35 
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application of the variable force F(x) moves from x = a to x = b, then dW = 
F(x) dx is the element of work and 

W = J dW = J: F(x) dx (3) 
gives the total work done during the process. This formula can be taken either 
as a definition or as a natural method of computing the work in accordance with 
the way of thinking described in Example l .  In our next example the same idea 
is applied to a different situation. 

Example 2 According to Newton's law of gravitation, any two particles of mat
ter of masses M and m attract each other with a force F whose magnitude is di
rectly proportional to the product of the masses and inversely proportional to the 
square of the distance r between them, 

F = G  Mm 
r2 ' 

where G is the so-called constant of gravitation. If M is fixed at the origin, how 
much work is required to move m from r = a to r = b, where a < b? 

Solution The element of work is 

so the total work is 

dr dW = F dr = GMm 2• r 

W = f dW = GMm I: �� = GMm (-7) J: = GMm (; - i} 
(4) 

If we think of the final position r = b as being chosen farther and farther away, 
so that b � =, then the work W approaches the limiting value GMm/a. This quan
tity is the work which must be done against the force of attraction to move m 
from r = a to an infinite distance, that is, to separate the masses completely; it 
is called the potential of the two particles. 

Each of the preceding examples is concerned with a variable force acting 
through a given distance. Our next example is very different. It involves a process 
in which the parts of a body- in this case, drops of water-are moved differ
ent distances against a constant force, and the total work is calculated as the sum 
of the various bits of work associated with the various parts. 

Example 3 Consider a cylindrical tank of radius r and height h, filled with wa
ter to a depth D (Fig. 7 .35). How much work is done in pumping the water out 
over the rim of the tank? (As usual, we denote the weight-density of water, that 
is, the weight per unit volume, by w.) 

Solution The essence of this problem is the fact that each drop of water must 
be lifted from its initial position up to the rim of the tank and dumped over the 
side. The work done in this process is the same for all drops which are the same 
distance below the rim. This suggests that we consider all the water located in a 
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thin horizontal layer of thickness dx at a height x above the bottom of the tank, 
that we write down the element of work dW needed to lift this entire layer up to 
the rim of the tank, and that we calculate the total work in our usual way, by 
adding (or integrating) these elements of work as x increases from 0 to D, so that 
our typical layer sweeps through all the water in the tank. It is clear from the fig
ure that the volume of the layer is 7Tr2 dx, so its weight is W'TTr2 dx, and the work 
done in lifting this layer through the distance h - x to the top of the tank is 

dW = W7Tr2 dx · (h - x). (5) 
The total work done in pumping out all the water is therefore 

W = J dW = W7Tr2 J: (h - x) dx 

We repeat: The crux of the method in this example is the fact that all drops of 
water in our typical layer are essentially the same distance below the rim of the 
tank, and can therefore be treated together in calculating the work. 

Students should observe that the use of definition ( 1 )  in a suitable form is the 
key to each of these examples. Specifically, formulas (2) , (4), and (5) are simply 
the versions of ( 1 )  that are appropriate in each case. 

We devote the rest of this section to a brief discussion of the important con
cept of energy. 

Consider a variable force F that acts on a particle of mass m over a given dis
tance along a straight line, which we take to be the x-axis. This force not only 
does work, but also imparts an acceleration dvldt to the particle in accordance 
with Newton's second Jaw of motion, 

dv F = m dt, where v = dx/dt. (6) 
This acceleration produced by the force changes the velocity v of m. and there
fore also changes its kinetic energy-or energy due to motion-which is de
fined by the formula 

kinetic energy = fmv2. 
We are now in a position to prove the following important theorem of mechanics: 

The work done by the force F during the process described above equals the change 
in the kinetic energy of the particle; and in particular, if the particle starts from rest, 
then the work done on it equals the kinetic energy it attains. 

The proof is easy. We begin by writing (6) in the form 

Formula (3) now yields 

dv dv dx dv F = m dt = m dx dt = mv dx ' 

Lb Lb dv f,v, W = F dx =  mv dx dx =  mvdv 
a a va 
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(7) 
so the work W equals the change in the kinetic energy, as stated. 

Remark In certain types of physical situations-but not in all-it is possible 
to introduce the concept of potential energy. We do this very briefly as follows. 
In using formula (3) for the calculation in (7), we tacitly assumed that the un
specified force F is a continuous function depending only on the coordinate x 
over the interval a :S x :::; b, say F = F(x). (Notice that a frictional force does not 
have this property; for it depends not only on the location of the particle m, but 
also on the direction in which it is moving.) By the discussion at the end of Sec
tion 6.7, this assumption guarantees that there exists a function V(x) such that 
dV/dx = - F(x). We can therefore evaluate the work W in (7) in another way, as 
follows: 

W = J: F(x) dx = J: -F(x) dx = V(x) J: 
= V(a) - V(b). 

This enables us to write (7) as 

or 

tmvb2 - tmv} = V(a) - V(b) 

(8) 

(9) 
On the left side of (9) we drop the subscript and replace V(b) by V(x) in order 
to emphasize that v and V(x) are considered to be variables; and on the right side 
we hold Va and V(a) fixed. Equation (9) now takes the form 

tmv2 + V(x) = tmva2 + V(a) = E, ( 1 0) 
where the constant E is called the total energy of the particle. The function V(x) 
is called the potential energy of the particle, and ( 10) states that the sum of the 
kinetic energy and potential energy is constant. This is the law of conservation 
of energy, which is one of the basic principles of classical physics. 

We see from ( 10) that if F(x) does work and thereby increases kinetic energy, 
it does so at the expense of potential energy and can therefore be viewed as con
verting potential energy into an equal amount of kinetic energy. 

We point out that the definition of V(x) means that this function is determined 
only to within an additive constant, so in any specific situation the state of zero 
potential energy can be chosen to suit our convenience. Also, students may won
der about the mild trickery with algebraic signs that takes place in the definition 
of V(x) and in the calculation (8). The purpose of this is to guarantee the ap
pearance of plus signs instead of minus signs in ( 10) so that we can speak of the 
sum of the kinetic and potential energies as being constant instead of their dif
ference. 

Example 4 The working heart. From the point of view of physics, the human 
heart is a pump. Blood enters the left ventricle through the mitral valve (Fig. 
7.36) and is then pumped out to the body through the aortic valve as the heart 
muscle contracts. During each contraction the pressure exerted by the heart wall 
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increases in a roughly linear manner from a diastolic pressure of about 80 mm 
Hg (millimeters of mercury) to a systolic pressure of about 1 20 mm Hg. We shall 
calculate the work done in the left ventricle during one heartbeat, assuming-a 
realistic figure-that the volume of this ventricle decreases by about 75 cm3 dur
ing one contraction. We shall need to know that 1 00 mm Hg = 1 .33 X 105 
dynes/cm2. 

For convenience in working with the idea of a pump, we imagine the heart's 
action to be carried on by the movement of a piston from x = 0 to x = a, as 
shown in the figure, instead of by muscular contraction. If A is the area of the 
piston head, then aA = 75. The pressure P(x) against which the piston works is 
easily seen from Fig. 7.37 to be 

40 
P(x) = - x + 80. 

a 

We now put all this together and observe that the variable force exerted by the 
piston during one upward stroke is P(x)A, and the work done during this stroke 
is 

W = La P(x)A dx = A La ( :O 
X + 80) dx 

= A ( 2� x2 + 80x) J: = l OOaA 

= ( 1 .33 X 105 dynes/cm2) · (75 cm3) 

= 1 07 dyne-cm 

= 1 joule 

= 0.74 ft-lb. 

In the case of a person weighing 120 lb who has a pulse rate of 60, we can quickly 
learn by punching a few keys on our calculator that the heart does enough work 
in a 24-hour day to lift the person through a vertical distance of more than 500 
ft. The human heart is a remarkable organ and is shockingly underappreciated ! 

PROBLEMS 

p 
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Figure 7.37 

1 A spring has a natural length of 1 0  in, and a 1 2-lb force 
stretches it t in. Find the work done in stretching the 
spring from 10 in to 1 8  in. 

2 A spring has a natural length of 1 2  in, and a 45-lb force 
stretches it to 1 5  in. Find the work done in stretching it 
from 15 in to 1 9  in. 

S A bucket weighing 5 lb when empty is loaded with 60 
lb of sand. Unfortunately there is a hole in the bucket, 
and sand leaks out uniformly at such a rate that a third 
of the sand is lost when the bucket has been lifted 10 
ft. Find the work done in lifting the bucket this distance. 

3 A spring supporting a railroad car has a natural length 
of 12 in, and a force of 8000 lb compresses it t in. Find 
the work done in compressing it from 12 in to 9 in. 
(Hooke's law is valid for compressing springs as well 
as for stretching them.) 

4 Find the natural length of a spring if the work done in 
stretching it from a length of 2 ft to a length of 3 ft is one
fourth the work done in stretching it from 3 ft to 5 ft. 

6 A cable 100 ft long that weighs 4 lb/ft is hanging from 
a windlass. How much work is done in winding it up? 

7 Solve Problem 6 if a 300-lb weight is attached to the 
free end of the cable. 

8 A 5-lb monkey is attached to the end of a 30-ft hang
ing chain that weighs 0.2 lb/ft. It climbs the chain to 
the top. How much work does it do? 

9 Gas in a cylindrical chamber moves a piston by ex
panding or contracting. Let the cross-sectional area of 
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the cylinder be A, and let its variable volume and length be V 
and x (Fig. 7.38). If p is the pressure of the gas, then the force 
the gas exerts on the piston is pA. 

t t t t t 
p 

Figure 7.38 

(a) If the gas expands from a volume Vi to a volume 
V2, show that the work done by the gas on the pis
ton is 

fv, W =  p dV. v, 

(b) If a force is exerted on the piston to compress the 
gas from a volume Vi to a volume V2, show that the 
work done on the gas is 

fv, W =  - p dV. 

v, 10 If air i s  compressed or  expanded without any loss or 
gain of heat but with a possible change of temperature, 
then it obeys the adiabatic gas Jaw p V1 .4 = c, where c 
is a constant. I f  a cylinder contains 243 in3 of air at a 
pressure of 14 lb/in2, find the work done by the piston 
on the air in compressing it adiabatically to a volume 
of 32 in3. (If this air is compressed slowly so that the 
heat generated is allowed to escape and the temperature 
remains constant, the compression is said to be isother
mal. In this case the pressure and volume are related by 
Boyle 's law pV = c, and in trying to calculate the work 
we are led to an integral of the form f d VIV, which is 
beyond our reach. One of the main purposes of Chap
ter 8 is to enable us to cope with integrals of this kind, 
which are important in many applications.) 

1 1  Consider a cylindrical buoy of cross-sectional area 8 ft2 
which is floating upright in water whose weight-den
sity is w = 62.5 lb/ft3. According to Archimedes' prin
ciple, a floating body is acted on by an upward buoy
ant force equal to the weight of the displaced water, and 
in a state of equilibrium this upward force balances the 
downward force acting on the body due to gravity. 
(a) Show that there is an upward force of 62.5(8x) lb 

acting on the buoy when it is held x feet down from its equi
librium position. 

(b) How much work is done in pushing the buoy 1 ft 
down from its equilibrium position? 

* 12 A conical buoy that weighs B pounds floats upright in 
water with its vertex a ft below the surface. A crane on 
a dock lifts the buoy until its vertex just clears the sur
face. How much work is done? Hint: When the crane 
has lifted the buoy x ft, then the force required to hold 
it in this position is the weight of the buoy minus the 
upward buoyant force due to the water still displaced, 
and this can be expressed as a function of x. 

13 I f  an iron ball i s  attracted to a magnet by a force of 
F = 1 5/x2 pounds when the ball is x feet from the mag
net, find the work done in pulling the ball away from 
the magnet from a point where x = 2 to a point where 
x = 6. 

14 According to  Coulomb's law, two electrons repel each 
other with a force that is inversely proportional to the 
square of the distance between them. Suppose one elec
tron is held fixed at the origin on the x-axis. Find the 
work done in moving a second electron along the x-axis 
from x = 2 to x = 1. From x = a to x = b, where 
0 < b < a. 

15 If two particles of matter of masses M and m are a units 
apart, how much work must be done to move them twice 
as far apart? 

1 6  I f  R i s  the radius of the earth (about 4000 mi) and g is 
the acceleration due to gravity at the surface of the earth, 
then the force of attraction exerted by the earth on a 
body of mass m is F = mgR2/r2, where r is the distance 
from m to the center of the earth. If this body weighs 
1 00 lb at the surface of the earth, what does it weigh at 
an altitude of 1 000 mi? At an altitude of 4000 mi? How 
much work is required to lift it from the surface to an 
altitude of 1 000 mi? 

1 7  Generalize Problem 16  by finding how much work must 
be done by a rocket on a satellite of mass m in lifting 
it to an altitude h above the surface of the earth. 

18 Suppose that a hole i s  drilled straight through the cen
ter of the earth, and that a body of mass m is dropped 
into this hole. As the body falls, the force of attraction 
exerted on it by the earth is F = mgr/R, where r is the 
distance from m to the center of the earth. (The reason 
behind this law of force will become clear in a later 
chapter.) Find the work done by the earth in pulling m 
from the surface down to the center. 

1 9  A conical tank 1 0  ft deep and 8 ft across the top i s  full 
of water. Find the work done in pumping the water over 
the top of a nearby 1 2-ft fence. 

20 Find the work done in Problem 1 9  if the tank is initially 
filled only to a depth of 5 ft and if the water is pumped 
just to the top of the tank and over the edge. 
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A spherical tank of radius a is at the top of a tower with 
its bottom at a distance h above the ground. How much 
work is needed to fill the tank with water pumped from 
ground level? 
A great conical mound of height h is built by the slaves 
of an oriental monarch, to commemorate a victory over 
the barbarians. If the slaves simply heap up uniform ma
terial found at ground level, and if the total weight of 
the finished mound is M, show that the work they do is 
ihM. 
The Great Pyramid of Egypt is perhaps the greatest sin
gle building ever erected by man. It was originally 482 
ft high with a square base 765 ft on a side, and it cov
ered an area large enough so that St. Peter's in Rome, 
the cathedrals of Milan and Florence, Westminster 
Abbey, and St. Paul 's Cathedral in London could al l  be 
grouped within it. It contained enough stone to build a 
wall 1 ft thick and 7 ft high all the way around France. 
The Greek historian Herodotus said that it was built in 
20 years by the labor of 100,000 men. Calculate the 
plausibility of this assertion as follows: Assume that the 
Great Pyramid is made of stone that weighs 1 50 lb/ft3, 
that each laborer worked I 0 hours per day for 350 days 
each year, and that each laborer did 200 ft-lb of effec
tive work per hour in lifting stones from ground level 
to their final positions in the pyramid.t If Herodotus' 
figure of 20 years is correct, approximately how many 
laborers were needed? 
Geologists who study mountain building are able to cal
culate the energy needed to lift a mountain up from sea 
level. In the case of Mt. Everest, assume the mountain 
has the shape of a cone of height 30,000 ft and radius 
of base 60,000 ft, with uniform density 1 50 lb/ft3. 
(a) How much work was required to build Mt. Everest 

if all of its constituent rock was initially at sea level? 
(b) The atomic bomb at Hiroshima released energy 

equivalent to 20,000 tons of TNT, and some hy
drogen bombs tested in the 1 950s had energy 500 
times as great, on the order of 10 megatons of TNT. 
How does the work needed to build Mt. Everest 
compare with the energy of a I O-megaton bomb? 
( 10 megatons is about 3 X 1 01 5 ft-lb.) 

If the same amount of work done on two particles start
ing from rest causes one to move twice as fast as the 
other, how are their masses related? 
When the mass m of a particle is constant, Newton's 
second law of motion 

dv F = ma = m -dt 

tu 200 ft-lb per hour seems too small a figure, remember that much 
time and strength were spent in quarrying, cutting, and transporting 
the stones. 
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can be written in the less familiar form 

d 
F = 

dt (mv), 

which remains valid even when m is not constant. Ac
cording to Einstein 's special theory of relativity, the 
mass is indeed not constant: It increases as the veloc
ity v increases, and is determined as a function of v by 
the formula 

mo m = -;:===== YI - v2/c2 ' 

where c is the velocity of light (approximately 186,000 
mils, or 300,000 krn/s) and m0 is the so-called rest mass. 
When this expression for m is inserted in ( ** ), the re
sult is Einstein's law of motion 

F = m0 -d ( v ) 
dt YI - v2/c2 · 

If v is small compared with c so that \/ 1 - v2/c2 is 
close to I , then Newton's law (*) i s  a very close ap
proximation to Einstein's law. This is what happens for 
all problems of classical physics (in fact, this is almost 
a definition of classical physics). However, if v is an ap
preciable fraction of c, as in most phenomena of atomic 
physics, then the two laws differ considerably, and all 
the experimental evidence supports Einstein's version. 
(a) Show that a particle acted on by a constant force F 

can never achieve the velocity of light, no matter 
how long the force acts.* Hint: Integration of (***) 
gives Ft!m0 = vi\/ I - v2/c2 if the particle starts 
from rest. 

(b) By differentiation write (***) in the form 

F =  
moa 

( 1  _ v2/c2)312 

where a = dvldt, and thereby obtain another way 
of comparing Einstein's law with Newton's law ( *). 

(This problem continues the ideas of Problem 26.) Con
sider a particle of rest mass m0 that starts from rest at 
the origin on the x-axis and moves in the positive di
rection under the influence of a positive force F. Ein
stein's law of motion [part (b) of Problem 26) tells us 
that a is also positive, so the velocity is increasing. If 
the energy E of the particle is understood to be the work 
done on it by F, show that E is related to the increase 
in the mass, which is M = m - m0, by Einstein 's 

*This is in sharp contrast with the implication of Newton's law (*), 
that if the force F is constant, then the acceleration a is also constant, 
so the velocity increases at a constant rate, and can therefore be made 
greater than c if the force acts long enough. 
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famous equation E = Mc2. Hint: Write a = �� = 
dv dx dv (x 
dx dt = v dx and calculate E = Jo F dx. [The crux of 

Einstein's equation- not mentioned in this problem
is the much deeper fact that the rest mass m0 also has 
energy associated with it, in the amount m0c2. This can 

be thought of as the "energy of being" of the particle, 
in the sense that mass possesses energy just by virtue of 
existing. If we add this to the kinetic energy calculated 
in the problem, we obtain the complete Einstein 
equation: total energy = Mc2 + m0c2 = (m - m0 + 
mo)c2 = mc2.] 

7 . 8  
In the previous sections of this chapter we have seen how integration can be used 
to answer many natural questions that arise in geometry and basic physics. 

HYDROSTATIC FORCE 
In this section we undertake a brief excursion into the science of hydrostatics, 

which is concerned with the behavior of liquids at rest. In particular, we calcu
late the force exerted outward against the walls of an open container by water at 
rest inside the container. The containers we consider can be anything from a small 
fishbowl to the reservoir behind a gigantic dam. We do not undertake this ex
cursion for its own sake, but rather because it provides an additional excellent il
lustration of the main theme of this chapter-the idea that the whole of a quan
tity can be calculated by dividing it into many convenient small pieces and adding 
up these pieces by means of integration. 

T 
h 

l_ 
A 

Figure 7.39 

If a tank with a rectangular bottom and vertical sides is filled with water to a 
depth h ( Fig. 7 .39), then the force exerted downward on the bottom is equal to 
the weight of the water contained in the tank. If A is the area of the bottom, then 
this force is given by the formula 

F = whA, ( 1 )  

where w is the weight-density of the water, which is approximately 62.5 lb/ft3, 
or fi ton/ft3. It is obviously necessary for the units of measurement in ( 1 )  to be 
compatible. In our work we measure h in feet, A in square feet, and w in pounds 
or tons per cubic foot. The force F is then expressed in pounds or tons. 

If we divide ( 1 )  by A,  then the resulting quantity 

p = wh (2) 
is the pressure, or force per unit area, exerted by the water on the bottom of the 
tank. The pressure at a given depth h below the surface can therefore be thought 
of as the weight of a column of water h units high that rests on a horizontal base 
whose area is l square unit. Formula (2) is quite remarkable, for it states that the 
pressure is proportional to the depth alone, and that the size and shape of the 
container are completely irrelevant. For example, at a depth of 4 ft in a swim
ming pool the pressure is the same as it is at a depth of 4 ft in a nearby lake 
(namely, 250 lb/ft2) regardless of the size of the lake; and we find the same pres
sure at the bottom of a vertical glass tube 1 inch in diameter if we plug the bot
tom with a cork and fill it with 4 ft of water. Furthermore, it can be verified ex
perimentally that at any point in a liquid the pressure is the same in all directions. 
This means that a flat plate below the surface has the same pressure acting on 
one face at a given depth whether it is placed horizontally, vertically, or at an an
gle, and this pressure is normal (perpendicular) to the face of the plate. As skin 
divers know from personal experience, the water pressure on the eardrums de
pends only on how deep they are, and not at all on the angle at which the head 
is tilted. 



7 .8 HYDROSTATIC FORCE 

In order to find the total force exerted by the water against the bottom of the 
tank in Fig. 7 .39, it is enough to multiply the pressure at the bottom by the area 
of the base, 

F = pA, 

which is merely formula (1). It is more difficult to find the force against one of 
the sides, because the pressure is not constant there but increases as the depth 
increases. Instead of pursuing this particular problem, we consider a more gen
eral situation. 

In Fig. 7.40 we show a flat plate of unspecified shape submerged vertically in 
a body of water. To find the total force exerted by the water against one face of 
this plate, we imagine this face to be divided into a large number of thin hori
zontal strips. The typical strip shown in the figure i s  at a depth h below the sur
face. Its width dh is so small compared with h that the pressure is essentially 
constant over the entire strip, and has the value p = wh. The area of the strip is 
dA = x dh, so the element of force dF acting against the strip is given by 

dF = p dA = wh · x dh. 

The total force F acting against the whole face of the plate is now obtained by 
integrating these elements of force as our typical strip sweeps across the plate 
from top to bottom ,  

F = f dF = r wh · x dh. (3) 
In order to carry out the indicated integration in a specific problem, it is neces
sary to know x as a function of h, and this is determined geometrically from the 
shape of the plate. As in the preceding sections of this chapter, it is better to un
derstand and apply the ideas used in constructing formula (3) than to try to mem
orize this formula and use it without thinking. We repeat the crux of the method: 
Thin horizontal strips are used because the pressure can be treated as essentially 
constant over all of such a strip, and the force acting against this strip is then 
simply the pressure times the area. 

Example 1 A vertical gate in a dam has the shape of a square 4 ft on a side, the 
upper edge being 2 ft below the surface of the water ( Fig. 7 .41 ). Find the total 
force this gate must withstand. 

Solution In this case x = 4 and h increases from 2 to 6, so 

F = J26 wh · 4 dh = 2wh2 J: = 2w · 32 = 2 tons. 

Example 2 A triangular dam in a ditch is 10 ft across the top and 6 ft deep ( Fig. 
7.42). Find the force of the water against this dam when the water is at the top 
and ready to spill over. 

Solution By similar triangles we see that 

x 6 - h 
1 0  6 so x = t(6 - h). 
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Since h increases from 0 to 6, we have 

PROBLEMS 

In Problems 1-4, it is assumed that the face of a dam adja
cent to the water is vertical and has the stated shape. In each 
case find the total force against the dam. 

1 A rectangle 150 ft wide and 1 2  ft high; water 8 ft deep. 
2 An isosceles trapezoid 200 ft wide at the top, JOO ft 

wide at the bottom, and 20 ft high; reservoir full of wa
ter. 

3 An isosceles triangle 60 ft wide at the top and 20 ft high 
in the center; reservoir ful l  of water. 

4 An isosceles trapezoid 90 ft across the top, 60 ft across 
the bottom, and 20 ft high; water 1 2  ft deep. 

In Problems 5-8, it is assumed that a vertical gate in the face 
of a dam has the stated shape. In each case find the total force 
of the water against the gate. 

5 A triangle 4 ft wide at the top and 5 ft high, with up
per edge I ft below the water surface. 

6 An isosceles trapezoid 6 ft wide at the top, 8 ft wide at 
the bottom, and 6 ft high, with upper edge 4 ft below 
the water surface. 

7 A triangle 4 ft wide at the bottom and 4 ft high, with 
the upper vertex 2 ft below the water surface. 

8 A semicircle 4 ft in diameter with its diameter at the 
water surface. 

F = J: wh · t(6 - h) dh = tw(3h2 - ih3) J: 

= 60w = If tons = 3750 lb. 

9 A cylindrical barrel 4 ft high and 3 ft in diameter stands 
upright and is half filled with oil that weighs 50 lb/ft3. 
What is the total force of the oil against the lateral wall 
of the barrel ? 

10 If the barrel in Problem 9 lies on its side, what is the 
force of the oil against one of the circular ends? 

1 1  A rectangular gate in a vertical dam is 5 ft wide and 6 
ft high. Find the force against this gate when the water 
level is 8 ft above its top. How much higher must the 
water rise to double the force? 

12  The vertical ends of a water trough are isosceles trian
gles with base 3 ft and height 2 ft. Find the force against 
one end when the trough is full of water. 

1 3  The end of a swimming pool is a rectangle inclined 45° 
to the horizontal. If the edge at the surface is 1 2  ft long 
and the submerged edge 10 ft long, find the force the 
water exerts against this rectangle. 

*14 A rectangular tank is filled with two nonmixing liquids 
whose densities are w1 and w2, where w1 < w2. In one 
side of the tank there is a square window 3v'2 ft on a 
side with one of its diagonals vertical and the upper ver
tex 1 ft below the surface, and with the other diagonal 
on the boundary between the liquids. Find the force the 
liquids exert against the window. 

CHAPTER 7 REVIEW: CONCEPTS, METHODS 

Define, state, or think through the following. 

I Area by vertical or horizontal strips. 
2 Volume by disks, moving cross sections, or washers. 
3 Volume by cylindrical shells. 

4 Arc length by ds = V dx2 + dy2. 

ADDITIONAL PROBLEMS FOR CHAPTER 7 

SECTION 7 .2 
In Problems 1-13, sketch the curves and find the areas of the 
regions they bound. 

1 y = x2, y = x. 
2 x = 3y + y2, x + y + 3 = 0. 

5 Area of surface of revolution. 
6 Work by dW = F dx. 
7 Kinetic and potential energy. 
8 Pressure. 
9 Hydrostatic force by dF = p dA. 

3 y = x4 - 2x2, y = 2x2. 
4 y2 = x3, x = 4. 
5 y = x2 - 2x - 3, y = 2x + 2 . 

2 *6 y = . � , x + 3y - 5 = 0. vx + 2 
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7 y = 6x - x2, y = x. 
8 y2 = 4x, 2x - y = 4. 
9 y2 = 2x, x - y = 4. 

10 y = 4 - x2, y = 4 - 4x. 
1 1  y2 = -4x + 4, y2 = -2x + 4. 
12 y = 9 - x2, y = x2. 
13 y = 9 - x2, (x + 3)2 = -4y. 
14 Find the complete area enclosed by y2 = 9x2 - x4. 
J S  Find the area bounded by  y = x2, y = 4 ,  y = 2 - x. 
16 Find c > 0 so that the area bounded by y = x2 - c and 

y = c - x2 equals 9. 
* 17 Find the area of the region in the second quadrant 

bounded by the x-axis and the parabolas y = x2, y = 
Vx+ls. 

''' 1 8 Find the area between 4y = x3 and its tangent at x = -2. 

SECTION 7.3 

19 Find the volume of the solid of revolution generated 
when the area bounded by the given curves is revolved 
about the x-axis: 
(a) y = 2 - x2, y = l ;  
(b) y = 3x - x2, y = x; 
( c) y2 = 4x, y = x; 
(d ) y = x2 + 3, y = 4; 
(e) Vx + vY = Va, x = 0, y = 0. 

20 Find the volume generated by revolving the area 
bounded by x = y2 and x = 4 about 
(a) the x-axis; (b) the y-axis; 
(c) the line y = 2; (d) the line x = 4; 
(e) the line x = - 1 . 

2 1  Find the volume generated by revolving the area 
bounded by x = 4y - y2 and x = 0 about 
(a) the y-axis; (b) the x-axis. 

22 Each plane perpendicular to the x-axis intersects a cer
tain solid in a circular cross section whose diameter lies 
in the .xy-plane and extends from y = x2 to y = 8 - x2. 
The solid lies between the points of intersection of these 
curves. Find its volume. 

23 The base of a certain solid is the circle x2 + y2 = a2. 
Each plane perpendicular to the x-axis intersects the 
solid in a cross section that is an isosceles right trian
gle with one leg in the base of the solid. Find the vol
ume. 

24 The base of a certain solid is the area bounded by x2 = 
4ay and y = a. Each cross section perpendicular to the 
y-axis is an equilateral triangle with one side lying in 
the base. Find the volume of the solid. 

25 A plane which is perpendicular to the x-axis and con
tains a circle of radius x2 moves from x = a to x = b. 
If the center of the circle moves along a curve y = f(x), 
find the volume of the solid the circle generates. 

*26 A solid is generated by revolving about the x-axis the 
area bounded by a curve y = f(x), the x-axis, and the 

lines x = a and x = b. Its volume is '1T(b3 - b2a) for all 
b > a. Find /(x). 

27 Find the volume generated by revolving the area 
bounded by the curves x2 = 4ay, y = a, x = 0 about 
(a) the y-axis; (b) the x-axis; (c) the line y = a. 

28 Let R be a region of area A in a horizontal plane, and 
suppose that R is bounded by a closed curve C that does 
not intersect itself. Let P be a point whose height above 
this plane is h, and form a generalized "cone" by draw
ing segments connecting P to the points of C. Show that 
the volume of this cone is V = tAh. Hint: If A(x) is the 
area of the horizontal cross section at a height x above 
the plane, observe that A(x) = [(h - x)2!h2]A.  

29 A line passes through a vertex of a square of side a and 
is perpendicular to the plane in which the square lies. 
As this vertex moves a distance h along the line, the 
square turns through a complete revolution with the line 
as the axis. Find the volume of the screw-shaped solid 
the square generates. What is the volume if the square 
turns through two complete revolutions while moving 
the same distance along the line? 

30 The square bounded by the axes and the lines x = I ,  
y = 1 is cut into two parts by the curve y = x", where 
n is a positive constant. Find the value of n for which 
these two parts generate equal volumes when revolved 
about the y-axis. 

*3 1 Two oblique circular cylinders of equal height h have a 
circle of radius a as a common lower base and their up
per bases are tangent to each other. Find the common 
volume. 

SECTION 7.4 
In Problems 32-37, sketch the region bounded by the given 
curves and use the shell method to find the volume of the solid 
generated by revolving this region about the given axis. 
32 y = Vx, x = 8, y = O; the y-axis. 
33 x = y2 - 4y, x = O; the x-axis. 
34 y = 5x - x2, y = O;  the y-axis. 
35 x = y3 + 1 ,  y + 2x = 2, y = 1 ;  the x-axis. 
36 y = x2, y = x3 ; the y-axis. 
37 2x - y = 1 2, x - 2y = 3, x = 4; the y-axis. 
38 The region bounded by the given curves is revolved 

about the y-axis. Find the volume of the solid of revo
lution by using both the shell method and the washer 
method. 
(a) y = 4x - x2, y = 0. 
(b) y = x3, x = 2, y = 0. 

39 The region in the first quadrant between y = 3x2 and 
y = 1t-x2 + 1 is revolved about the y-axis. Find the vol
ume generated in this way. 

40 The region bounded by y2 = 4x and y = x is revolved 
about the x-axis. Find the volume generated in this way 
(a) by the shell method; (b) by the washer method. 
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*41 Consider the torus generated by revolving the circle 
(x - b)2 + y2 = a2 (0 < a < b) about the y-axis. Use 
the shell method to show that the volume of this torus 
equals the area of the circle times the distance traveled 
by its center during the revolution. Hint: At the right 
moment, change the variable of integration from x to 
z = x - b. 

42 Find the volume generated by revolving about the 
y-axis the region bounded by y = (x - I )(x - 2)(x -3) 
and the x-axis between x = I and x = 2. 

SECTION 7.5 
In Problems 43-49, find the length of the specified arc of the 
given curve. 
43 9y2 = 4x3 between (0, 0) and (3, 2\/3). 

1 I 44 y = - x4 + -2 , I :s x ::s 2. 8 4x 
1 1 45 y = - x3 + -, 1 :s x ::s 3 .  6 2x 
I I 46 x = - y5 + - I :s y ::s 2. 1 0  6y3 ' 
I 2 47 y = - x3 + - 2 :s x ::5 4.  24 x ' 

48 y = iVx(4x - 3), 1 :s x ::5 9. 
49 y = fg-( 1  + 4x415)312, 1 ::s x :s 32. 
50 Let A and B be positive constants. If 0 < a < b, show 

that the problem of finding the length of the arc of the 
curve 

B y = Ax3 + -x 

for a ::s x :s b leads to the integral 

if AB = -{z. 
51 Let A and B be positive constants. If 0 < a < b, find a 

simple condition relating A and B that makes it possi
ble to calculate the length of the arc of the curve 

B y = Ax4 + x2 

between x = a and x = b by means of an integral not 
involving a square root. 

52 Solve Problem 5 1  for the curve 

SECTION 7.6 

B y = Axs + 3· x 

In Problems 53-55, find the area of the surface of revolution 
generated by revolving the given arc about the indicated axis. 
53 y = t( l + x2)312, 0 s x ::s 3, the y-axis. 

54 y = fx312 - fx112 , O s x s 4, the y-axis. 
55 y = 2�, 0 s x :s 15 ,  the x-axis. 
56 The loop of 1 8y2 = x(6 -x)2 is revolved about the 

x-axis. Find the area of the surface generated in this 
way. 

57 Sketch the graph of 8a2y2 = x2(a2 - x2) and find the 
area of the surface generated when this curve is revolved 
about the x-axis. 

SECTION 7.7 
58 A 4-lb force will stretch a spring 6 in. How much work 

is done in stretching it 3 ft? 
59 A spring pulls back with a force of 7 lb when it is 

stretched from its natural length of 1 2  in to a length of 
1 3  in. How much work is required to compress it from 
a length of 1 1  in to a length of 7 in? 

60 Show that the work done in stretching a spring of nat
ural length L from a length a to a length b (L < a <  b) 
is equal to the amount of the stretch (b - a) times the 
tension in the spring when its length is f(a + b). 

6 1  A bag of sand i s  lifted at the constant rate of 3 ft/s for 
1 0  seconds. At the beginning the bag contains 1 00 lb 
of sand, but the sand leaks out at the rate of 4.5 Ibis. 
How much work is done in lifting this bag? 

62 If a certain gas in a cylinder obeys an adiabatic gas law 
of the form p V513 = c, and if it initially occupies 64 in3 
at a pressure of 1 28 lb/in2, find the work it does against 
the piston in expanding to 8 times its initial volume. 

63 Find the work done in compressing I 024 ft3 of air at a 
pressure of 27 lb/in2 down to 243 ft3 if the air obeys 
the adiabatic gas law pv1 .4 = c. 

64 Generalize Problem 63 by finding the work done in 
compressing air of initial volume Vi and pressure P1 
down to a volume V2, assuming the adiabatic gas law 
pV1 .4 = c. 

*65 A conical buoy that weighs B pounds floats upright in 
water with its vertex a feet below the surface. If the top 
of the buoy is ta feet out of the water, how much work 
is done in pushing the buoy down until its top is just at 
the surface of the water? 

*66 A spherical buoy of radius a feet that weighs B pounds 
has exactly the weight-density w of water, so that it 
floats with its top just touching the surface. A crane on 
a dock lifts the buoy until it just clears the water. How 
much work is done? 

67 If two electrons are held fixed at the points x = 0 and 
x = - 1 on the x-axis, find the work done in moving a 
third electron along the x-axis from x = 4 to x = 1 .  

68 Imagine a very deep mine shaft, of depth D = fR, ex
tending halfway down to the center of the earth (ignore 
all practical difficulties caused by the internal constitu
tion of the earth) . A person whose weight is w at the 
surface is lifted from the bottom of the shaft to the top. 
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Under the assumption that the weight remains constant 
during the journey, the work done would be wD. Show 
that the work done during this process is actually �wD, 
by taking into account the fact that the force of gravity 
below the surface of the earth is proportional to the dis
tance from its center. 

69 A tank has the shape of the paraboloid of revolution ob
tained by revolving y = x2 (0 :s x :s Vs) about the 
y-axis. If it is full of water, how much work is required 
to empty it by pumping all the water out over the edge? 

70 Let a cylindrical barrel of diameter 3 ft and height 5 ft 
be filled to a depth of 2 ft with water and then, above 
the water, with 2 additional ft of oil that weighs 50 lb/ft3. 
Find the work done in pumping the water and oil over 
the edge of the barrel. 

7 1  A hemispherical tank of radius 8 ft is full of water. If 
a hole is punched in the bottom, find the work done by 
gravity in emptying the tank. 

72 Two cables are hanging side by side from the ceiling of 
a gymnasium. The first is an elastic cable of length L 
and the second is inelastic and has length 2L. As two 
gymnasts of equal weight climb down these cables, the 
weight of the first stretches his cable to a total length 
of 2L. Show that when the two gymnasts climb back 
up to the ceiling, the first does only f of the work done 
by the second. 

SECTION 7.8 
73 Find the force due to water pressure against a rectan

gular floodgate 1 0  ft wide and 8 ft deep whose upper 
edge is at the surface of the water. 

74 Find the force against the lower half of the floodgate in 
Problem 73 . 

In Problems 75 and 76, it is assumed that a vertical gate in 
the face of a dam has the stated shape. In each case find the 
total force on the gate. 
75 A triangle 6 ft wide and 4 ft high, with upper edge at 

the water surface. 
76 A triangle with base B and height H, with its vertex at 

the water surface. 
77 A rectangular canal lock is 30 ft wide. When the water 

is 20 ft deep, what is the force of the water against the 
lock? 

78 A rudder has the shape of an isosceles right triangle 
whose equal legs are 2 ft long. It is submerged verti
cally in water with one of the equal legs vertical and 
the other horizontal, and with the horizontal leg 3 ft be
low the surface and the opposite vertex l ft below the 
surface. Find the force of the water against one face of 
the rudder. 

79 A rectangular gate in a dam has width 10 ft and height 
8 ft. Find the force against the gate when the water level 
is 20 ft above its top. 

80 Assume that the gate in Problem 79 cannot withstand 
a force greater than I 00 tons. How high must the wa
ter be above the top of the gate in order to break 
through? 

*81 The vertical end of a vat is a segment of a parabola 
opening upward which is 4 ft across the top and 8 ft 
deep. What is the force against this end when the vat is 
full of beer weighing 60 lb/ft3? 

To understand how Archimedes discovered the volume of a sphere, it is neces
sary to know a little about the level of knowledge from which he started. 

APPENDIX: 
ARCHIMEDES AND THE 
VOLUME OF A SPHERE As he states in one of his treatises, it was Democritus two centuries earlier 

who discovered that the volume of a cone is one-third the volume of a cylinder 
with the same height and the same base. t We will need this fact. 

Also, the Greeks knew a little analytic geometry, but without our notation. 
They were acquainted with the idea that a locus in a plane can be studied by con
sidering the distances from a moving point to two perpendicular lines, and if the 
sum of the squares of these distances is constant, they knew that the locus is a 
circle. In our notation, this condition amounts to the equation x2 + y2 = a2. 

tDemocritus (about 460-370 B .C.) was the founder of the atomic theory of matter and the greatest 
philosopher of physical science among the ancient Greeks. He wrote at least 75 works on almost 
every conceivable subject, from physics and mathematics to logic, ethics, magnets, fevers, diets, agri
culture, law, "the sacred writings in Babylon," "the right use of history," and even the growth of an
imal horns, spiders and their webs, and the eyes of owls. Of these works there remain only a few 
hundred fragments quoted by later writers; for example: "It is better to examine one's own faults than 
those of others," and "I would rather discover one cause than gain the kingdom of Persia." Plato hated 
him and was jealous of him, and Aristotle praised his genius-two weighty recommendations. 
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Figure 7.43 Archimedes' balancing 
argument. 

APPLICATIONS OF INTEGRATION 

Further, Archimedes himself virtually created Greek physics. It is well known 
that he discovered the law of floating bodies. More important for our present pur
poses, he also discovered the principle of the lever and many facts about centers 
of gravity. 

We are now ready to follow Archimedes in his search for the volume of a 
sphere. He considered the sphere to be generated by revolving a circle about its 
diameter. In modern notation we start with the circle 

x2 + y2 = 2ax, ( I )  

which has radius a and i s  tangent to the y-axis at the origin. This circle is shown 
on the left in Fig. 7.43, which is almost identical with Archimedes' original fig
ure. Equation ( 1 )  contains the term y2, and since ey2 is the area of the variable 
cross section of the sphere x units to the right of the origin, it is natural to mul
tiply through by 1T and write ( 1 )  in the form 

1TX2 + 1TY2 = 1T2ax. (2) 

This leads us to interpret 1TX2 as the area of the variable cross section of the cone 
generated by revolving about the x-axis the right triangle under the line y = x be
tween x = 0 and x = 2a. This in turn suggests that we seek a similar interpreta
tion for the term 1T2ax on the right side of (2). If we persist in this search, we 
might perhaps think of multiplying by 2a and thus rewriting (2) as 

(3) 

The motivation for this change clearly lies in the fact that 7r(2a)2 can now be in
terpreted as the area of the cross section of the cylinder with the same height and 
base as the cone. 

We therefore have on the left in Fig. 7.43 three circular disks viewed edge on, 
of areas 7ry2, 1Tx2, and 7r(2a)2, which are the intersections of a single plane with 
three solids of revolution. This plane is perpendicular to the x-axis at a distance 
x units to the right of the origin, and the solids are the sphere, the cone, and the 
cylinder, as indicated in the figure. 

On the left side of equation (3) the sum of the first two areas is multiplied by 
2a, and on the right side the third area is multiplied by x. This observation led 

2a / 
y = x 

/ rr(2a)2 

! ---T 
I 2a 
I 
I 
I 
I I I I I \ 
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Archimedes to the following great idea, as shown on the right in the figure. He 
left the disk with radius 2a where it is, in a vertical position x units to the right 
of the origin; and he moved the disks with radii y and x to a point 2a units to the 
left of the origin, where he hung them in a horizontal position with their centers 
(centers of gravity) under this point, suspended by a weightless string. The pur
pose of this maneuver can be understood only if we think of the x-axis as a lever 
and the origin as its fulcrum or balancing point. It can now be seen that equa
tion (3) deals with moments. (A moment is the product of the suspended weight 
and the length of the lever arm.) From this point of view, equation (3) states that 
the combined moments of the two disks on the left equals the moment of the sin
gle disk on the right, and so, by Archimedes' own principle of the lever, this lever 
is in equilibrium. 

We now carry out the final step of the reasoning. As x increases from 0 to 2a, 
the three cross sections sweep through their respective solids and fill these solids. 
Since the three cross sections are in equilibrium throughout this process, the solids 
themselves are also in equilibrium. Let V denote the volume of the sphere, which 
was unknown until Archimedes finished this calculation. If we use Democritus' 
formula for the volume of the cone, and also the volume of the cylinder and the 
obvious location of its center of gravity, then the equilibrium of the solids in the 
positions shown in the figure yields the equation 

2a [t7T(2a)2(2a) + V] = a?T(2a)2(2a). (4) 

It is now easy to solve ( 4) for V and obtain 

The ideas discussed here were created by a man who has been described
with good reason - as "the greatest genius of the ancient world." Indeed, nowhere 
can one find a more striking display of intellectual power combined with imag
ination of the highest order. Archimedes himself was so pleased with his dis
covery that he asked for a figure to be cut on his tombstone showing a sphere 
inscribed in a cylinder. And it was done.* 

*The Roman orator Cicero wrote the following about two centuries after the death of Archimedes: 

I shall call up from the dust on which he drew his figures [the dust on the ground was the black
board of the ancient mathematicians] an obscure, insignificant citizen of Syracuse, Archimedes. 
When I was quaestor I sought out his grave, which was unknown to the Syracusans (as they to
tally denied its existence), and found it enclosed all round and covered with brambles and thick
ets; for I remembered certain doggerel lines inscribed, as I had heard, upon his tomb, which stated 
that a sphere along with a cylinder had been set up on top of his grave. Accordingly, after taking 
a good look all round ( for there are a great quantity of graves at the Agrigentine Gate), I noticed 
a small column rising a little above the bushes, on which there was the figure of a sphere and a 
cylinder. And so I at once said to the Syracusans ( I  had their leading men with me) that I believed 
it was the very thing of which I was in search. Slaves were sent in with sickles who cleared the 
ground of obstacles, and when a passage to the place was opened we approached the pedestal 
fronting us; the epigram was traceable with about half the lines legible, as the latter portion was 
worn away. [Cicero's Tusculan Disputations (Loeb Classical Library, p. 49 1 ).] 

The present writer visited Syracuse in 1 987, and if there had been any hope of finding this tomb
more than 2000 years later- he would have stayed until he found it. 

Archimedes (287-21 2  B .C.) died in the conquest of Syracuse by the Romans during the Second 
Punic (Carthaginian) War. In the general confusion following the fall of the city, he was found con
centrating on some diagrams he had drawn in the sand, and was killed by a marauding soldier who 
did not know who he was. In one version of the story he said to the intruder, who came too close, 
"Do not disturb my circles," whereupon the enraged soldier ran a sword through his body. 
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8 . 1 
INTRODUCTION 

EXPONENTIAL 
AND LOGARITHM 

FUNCTIONS 

Our main purpose in this chapter is to learn how to work successfully with the 
indefinite integral 

J�- ( I )  

As we shall see, this purpose compels u s  to study the special exponential and 
logarithm functions 

and y = log. x. (2) 

The letter e used in these functions denotes the most important special number 
in mathematics after rr. In decimal form it is an infinite nonrepeating decimal 
that is known to hundreds of thousands of decimal places; the first few digits are 

2.7 1 828 . . . .  

The ultimate reason for our interest in these matters is that the integral ( 1 )  and 
the functions (2) arise in a great variety of problems involving population growth, 
radioactive decay, chemical reaction rates, electric circuits, and many other phe
nomena in physics, chemistry, biology, geology, and virtually every science that 
uses quantitative methods, including meteorology, oceanography, and even ar
chaeology. This integral and these functions are also indispensable in many 
branches of pure mathematics. 

In order to reach a clear understanding of why the number e and the functions 
(2) matter so much, it is desirable to broaden the context a bit and consider the 
more general exponential and logarithm functions 

and y = log0 x, 

where a is a positive constant -:/= I .  This is where we begin, and by adopting this 
approach we hope to make it perfectly clear that we choose a equal to e for com
pelling reasons of convenience and simplicity. 
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8.2 REVIEW OF EXPONENTS AND LOGARITHMS 

Students who have managed to get this far in this book certainly have a work
ing grasp of exponents, and perhaps also of logarithms as defined in terms of ex
ponents. Nevertheless, we briefly review the main definitions and facts as they 
appear in the traditional approach. 

We consider expressions of the form ax where a > 0 and x is  any real num
ber. It is easy to explain exactly what ax means if x is an integer n, and we as
sume students understand this explanation. The following is a brief reminder: 

If n > 0, then a" = a · a · · · a (n factors), aO = l ,  
I a-n = -· 
a" ' 

am 
- = am-n 
a" , 

e.g., 

e.g. , 

e.g.,  

a2a3 = (a · a)(a · a · a) = a · a · a · a · a = a5 ; 

a · a · a · a · a = � . !!:...:....!!._ = a . a = a2· a · a · a  a · a · a  I ' 

(a3)2 = (a · a · a)(a · a · a) = a · a  · a · a · a · a = a6. 

Next, in Section 3.5 we summarized the meaning of fractional exponents, and 
we repeat the essence of this summary here. If r = p/q is a fraction in lowest 
terms with q > 0, then by definition 

ar = aplq = (�)P, ( I )  

where � i s  the unique positive number whose qth power i s  a. 
If the exponent x is an irrational number, then difficulties appear that students 

might not notice if we didn 't mention them. For instance, what is meant by the 
expression 2V27 Clearly, it doesn't make sense to multiply 2 by itself \/2 times. 
Also, since v'2 can't be written as a fraction, definition ( l )  is useless. Is 2V2 re
ally a definite number with a specific value? The answer is Yes, but this is not 
at all obvious. A natural way to proceed is to use the fact that any irrational num
ber can be approximated as closely as we please by rational numbers. We can 
therefore define ax by 

ax = lim ar, 
r-H 

where r approaches x through rational values. This way of defining ax when x is 
irrational is satisfactory from the logical point of view; however, it is a long and 
tedious chore to prove rigorously that everything works out as we expect and that 
the familiar laws of exponents remain valid. We skip over these boring details 
and merely state the final result, that the laws of exponents continue to hold in 
the following form: 

where x1 and x2 are arbitrary real numbers. 
The next natural step in this development is to examine the properties of the 

general exponential function y = ax. Here again we simply state the important 
facts without making any attempt to discuss the logical details of how these facts 
are established. As above, we assume that a is a positive constant, and also that 
a t= 1 .  The case a = 1 is of no interest because 1 x = 1 for all x. Let us suppose 
first that a > 1 .  Then y = ax is a continuous function of x; it is increasing; its 
values are all positive; and it has the further obvious properties that 

lim ax = 0 and (2) 
x---t-oo 

8 . 2 
REVIEW OF 
EXPONENTS AND 
LOGARITHMS 
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y = ax J 

a > l  

y 

-2 -1 0 
Figure 8.1  

-2 -1 
Figure 8.2 

y 

0 

y = aX '  
a < l 

2 x 

2 x 

EXPONENTIAL AND LOGARITHM FUNCTIONS 

To sketch the graph, we plot a few points corresponding to several integral val
ues of x, both positive and negative, and then connect these points by a smooth 
curve, as shown in Fig. 8 . 1 .  If a <  1 ,  then y = ax is a decreasing function and 
its graph has the shape shown in Fig. 8 .2. 

When this much information about exponents is known or assumed, it is very 
easy to define logarithms and obtain some of their properties . On the most prim
itive level, a logarithm is an exponent. Thus, the fact that 1 00 = 102 says that 2 
is the logarithm of 1 00 to the base 1 0  (written 2 = log 1 0 1 00); and 4 = 64 113 
says that + is the logarithm of 4 to the base 64 ct = log64 4). 

More generally, the properties of exponents discussed above show clearly that 
if a is a positive constant * l ,  then to each positive x there corresponds a unique 
y such that x = aY. This y is written in the form y = loga x, and is called the log
arithm of x to the base a. Accordingly, 

y = loga x has the same meaning as X = aY
, (3) 

in the sense that each equation expresses the same relation between x and y, with 
the first written in a form solved for y and the second in a form solved for x. We 
can state this somewhat differently by saying that the symbol "loga" is created 
for the specific purpose of enabling us to solve x = aY for y in terms of x. 

The basic properties of logarithms are direct translations of corresponding 
properties of exponents. Thus, if x1 = aY1 and x2 = ah, then x1x2 = aY1aY2 = 
aY1+Y2. But y1 = loga x 1 and Y2 = loga x2, so we have 

loga X1X2 = loga X1 + loga Xz. 

Similarly, 

and 

where b is any real number. Further, (3) tells us that 

alog.x = x 

We note also that the particular facts 

loga 1 = 0 

are equivalent to 1 = a0 and a = a 1 • 
In studying the logarithm function 

and 

and 

y = loga x, 

log0 a =  I 

(4) 

we consciously think of x and y as variables instead of mere numbers. Our start
ing point is the fact that (4) is equivalent to x = aY. It is clear from this that x 
must be positive in order for y to exist, so (4) is defined only for x > 0. The graph 
of (4) is easy to obtain from the graph of x = aY by interchanging the axes, as 
we show in Fig. 8.3 for the case a >  1 . * In this case y = loga x is evidently an 

*By "interchanging the axes" we mean the following: on the left in Fig. 8.3, imagine the two axes 
and the curve to be three pieces of stiff wire glued together into a rigid frame; lift this frame off the 
page and flip it over in space so that the x- and y-axes are revolved into their normal positions; and 
finally, return the frame to the page as it appears on the right in the figure. 
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y 

Turn figure 
over 

y 

x 

increasing continuous function of x. The features of this function that correspond 
to the properties (2) are 

lim loga x = -oo 
x�o+ and lim loga x = oo. 

x---?oo 

The most convenient logarithm for actual numerical calculations is the loga
rithm to the base 10, the so-called common logarithm. Common logarithms were 
once widely used by engineers and scientists and students in high school 
trigonometry courses, but such uses have virtually disappeared in these days of 
calculators and computers. However, modern technological changes in the way 
people do calculations have had no influence whatever on the importance of the 
logarithm as a function; it remains indispensable in the theoretical parts of math
ematics and its applications, and these theoretical uses are what concern us in 
this chapter. 

PROBLEMS 

1 Express in terms of logarithms: S Find the base a:  

Figure 8.3 

(a) 42 = 16; (b) 34 = 8 1 ;  (a) log0 4 = 0.4; (b) loga 8 = -i; 
(c) 8 1° 5 = 9; (d ) 32415 = 1 6. (c) loga 36 = 2; (d ) log0 7 = t. 
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2 Express in terms of exponents: 
(a) log 1 o  10 = 1 ;  (b) log2 8 = 3 ;  
(c) log5 fs- = -2; (d ) log6 2 16 = 3 . 

6 If y = log0 (x + �), show that x = t(aY + a-Y). 
7 Show that loga (x + �) = - log0 (x - �). rn1I 8 

3 Evaluate: 
(a) log1 0 10,000; 
(c) log 1o 0.000 1 ;  

4 Solve for x: 
(a) log4 x = 3.5 ; 
(c) log3 x = 5; 

(b) log2 64; 
(d ) log8 4. 

(b) logs x = f; 
(d ) log32 x = 0.6. 

The magnitude M of an earthquake on the Richter scale 
is a number that ranges from M = 0 for the smallest 
earthquake that can be detected by instruments to 
M = 8.9 for the greatest known earthquake. M is given 
by the empirical formula 

2 E 
M = 3 log10 

Ea ' 
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where E is the energy released by the earthquake in kilo
watthours and E0 = 7 X 1 0 - 3 .*  
(a) Suppose the magnitudes o f  two earthquakes differ by 

1 on the Richter scale. Show that the ratio of the en
ergy of the larger earthquake to that of the smaller is 
J 0312 = 3 1 .62. 

(b) How much energy is released by an earthquake of 
magnitude 6? 

(c) A city whose population is 300,000 uses about 
3 X 1 05 kilowatthours (kWh) of electric energy 
every day. If the energy of an earthquake could some
how be transformed into electric energy, how many 
days' supply for this city would be provided by the 
earthquake in part (b)? 

( d) The great Alaskan earthquake of 1964 had a Richter 
magnitude of 8.4. Answer the question in part (c) for 
this earthquake. 

9 In chemistry the pH of a solution is defined by the for
mula pH = -log 1o[H+] ,  where (W] denotes the hydro
gen ion concentration as measured in moles per liter.t 

*Charles Richter ( 1 900-1985) was a professor of seismology at Cal
Tech. He invented his magnitude measure in 1935. The following are 
Richter magnitudes, and numbers of people killed, in other memo
rable earthquakes of recent history: 

8.9-Japan: Mar. 2, 1933, 2990 dead; 
8.3-San Francisco, Calif.: Apr. 1 8, 1906, 2000 dead; 
8.2-Tangshan, China: July 28, 1 976, 242,000-800,000 dead; 
8. 1 -Mexico City: Sept. 19 ,  1 985, 9500 dead; 
7.7-Peru: May 3 1 ,  1970, 66,794 dead; 
7 .2-Italy: Nov. 23, 1980, 3000 dead; 
6.9-Armenia: Dec. 7, 1988, 25 ,000 dead. 

tThe symbol "pH" is an abbreviation of the French expression puis
sance d'Hydrogene (power of hydrogen). 

(One mole-or gram molecular weight-of a substance 
consists of 6 x 1 023 molecules of the substance.) The 
value of [H+] for pure water is found by experiment to 
be 1 .00 X 1 0-7. 
(a) What is the pH of pure water? 
(b) A solution is called acidic or basic (alkaline) ac

cording as its value of [H+] is greater or less than 
that for pure water. What pH's characterize acidic 
and basic solutions? 

10 Show that the number log3 2 is irrational. Hint: Assume 
the contrary, that log3 2 = plq where p and q are posi
tive integers, and express this in terms of exponents. Can 
an integral power of 3 equal an integral power of 2? 

1 1  Find the flaw in the following "proof" that t < i: mul
tiply both sides of the inequality 1 < 2 by log t to get, 
successively, 

1-i 1 2  � 

1 · log t < 2 · log t, 
log t < log (W, 
log t < log i, 

t < t. 

A prime number is an integer p > 1 that has no factors 
except itself and 1 .  The first few primes are p = 2, 3, 5, 
7, 1 1 , . . . .  In 1 992 the largest known prime (discovered 
by people who like to play with supercomputers) was 
2 756,839 - I .  
(a) When written out in decimal form, how many digits 

will this number have? Hint: Solve the equation 
! OX = 2756,839. 

(b) How many pages of this book wi II be needed to print 
this number? (One page holds about 4600 digits.) 

8 . 3 
The number e is often defined by the limit 

THE NUMBER e AND 
THE FUNCTION y = ex 

( 1 )" e = Jim 1 + - . n---too n ( 1 )  

This definition has the advantage of brevity but the serious disadvantage of shed
ding no light whatever on the significance of this crucial number. We prefer to 
define e differently, in a manner that reveals as clearly as possible why this num
ber is so important. We then obtain ( 1 )  later, as merely one among many explicit 
formulas for e that can be used in a variety of ways. 

Our aim in this section is to study a function y = f(x) that is unchanged by 
differentiation: 

d 
d.x f(x) = f(x). (2) 
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It is far from obvious that any such function exists [we don't count the trivial 
case f(x) = OJ. As we shall see, the desired function turns out to be one of the 
exponential functions y = ax for a > 1 .  The central meaning of the number e can 
now be stated as follows: It is the specific value of the base a that causes the 
functionj(x) = ax to have the property (2) . In this way we understand what pur
pose e serves. However, we must still give a satisfactory definition and show as 
simply as possible that this definition accomplishes the stated purpose. 

Let us calculate the derivative of j(x) = ax and see what happens. As usual 
when differentiating a new type of function, we go back to the definition of the 
derivative, 

.!i_f( ) = l' 
f(x + �x) - f(x) 

dx x cJ!2o �x · 

It will be convenient here to denote the increment by the single letter h instead 
of the familiar Ll.x (Fig. 8 .4): 

d ax+h - ax axah - ax 
- ax =  Jim = lim ----dx h->0 h 

h->0 h 

= Jim ax __ = ax Jim --- . 
( ah - 1 ) ( ah - 1 ) 

h->0 h 
h-->0 h (3) 

As Fig. 8.4 shows, the quantity in parentheses on the right side of (3) is the slope 
of the tangent line to the curve y = ax at the point (0, 1 ) .  If this slope equals 1 ,  
then the right side of (3) reduces to ax and this particular function ax has the 
property (2). This brings us to our definition: e is the specific value of the base 
a that produces this result, that is, 

. c . . eh - 1 
e 1s the number ior which l� --h- = I .  (4) 

We can obtain considerable insight into the nature of the number e by sketch
ing y = ax for the cases a = 1 .5 ,  a = 2, a = 3, and a = 1 0, as shown in Fig. 8.5. 
These curves tell us that as the base a increases continuously from numbers close 
to 1 to larger numbers, the slope of the tangent to y = ax at the point (0, 1) in
creases continuously from values close to 0 to larger values, and therefore this 
slope is exactly equal to 1 for some intermediate value of a. This intermediate 
value is e; and as we hope students will agree, it is geometrically clear from these 
remarks that e exists. Next, we plot the points on the first three of these curves 
corresponding to x = 1 in order to stress the fact that the slopes of the chords 
joining these points to (0, 1 )  are �" 1 ,  and 2. This is conclusive geometric evi
dence that the slope of the tangent at (0, 1) is < 1 for the cases a = 1 .5 and a = 
2, and plausible evidence that this slope is > 1 for the case a = 3 ;  and therefore 
e is certainly >2 and probably <3.  

In Fig. 8.6 we show the graph of y = ex with emphasis placed on its defining 
characteristic: It is the single member of the family of exponential functions y = 
ax (a > 1 )  whose tangent line at the point (0, 1 )  has slope 1 .  The function y = 
ex is often called the exponential function, to distinguish it from its compara
tively unimportant relatives. 

We can investigate the number e more closely by noting that (4) tells us that 

eh - I --h- is approximately equal to 1 ,  

Slope of 
chord 
_ ah - 1 
- h 

Figure 8.4 

3 

- 1  0 
Figure 8.5 

0 
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I 
1 ( 1 , l . S )  

2 

- 1  0 2 

Figure 8.6 
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and that this approximation gets better and better as h approaches 0. Thus, by 
simple manipulations we obtain 

eh - I 
-- = !  

h 

and finally, 

eh - 1 = h, eh =  1 + h, 

e = Jim (1 + h)11h. 
h->0 

e = ( I + h)11h, 

(5) 
In words, this says that e is the limit of 1 plus a small number, raised to the power 
of the reciprocal of the small number, as that small number approaches 0. If we 
write h = l ln where n is understood to be a positive integer that � oo as h � 0, 
then (5) yields 

e = Jim ( 1  + _!_)n• n-400 n 

which i s  ( 1 ) . This formula enables us to compute rough approximations to e fairly 
easily, as the following table shows: 

2 
2 * = 2± = 2.25 
3 * = 2-¥,l = 2.370 
4 �;� = 2i:! = 2.44 l 

However, this is a slow process and the value of e has been computed to great 
accuracy by other and more efficient methods. To 15 decimal places it is 

e = 2.7 1 8281 828459045 . . .  .' 

The number e, like the number 1T, is woven inseparably into the fabric of both 
nature and mathematics. Many remarkable properties of e have been discovered 
over the centuries. For example, e is irrational; indeed, it is not even a root of 
any polynomial equation with rational coefficients. 

However, we must not forget our original purpose in this section, which was 
to study a function that is unchanged by differentiation. We have now made a 
good start on this task, in the sense that we have explained the meaning of the 
following statement and established its validity: 

d dx ex = ex. 

An equivalent statement is that y = e satisfies the differential equation 

dy = y dx . 

Every function y = ce also satisfies this equation, because 

'Many people remember this much of e by grouping the digits this way, 

2 .7 1 828 I 828 45 90 45, 

in order to visualize the repeated 1 828 followed by 45, then twice 45, then 45 again. 

(6) 
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dy = _!/:__ (cex) = c _!/:__ ex = cex = y d.x d.x d.x . 

Further, we assert that these are the only functions that are unchanged by differ
entiation. To prove this, suppose that y = f(x) is any function with this property. 
Then by the quotient rule, 

_!!:__ [f(x) ] = 
ex J'(x) - f(x)ex 

= 
ex f(x) - f(x)ex 

= O. 
d.x ex e 2x e2x 

This implies that f(x)/ex = c for some constant c, so f(x) = cex, as stated. 
By the chain rule, (6) generalizes immediately to 

d du - eu = eu -
dx dx ' 

where u = u(x) is understood to be any differentiable function of x. 

Example 1 In view of (7), the following derivatives are obvious:  

_!/:__ e4x = 4e4x 
d.x 

, d 2 2 - ex = 2xex 
d.x , ! e llx = (-:2

) el lx. 

(7) 

If we write (7) in differential form, as d(eu) = eu du, then by reading this back
wards we obtain the integration formula 

(8) 

Example 2 To integrate f e5x dx, we write 

J esx d.x = t J esx d(Sx) = tesx + c, 

where 5x plays the role of u in formula (8). This problem is so simple that there 
is no need to make explicit use of the method of substitution. It suffices to keep 
in mind what (8) says and make minor adjustments accordingly, as indicated. 

Example 3 The integral 

J 
9xe vTx2+2 d.x 
V3x2 + 2 

is more complicated. Our only hope is that (8) will see us through, so we write 

u = Y3x2 + 2 = (3x2 + 2)112 

and 

3x d.x 
du = t(3x2 + 2)- 112 6x d.x = Y3x2 + 2

. 

This substitution (or change of variable) enables us to express the given integral 
in a much simpler form, and thereby to finish the calculation, 

J 
9xe Y3x2+2 d.x J . � ----- = 3 eu du = 3eu + c = 3ev3x'+2 + c. 
V3x2 + 2 
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Students should observe that the complicated appearance of the given integral is 
only a disguise concealing the relatively simple form displayed in (8). Learning 
the art of integration is mostly learning to see the underlying form through the 
disguise. 

Example 4 Continuously compounded interest. If P dollars is deposited in a bank 
that pays an interest rate of 8 percent per year, compounded semiannually, then 
after t years the accumulated amount is 

A =  P( l + 0.04)2'. 

More generally, if the interest rate is l OOx percent (x = 0.08 for 8 percent), and 
if this interest is compounded n times a year, then after t years the accumulated 
amount is 

A =  P
(
l + �t 

If n is now increased indefinitely, so that the interest is compounded more and 
more frequently, then we approach the limiting case of continuously compounded 
interest. To find the formula for A under these circumstances, we observe that 
(5) yields 

so 

l + - = I + - -;. ext ( x )nt [( x )nlx]xr 
n n 

' 

(9) 

Ordinary compound interest produces growth in spurts or jumps at the end of 
each interest period. In contrast to this, we see from (9) that continuously com
pounded interest produces steady continuous growth of a type called exponen
tial growth. In Sections 8 .5  and 8.6 we discuss many additional examples of ex
ponential growth as it occurs in the natural sciences. 

Remark 1 The function ex grows very rapidly as x increases; in fact, it grows 
faster than xP for any fixed positive exponent p, no matter how large, in the sense 
that 

ex 
Jim - = =. x�oo xP 

An outline of a proof for the case in which p is a positive integer n is given in 
Additional Problems 1 8  to 20. 

Remark 2 We have deduced the existence of the limits in ( 1 )  and (5) from 
the definition of e given in (4). However, this definition itself is highly geo
metric in nature, and some mathematicians might be inclined to dismiss 
our entire approach to these ideas as "reasoning by wishful thinking." To 
mollify such critics, and also for the occasional students who might be inter
ested, we provide an independent proof of the existence of these limits in 
Appendix A.8. 
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PROBLEMS 

In Problems 1- 10, find the derivative dy/dx of the given func-
ti on. 
1 y = t<ex + e-x). 2 y = t<ex - e-x). 
3 y = x2ex. 4 y = x2e-x'. 
5 y = ee'. 6 y = Xe +  ex. 
7 ax - I 

Y = --- ea.x 
a2 8 y = (3x + 1 )e-3x. 

9 y = (2x2 - 2x + l )e2x. IO y = ellx2 + l /ex'. 
Evaluate the integrals in Problems 1 1- 16. 
1 1  Je3x dx. 1 2  Jxe-x' dx. 
13 J e< ll5)x dx. 1 4  J 3dx e2x . 
IS J 6x2ex' dx. 1 6  J e �t. 
1 7  

1 8  

1 9  

20 

2 1  

22 

23 

Sketch the graph of each of the following functions and 
find its maximum and minimum points and points of in
flection: 
(a) y = e-x'; (b) y = xr13. 
Find the base of the largest rectangle that rests on the 
x-axis and has its upper vertices on the curve y = e-x'. 
Sketch the curve y = t<r + e-x) and find its length from x = 0 to x = b (b > 0). 
The arc in Problem 19 is revolved about the x-axis. Find 
the area of the surface of revolution generated in this way. 
If a particle moves on the x-axis in such a way that its 
position x at time t is given by x = Aek1 + Be-k1, where A, B, and k are constants, show that the particle is re
pelled from the origin with a force proportional to its dis
tance from the origin. Hint: Use Newton's second law of 
motion, F = ma. 

If the tangent to y = ex at the point x = x0 intersects the 
x-axis at x = xi , show that x0 - x1 = 1 .  
Graph y = e-x, find the area under this curve from x = 
0 to x = b (b > 0), and find the limit approached by this 
area as b -7 =. 

24 Verify that y = e-x and y = e2x are both solutions of the 
differential equation y" - y' - 2y = 0. 

25 Evaluate the following limits: 

26 

27 

r-i
28 l!!.!!J 

r-i
29 l!!.!!J 

(a) Jim ( 1 + _21 )2
n; n-too n 

(b) Jim ( 1 + 
_
3
_1_)3n+ I ; n->� n + 1 

( 1 )n' (c) Jim I + 2 ; n-tO(I n 

( I )zn 
(d ) Jim I + - ; n-toci n 

(e) Jim ( 1 + -21 )
n · n-too n 

Use the argument in Example 4 to obtain the formula 

r = Jim ( 1 + �)n· n-too n 
Use the Intermediate Value Theorem (Section 2 .6) to 
show that the equation x + ex = 0 has a root. Why does 
this equation have only one root? 
Use Newton's method (Section 4.6) to calculate the root 
of the equation in the preceding problem correct to six 
decimal places. 
When Benjamin Franklin died in 1 790, it was found that 
he had directed in his will for the sum of $ 10,000 to be 
given jointly to the cities of Philadelphia and Boston, to 
be invested at compound interest for the benefit of the 
people of those cities. In a recent TV broadcast by CNN 
it was stated that in 1990, 200 years later, the accumu
lated amount would have been 90 billion dollars 
($90,000,000,000) if invested at a "reasonable" rate of 
interest. What rate of interest would have been required 
to achieve this astounding result? 

Logarithms to the base 10-common logarithms-are often taught in high 
school, starting with the following familiar definition: For any positive number 
x, log 1 0 x is that number y such that x = l QY. In just the same way, for any pos
itive number x, loge x is defined to be that number y such that x = eY. This is il
lustrated on the left in Fig. 8.7. 

8 . 4 
THE NATURAL 
LOGARITHM FUNCTION 
y = ln x. EULER The number loge x is called the natural logarithm of x, for reasons that will 

become clear in Remark 2. In deference to standard practice at this level, we de
note this number by the simpler notation ln x, pronounced "ell enn ex." Thus, 

y = In x has the same meaning as x = eY, 
in the sense that we are dealing here with a single equation, first written in a 
form solved for y and then written in a form solved for x. The graph of y = ln x 



270 

Figure 8.7 

EXPONENTIAL AND LOGARITHM FUNCTIONS 

y 

y y x 

is obtained by simply turning over the graph of x = eY so as to interchange the 
positions of the axes (Fig. 8.7, right). Just as in Section 8.2, the natural logarithm 
function y = In x is defined only for positive values of x and has the following 
familiar properties: 

and 

In Y!1 = b In x; 

e1" x = x  and ln ex = x; 

lim In x = -= and Jim In x = =. 
x�O+ x---too 

Also, In I = 0 and In e = 1 .  
We can compute the derivative dy!dx of the function y = In x very easily, by 

differentiating x = eY implicitly with respect to x: 

I =  eY dy 
dx ' so 

dy 
dx eY x 

This yields the formula 

d l - ln x = dx x ' 

and we immediately have the chain rule extension 

d I du - ln u = - dx u dx '  

where u is understood to be any differentiable function of x. 

Example I As direct applications of ( I )  we have 

.!!:_ In (3x + I ) = _
1
_ 

d(3x + 1 )  = _
3
_ dx 3x + I dx 3x + I ' 

.!!:_ In ( I  - x2) = _l_ d( l  - x2) 
= 

-2x 
dx l - x2 dx l - x2 ' 

( I )  
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_i_ ln (�) - I 
dx 2x + I 3x/(2x + I )  

x(2x + I ) '  

(2x + 1 )  · 3 - 3x · 2 
(2x + 1 )2 

We point out that the last calculation can be simplified by first writing 
ln [3x/(2x + 1 ) ]  = In 3 + In x - ln (2x + 1 ), so that 

__:{_ In (�) = _!_ - _2_ = I 
dx 2x + 1 x 2x + l x(2x + I ) · 

The differential version of ( 1 )  is d (ln u) = du/u, which leads at once to the 
main formula of this chapter, 

I du --;; = In u + c. (2) 

It is understood in (2) that u is positive, because only in this case does In u have 
a meaning. However, it is easy to see that the integrand can always be written 
with a positive denominator, by juggling the signs. Thus, if u < 0 we can write 

J
du = J

d(-u) = ln (-u) + c. u -u 

Many writers cover all cases by  writing (2) in the form 

I du --;; = In lul + c. 

(3) 

However, we shall not do this, for the reason that most of the applications re
quire a quick transition from logs to exponentials ,  and the presence of the ab
solute value sign interferes with the smooth operation of this process. We prefer 
to use (2) as it is ,  and to remember as we do this that u must be positive. In sit
uations where u is negative, we easily make the minor adjustments indicated in 
(3). 

Students will recall that the fundamental integration formula 

I un+ l un du = -- +  c n + 1 ' n * - 1 , 

failed to cover one exceptional case, namely, n = - 1 . Formula (2) now fills this 
gap, since it tells us that 

J u-1 du = J 
d: = In u + c. 

Example 2 The following applications of (2) are easy to carry out by inspec
tion: 

J x � 1 = In (x + I )  + c, 

I c1x 1 I -2c1x l 
1 - 2x = -2 l - 2x = -2 In ( 1  - 2x) + c, 

I 3x3 dx = l J 
4x3 dx = l 1 ( 4 + 1 )  + x4 + I 4 x4 + 1 4 n x c. 

27 1 
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In more complicated problems it is desirable to make an explicit substitution or 
change of variable, in order to diminish the likelihood of accidental error. 

In Section 5.4 we discussed the method of separation of variables for solving 
differential equations . The equation 

dy 
= ky dx (4) 

is one of the simplest and most important to which this method can be applied. 
We give the details of this procedure here because the same ideas will be used 
over and over again in the next two sections, and the sooner students become 
thoroughly familiar with them, the better: 

In y = kx + c1 ,  

and finally, 

where c is simply a more convenient notation for the constant ec' .  From our point 
of view, the exponential and logarithm functions find their main reason for be
ing in the fact that they enable us to solve the differential equation (4) in this 
smooth and straightforward manner. It is also clear from the calculations just 
given that these functions go together like the two sides of a coin: you can 't  spend 
one side without also spending the other. 

The next two sections are filled with many far-reaching applications of equa
tion ( 4) to various fields of science. We hope students will agree that these ap
plications fully justify the attention we have given to this differential equation 
and to the functions that are necessary for solving it. 

Remark I We know that ln x � oo as x --'>  =. This property of the logarithm is 
illustrated on the right in Fig. 8.7. However, the graph of y = In x rises very 
slowly, since it is the mirror image of the rapidly rising graph of x = eY. Just 
how slowly y = In x increases can be understood by noticing that it doesn't  reach 
the level y = 10 until x = e10 = 22,000. The fact that In x grows more slowly 
than x can be expressed by writing 

Jim 
In x 

= 0. (5) 

We might try to estimate more accurately how slowly ln x grows by comparing 

it with an even smaller function than x, say Vx or Vx. The remarkable fact is  
that ln x grows more slowly than any positive power of x: 

lim In x 
= 0 

x�oo xP ' (6) 

where p is any positive constant. Proofs of (5) and (6) are indicated in Problem 
13 and Additional Problem 26. 

Remark 2 We mention here another way of seeing-with additional clarity
how the number e arises in calculus. The idea is to calculate the derivative of 
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log0 x as if we were doing this for the very first time in history, in an exploratory 
spirit, without any preconception of what the base a "ought" to be. We begin by 
applying the definition of the derivative, 

.!!:__ J - r loga(X + � x) - loga x 

dx oga x -iJ�o � x  
(7) 

Our next step is to manipulate the expression following the limit sign into a more 
convenient form by using the properties of logarithms discussed in Section 8.2, 

Jog0(x + �x) - Jog0 x 

�x 
_ I J (x + �x ) 
- �x 

oga 
--

x
-

The definition (7) now yields 

i ( �x ) 
= - Jog0 1 + -

�x x 

J x ( �x ) = - - Jog0 J + -x �x x 

J ( � x )xllh 
= � Jog0 1 + ---;- . 

d [ 1 ( � x )xlilx] -d log0 x = Jim - log0 1 + -
x ih->0 x x 

= - Jim log0 1 + -1 [ ( � x)xlilx] 
x tu->O x 

= - Jog0 Jim I + - . 
J [ ( � x )xlilx] 
x ih->0 x 

If we maintain our spirit of research, then the distinctive limit in brackets here 
attracts our attention. It is natural to simplify its structure a bit by putting h = 
!::.xix, and to recognize that !::..x ___.,.. 0 is equivalent to h ___.,.. 0. We now define a new 
mathematical constant e by means of the resulting limit, 

and we at once obtain 

e = Jim (1 + h) 11h 
h__,,O ' (8) 

(9) 

One of our continuing purposes in calculus-though students may find this hard 
to believe-is to make the formulas we work with as simple as possible. Since 
loge e = 1 ,  it is clear that (9) takes its simplest form if the base a is chosen to 
be the number e:  

d 
J dx log, x = �· ( 10) 

The function loge x (or ln x) is called the "natural" logarithm because formula 
( 1 0) makes it the most convenient logarithm to use in calculus and its applica
tions. 

The ideas described here are those by means of which the Swiss mathemati
cian Euler (pronounced "OIL-er") essentially discovered both e and the functions 
ln x and � in the early eighteenth century. 

273 
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Remark 3 Students should be informed that some writers define the function 
In x by the formula lx dt ln x =  -. I t ( 1 1 ) 

These writers are then committed to deriving all the properties of the logarithm 
from the properties of this integral. Also, it is necessary to define the exponen
tial function in terms of the logarithm instead of the other way around. This ap
proach to the ideas of this chapter has its merits from the point of view of the 
theory of calculus. However, for most students, exponents come before loga
rithms as naturally as milk comes before cheese; and regardless of the fine points 
of logic, it is bound to seem perverse and unnatural to begin our subject with 
( 1 1 ) - however much it may delight the soul of a mathematician. 

• & 

NOTE ON EULER 
Leonard Euler ( 1707- 1783) was Switzer

land's foremost scientist and one of the three greatest math
ematicians of modem times-the other two being Gauss 
and Riemann. 
He was perhaps the most prolific author of all time in any 

field. From 1 727 to 1 783 his writings poured forth in a seem
ingly endless flood, constantly adding knowledge to every 
known branch of pure and applied mathematics, and also to 
many that were not known until he created them. He aver
aged about 800 printed pages a year throughout his long life, 
and yet he almost always had something worthwhile to say 
and never seems long-winded. The publication of his com
plete works was started in 1 9 1 1 ,  and the end is not yet in 
sight. This edition was planned to include 887 titles in 72 
volumes. However, since that time extensive new deposits 
of previously unknown manuscripts have been unearthed. It 
is now estimated that more than 100 large volumes will be 
required for completion of the project, well into the twenty
first century. Euler evidently wrote mathematics with the 
ease and fluency of a skilled speaker discoursing on sub
jects with which he is intimately familiar. His writings are 
models of relaxed clarity. He never condensed, and he rev
eled in the rich abundance of his ideas and the vast scope 
of his interests. The French physicist Arago, in speaking of 
Euler's incomparable mathematical facility, remarked that 
"He calculated without apparent effort, as men breathe, or 
as eagles sustain themselves in the wind." He suffered total 
blindness during the last 1 7  years of his life, but with the 
aid of his powerful memory and fertile imagination, and with 
helpers to write his books and scientific papers from dicta
tion, he actually increased his already prodigious output of 
work. 

Euler was a native of the city of Basel in Switzerland and 
a student of John Bernoulli at the University-himself one 
of the most eminent mathematicians of the time-but he 
soon outstripped his teacher. His working life was spent as 
a member of the Academies of Science at Berlin and St. Pe
tersburg, and most of his papers were published in the jour
nals of these organizations. After the launching of calculus 
by Newton and Leibniz in the seventeenth century, math
ematics developed rapidly but without much order or co
herence. Euler tamed this mathematical wilderness as the 
explorers and settlers tamed the wilderness that became the 
United States of America. He was also a man of broad cul
ture, well versed in the classical languages and literatures 
(he knew the Aeneid by heart), many modem languages, 
physiology, medicine, botany, geography, and the entire 
body of physical science as it was known in his time. How
ever, he had little talent for metaphysics or disputation, and 
came out second best in many good-natured verbal encoun
ters with Voltaire at the court of Frederick the Great. His 
personal life was as placid and uneventful as is possible for 
a man with 1 3  children. 
Though he was not himself a teacher, Euler has had a 

deeper influence on the teaching of mathematics than any 
other person. This came about chiefly through his three great 
treatises: lntroductio in Analysin lnfinitorum ( 1 748) ;  Insti
tutiones Calculi Differentialis ( 1 755); and Institutiones Cal
culi lntegralis ( 1 768-1794). There is considerable truth in 
the old saying that all elementary and advanced calculus 
textbooks since 1 7  48 are essentially copies of Euler or copies 
of copies of Euler. These works summed up and codified 
the discoveries of his predecessors, and are full of Euler's 
own ideas. He extended and perfected plane and solid ana-
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lytic geometry, introduced the analytic approach to 
trigonometry, and was responsible for the modern treatment 
of the functions ln x (= log. x) and ex. He created a con
sistent theory of logarithms of negative and imaginary num
bers and discovered that ln x has an infinite number of val
ues. It was through his work that the symbols e, 'TT, and i 
( = V-1) became common currency for all mathematicians, 
and it was he who linked them together in the astonishing 
equation e7Ti = - 1 . This is merely a special case (put 
(} = 7T) of his famous formula ei9 = cos (} + i sin 0-see 
Section 14.8-which connects the exponential and trigono
metric functions and is absolutely indispensable in higher 
analysis.* Among his other contributions to standard math
ematical notation were sin x, cos x, the use ofj(x) for an un
specified function, and the use of I for summation.t Good 
notations are important, but the ideas behind them are what 
really count, and in this respect, Euler's fertility was almost 
beyond belief. He preferred concrete special problems to the 
general theories in vogue today, and his unique insight into 
the connections among apparently unrelated formulas blazed 
many trails into new fields of mathematics which he left for 
his successors to cultivate. 

He was the first and greatest master of infinite series and 
infinite products, and his works are crammed with striking 
discoveries in these fields. James Bernoulli ( John's older 
brother) found the sums of several infinite series, but he was 
not able to find the sum of the reciprocals of the squares, 
1 + t + t + -&; + · · · . He wrote, "If someone should suc
ceed in finding this sum, and will tell me about it, I shall be 
much obliged to him." In 1 736, long after James's death, 
Euler made the wonderful discovery that 

1 1 1 'TT2 
1 + - + - + - + ·  . . = -

4 9 1 6  6 
. 

He also found the sums of the reciprocals of the fourth and 
sixth powers, 

l 1 1 1 7t4 
1 + - + - + · · · = 1 + - + - + · · · = -

24 34 16  8 1  90 

and 

•An even more astonishing consequence of his formula is the fact 
that an imaginary power of an imaginary number can be real, in 
particular ii = e- "'12; for if we put 0 = Tr/2, we obtain e7rl12 = i, so 

ii = (em12y = em'l2 = e- 1'112. 

Euler further showed that ii has infinitely many values, of which 
this calculation produces only one. 

tsee F. Cajori, A History of Mathematical Notations (Open Court, 
1929). 

1 1 1 1 7T6 
1 + - + - + · · · = l + - + - + . .  · = -

26 36 64 729 945 
. 

When John heard about these feats, he wrote, "If only my 
brother were alive now."* Few would believe that these for
mulas are related-as they are-to Wallis's infinite prod
uct ( 1 656), 

7T 2 2 4 4 6 6  
- = - · - · - · - · - · - · · ·  
2 3 3 5 5 7 

Euler was the first to explain this in a satisfactory way, in 
terms of his infinite product expansion of the sine, 

si� x 
= (I - :� )( 1 -

4
:2 )( l -

9
�) . . " 

The ideas described here are explained more fully in the ap
pendices to Chapters 1 3  and 14. 

His work in all departments of matµematics strongly in
fluenced the further development of this subject through the 
next two centuries. He contributed many important ideas to 
differential equations, including substantial parts of the the
ory of second-order linear equations and the method of so
lution by power series . He gave the first systematic discus
sion of the calculus of variations, which he founded on his 
basic differential equation for a minimizing curve. He in
troduced the number now known as Euler's constant, 

'Y = J� ( 1 + I + t + · · · + -!;- - ln n) = 0.5772 . . .  , 

which is the most important special number in mathematics 
after 'TT and e (see Section 1 3.6). He discovered the integral 
defining the gamma function, 

which is often the first of the so-called higher transcenden
tal functions that students meet beyond the level of calcu
lus, and he developed many of its applications and special 
properties. He also worked with Fourier series, encountered 
the Bessel functions in his study of the vibrations of a 
stretched circular membrane, and applied Laplace trans
forms to solve differential equations-all before Fourier, 
Bessel, and Laplace were born. In almost every direction 
people traveled in exploring the world of classical math
ematics, they met- Euler coming back-for he had been that 
way before them. 

:iThe world is still waiting- more than 250 years later-for some
one to discover the sum of the reciprocals of the cubes. 
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Just as William Shakespeare's business was the writing of 
plays for the use of his theatrical company, Euler's business 
was mathematical research and publication for the acade
mies that employed him; and each was the greatest master 
of his business that the world has ever seen. We know that 
it is almost impossible to speak English without using 
Shakespeare's words and phrases; and in the same way, it is 

PROBLEMS 

1 Simplify each of the following: 
(a) e1n 2; (b) In e3 ; 
(d ) ln e11x; (e) In ( I/ex); 
(g) e-ln( l fx); (h) eln J+ln X; 
(j) ln e Ve; (k) ela 4-ln 3; 
(m) e3 In x+2 In Y; (n) e3 In 2; 
(p) ex+2 1n x. 

(c) e- ln x; 
(f) eln(llx). 
(i) In e1n 1 ; 
(I) In (In e); 
(o) e3+1n 2; 

2 Find dy/dx in each case: 
(a) y = In (3x + 2); 
(c) y = In (ex + 1 ) ;  (b) y = In (x2 + I ); 

(d) y = In (ex)3; 
(e) y = x In x - x; 
(g) y = (In x)2; 

( . ) In x 
I y = --; x 

(k) y = In (x + �). 
3 Find dy/dx in each case: 

(f) y = ln x2; 
(h) y = ln (3x2 - 4x + 5); 

(j) y = ln (In x); 

(a) ln xy + 2x - 3y = 4; (b) ln 2'. - xy = 2. x 
4 Find dy/dx in each case. Whenever possible, use proper

ties of logarithms to simplify the function before differ
entiating. See (a) and (b). 

(a) y = ln (x�) = In x + t ln (x2 + 1 ). 

(b) y = ln � = � [In (x - 1 )  - In (x + ! )] . 

(c) y = In (3x - 2)4. 

(d) y = ln ( 2:: 21 )· 
(e) y = 3 In x4. 

1 (f) y = In -. x 
(g) y = 3 In l 52x. 
(h) y = 5 In 2 1x + 4 Jn 37x. 
(i) y = In Vx6 + 1 .  

I x3 
(j) y = 3 In x3 + I . 
(k) y = In [(3x - 7)4(2x + 5)3] . 

almost impossible to think about mathematics without us
ing Euler's thoughts.* 

*For students who wish to enter into the mind of this great math
ematician and experience some of his most interesting work in num
ber theory at first hand-and in a context not requiring much pre
vious knowledge- we recommend Chapter VI of G. Polya's fine 
book, Induction and Analogy in Mathematics (Princeton University 
Press, 1954). 

5 Integrate each of the following: 

f dx 
J 

x dx  
(a) 3x + 1 ; (b) 3x2 + 2 ; 

(c) J 
3x2

x+ 
2 dx; (d) J 

x : 1 dx; 

f x dx (e) �; 

f x dx (g) 3 - 2x2 ; 
(i) J ln: dx ; 

f x 
dx 

(f) x2 + 1 ' 

(h) f (2x - I )  dx. x(x - 1 ) ' 

(j) f dx x ln x ; 

(k) f dx 
; Yx (Yx + 1 )  

(I) f :: � :=: dx. 

6 If e is a positive constant, show that the equation ex + 
In x = 0 has exactly one solution. Hint: Sketch the graph 
of y = ex + ln x with special attention to the behavior of 
dy/dx. 

7 Show that the equation x = ln x has no solution 
(a) by minimizing y = x - In x; 
(b) geometrically, by considering the graphs of y = x and 

y = ln x. 
8 Find the length of the curve y = tx2 - ± ln x between 

x = l and x = 8 .  
9 Sketch the graph of y = x2 - 1 8  ln x. Locate all max

ima, minima, and points of inflection. 
10 The area under y = e-x from x = 0 to x = ln 3 is re

volved about the x-axis. Find the volume generated in 
this way. 

1 1  The area under y = l /Yx from x = 1 to x = 4 is revolved 
about the x-axis . Find the volume generated in this way. 

1 2  Show that the area under y = llx from x = a to x = b 
(0 < a <  b) is the same as the area under this curve from x = ka to x = kb for any k > 0. 

1 3  Prove that 

l . ln x 0 1m -- =  
x-+oo X 

by first showing that for x > I 
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In x = (x dt 
:s 

(x _!!!___ 
= 2(Vx - 1 ) .  ) , t ) , Vt 

Hint: Compare the graphs of y = l it and y = I /Vt for 
t 2: I . 

1 4  Use the result of Problem 1 3  to show that 

Jim x In x = 0. x�o+ 
Hint: Change the variable to u = l lx. 

I S  Use the result of Problem 14 to sketch the graph of y = 
x In x for all x > 0. Locate its minimum and verify that 
the graph is concave up everywhere. 

1 6  Sketch the graph of y = (In x)/x for all x > 0, and locate 
its maximum and point of inflection. 

1 7  The speed at which a signal i s  transmitted along a cable 
on the bottom of the ocean is proportional to x2 ln l /x, 
where x is the ratio of the radius of the core of the cable 
to the radius of the entire cable. What value of x maxi
mizes the speed of transmission? 

1 8  Logarithmic differentiation is a technique for computing 
the derivative of a function like 

y = V'(x + l )(x - 2)(2x + 7), 

which is fairly complicated but whose logarithm can be 
written in a much simpler form: 

In y = *[In (x + I ) + In (x - 2) + In (2x + 7)] . 

Find dy!dx by differentiating this equation implicitly with 
respect to x. 

1 9  Use the method of Problem 1 8  t o find dyldx if 
- ex(x2 - 1 )  - s� (a) y - Y6x - 2 ' (b) y - {/ ----;-+S· 

20 The method of logarithmic differentiation (see Problem 
1 8) can also be used to differentiate functions like y = 

xx, where both the base and the exponent are variable. 
Thus, we can write 

In y = In xx = x In x, 
or equivalently, 

Find dy/dx from both equations and use this derivative 
to find the minimum value of y = xx for x > 0. Sketch 
the graph. 

21 Use the method of Problem 20 to find dyldx if 
(a) y = xx'; (b) y = efx = x11x. 
Sketch the graph of the function in (b) and find its max
imum value. 

22 In Problem 2 l (b), the behavior of the function y = efx 
for large x shows that 

Jim V1n = I .  n�oo 
Find the limits of the following expressions as n � oo: 
(a) (In n) 11" ; (b) (n In 11) 1111 ; 
(c) Cnn n r'; (d ) (; r·. 

23 Obtain the limit formula limx->O ( 1  + x) 11x = e by using 
the fact that 

( I + x)llx = eln( l +x)lx = elln( l +x)-ln l ]/x. 
24 If a is a positive number, show that 

ax - 1 Jim --- = In a. x->0 X 
Hint: The limit is a value of a certain derivative. 

25 Show that 
lim n(Va - 1 )  = In a. n->� 

Hint: Put x = lln in Problem 24. 

As we emphasized in Section 8 . 1 ,  our main purpose in this chapter is to develop 
the mathematical machinery that is necessary for treating a variety of related ap
plications. This machinery is now in  place, and the time has come to see what it 
can do. 

8 . 5 
APPLICATIONS . 
POPULATION GROWTH 
AND RADIOACTIVE 
DECAY 

Example 1 Population growth. Consider a laboratory culture of bacteria with 
unlimited food and no enemies. If N = N(t) denotes the number of bacteria pre
sent at time t, it is natural to assume that the rate of change of N is proportional 
to N itself.* If the number of bacteria present at the beginning is N0, and this 
number doubles after 2 hours (the "doubling time"), how many are there after 6 
hours? After t hours? 

*Briefly, we expect twice as many "births" in a given short interval of time when twice as many bac
teria are present. 
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Solution Even though bacteria come in units and are not continuously divisi
ble, there are so many present, and they are produced at such tiny time intervals, 
that it is reasonable to treat N(t) as a continuous, even differentiable, function. 
The assumed law of growth tells us that 

or, separating variables, 

Integration yields 

dN = kN dt (k > 0), 

dN 
li = k dt. 

In N = kt +  c. 

( I )  

(2) 

To determine the value of the constant of integration c, we use the fact that ini
tially (at t = 0) we have N = N0. Thus, in equation (2) we have ln No = 0 + c 
or c = In N0, so (2) becomes 

In N = kt + In N0 

or 

In N - In No = kt, N In No 
= kt, 

and therefore 

N - = ek' 
No ' 

To find k we use the fact that the population doubles in 2 hours. This gives 

so (3) becomes 

e2k = 2, 2k = In 2, 

N = Noe(t In 2)12, 

k = t In 2, 

(3) 

(4) 

which gives the population after t hours. Finally, putting t = 6 in (4) gives N = 

N0e31" 2 = N0e1" 8 = SN0, so the population increases by a factor of 8 in 6 hours. 

The situation just described is another example of exponential growth. This 
type of growth is characterized by a function of the form (3) where the constant 
k is positive. 

Example 2 Radioactive decay. After 3 days, 50 percent of the radioactivity 
produced by a nuclear explosion has disappeared. How long does it take for 99 
percent of this radioactivity to disappear? 

Solution We assume for the sake of simplicity that the radioactivity is entirely 
due to a single radioactive substance. This substance undergoes radioactive de
cay into nonradioactive substances by means of the spontaneous decomposition 
of its atoms, at a steady rate that is a characteristic property of the substance it
self. Each such decomposition is accompanied by a small burst of radiation, and 
these bursts are detected and counted by Geiger counters. We are not concerned 
here with the inner complexities of these remarkable events, but only with the 
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fact that the rate of change of the mass of our substance is negative and is pro
portional at each moment to the mass of the substance at that moment. * This 
statement means that if x = x(t) is the mass of the radioactive substance at time 
t, then 

dx - = -kx 
dt (k > 0), (5) 

where the minus sign says that x is decreasing. The positive constant k is called 
the rate constant; it clearly measures the speed of the decay process. As before, 
we separate the variables and integrate, 

dx 
- = -k dt, x In x = -kt + c. (6) 

If x0 is the amount of the substance produced by the explosion, so that x = x0 
when t = 0, then we see that c = ln x0, so (6) becomes 

In x = - kt + In xo 
or 

In x - In x0 = -kt, 

and consequently 

In � =  -kt Xo , 

(7) 

In principle at least, x is never zero, because the exponential e-kr never vanishes. 
It is therefore inappropriate to speak of the "total lifetime" of a radioactive sub
stance. However, it is both convenient and customary to use the concept of half
life: The half-life of a radioactive substance is the time required for the substance 
to decay to half its original amount (Fig. 8 .8). If we denote the half-life by T, 
then (7) yields ±xo = x0e-kT, so ekT = 2 and 

kT = In 2. (8) 

x 

This equation relates the half-life to the rate constant k, and enables us to find i 2 Xo 
either if the other is known. 

In the specific problem we started with, 50 percent of the radioactivity disap-
pears in 3 days. This tells us that the half-life of the substance is 3 days, so by T 

(8) we see that 3k = ln 2 or k = t ln 2; and in this particular case, (7) becomes Figure 8.8 

x = xoe-(t ln 2)13. 
The disappearance of 99 percent of the radioactivity means that 1 percent re
mains, and therefore x = 1boXo. This happens when t satisfies the equation 

i�Xo = xoe-<1 tn 2)13, 
which is equivalent to 

e(l ln 2)/3 = 100 or 
1 I� 2 = In 100. 

Finally, by using tables of natural logarithms (or a calculator) we find that 

•Thus, if the mass of our substance were doubled, we would expect to lose twice as many atoms by 
decomposition in a given short interval of time. 
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t = 3 In J OO 
_ 6 In 10 

= 20 d 
In 2 - In 2 - ays. 

It should be understood that this example is greatly oversimplified, because an 
actual nuclear explosion produces many different radioactive by-products with 
half-lives varying from a fraction of a second to many years. Thus polonium 2 1 2  
(3 ten-millionths of a second) and krypton 9 1  ( 1 0  seconds) would disappear al
most immediately, whereas strontium 90 (28 years) l ingers for decades and con
tributes substantially to the dangers of nuclear fallout.* 

The situation just discussed is an example of exponential decay. This phrase 
refers only to the form of the function (7) and the manner in which the quantity 
x diminishes, and not necessarily to the idea that something is disintegrating. 

Remark The concepts explained in Example 2 are the basis for a scientific tool 
of fairly recent development which has been of great significance for geology 
and archaeology. In essence, radioactive elements occurring in nature (with known 
half-lives) can be used to assign dates to events that took place from a few thou
sand to a few billion years ago. For example, the common isotope of uranium 
(uranium 238) decays through several stages into helium and an isotope of lead 
(lead 206), with a half-life of 4 .5  billion years. When rock containing uranium 
is in a molten state, as in lava flowing from the mouth of a volcano, the lead ere-· 
ated by this decay process is dispersed by currents in the lava; but after the rock 
solidifies, the lead is locked in place and steadily accumulates alongside the par
ent uranium. A piece of granite can be analyzed to determine the ratio of lead to 
uranium, and this ratio permits an estimate of the time that has elapsed since the 
critical moment when the granite crystallized. Several methods of age determi
nation involving the decay of thorium and the isotopes of uranium into the var
ious isotopes of lead are in current use. Another method depends on the decay 
of potassium into argon, with a half-life of 1 .3 billion years; and yet another, pre
ferred for dating the oldest rocks, is based on the decay of rubidium into stron
tium, with a half-life of 50 billion years. These studies are complex and suscep
tible to errors of many kinds; but they can often be checked against one another, 
and are capable of yielding reliable dates for many events in geological history 
linked to the formation of igneous rocks. Rocks tens of millions of years old are 
quite young, ages ranging into hundreds of millions of years are common, and 
the oldest rocks yet discovered are upward of 3 billion years old. This of course 
is a lower limit for the age of the earth's crust, and so for the age of the earth it
self. Other investigations, using various types of astronomical data, age determi
nations for minerals in meteorites, and so on, have suggested a probable age for 
the earth of about 4.5 billion years. t 

These radioactive elements decay so slowly that the methods of age determi
nation based on them are not suitable for dating events that took place relatively 

*For students who have not met these ideas before, the number following the name of each of the 
chemical elements mentioned is the mass number ( = total number of protons and neutrons in the nu
cleus) of the particular isotope referred to. For example, strontium as it occurs in nature has four sta
ble isotopes of mass numbers (in the order of their abundance) 88, 86, 87, 84. Several unstable iso
topes are produced in nuclear reactions, of which strontium 90 is the best known. 
tFor a full discussion of these matters, as well as many other methods and results of the science of 
geochronology, see F. E. Zeuner, Dating the Past, 4th ed. (Methuen, 1958). 



8.5 APPLICATIONS. POPULATION GROWTH AND RADIOACTIVE DECAY 

recently. This gap was filled by Willard Libby's discovery in the late 1 940s of 
radiocarbon, a radioactive isotope of carbon (carbon 14) with a half-life of about 
5600 years. By 1 950 Libby and his associates had developed the technique of 
radiocarbon dating, which added a second hand to the slow-moving geological 
clocks just described and made it possible to date events in the later stages of the 
ice age and some of the movements and activities of prehistoric people. The con
tributions of this technique to late Pleistocene geology and archaeology have been 
spectacular. 

In brief outline, the facts and principles involved are these. Radiocarbon is pro
duced in the upper atmosphere by the action of cosmic ray neutrons on nitrogen. 
This radiocarbon is oxidized to carbon dioxide, which in tum is mixed by the 
winds with the nonradioactive carbon dioxide already present. Since radiocarbon 
is constantly being formed and constantly decomposing back into nitrogen, its 
proportion to ordinary carbon in the atmosphere has long since reached an equi
librium state. All air-breathing plants incorporate this proportion of radiocarbon 
into their tissues, as do the animals that eat these plants. This proportion remains 
constant as long as a plant or animal lives; but when it dies it ceases to absorb 
new radiocarbon, while the supply it has at the time of death continues the steady 
process of decay. Thus, if a piece of old wood has half the radioactivity of a liv
ing tree, it lived about 5600 years ago, and if it has only one-fourth this ra
dioactivity, it lived about 1 1 ,200 years ago. This principle provides a method for 
dating any ancient object of organic origin, for instance, wood, charcoal, veg
etable fiber, flesh, skin, bone, or horn. The reliability of the method has been ver
ified by applying it to the heartwood of giant sequoia trees whose growth rings 
record 3000 to 4000 years of life, and to furniture from Egyptian tombs whose 
age is also known independently. There are technical difficulties, but the method 
is now felt to be capable of reasonable accuracy as long as the periods of time 
involved are not too great (up to about 50,000 years). 

Radiocarbon dating has been applied to thousands of samples, and laborato
ries for carrying on this work number in the dozens. Among the more interest
ing age estimates are these: linen wrappings from the Dead Sea scrolls of the 
Book of Isaiah, recently found in a cave in Palestine and thought to be first or 
second century B.C. ,  1 9 1 7  :±: 200 years; charcoal from the Lascaux cave in south
ern France, site of the remarkable prehistoric paintings, 1 5 ,5 1 6  :±: 900 years; char
coal from the prehistoric monument at Stonehenge, in southern England, 3798 
:±: 275 years; charcoal from a tree burned at the time of the volcanic explosion 
that formed Crater Lake in Oregon, 645 3  :±: 250 years. Campsites of ancient peo
ple throughout the western hemisphere have been dated by using pieces of char
coal, fiber sandals, fragments of burned bison bone, and the like. The results sug
gest that human beings did not arrive in the New World until about the period of 
the last Ice Age, some 1 1 ,500 years ago, when the level of the water in the oceans 
was substantially lower than it now is and they could have walked across the 
Bering Straits from Siberia to Alaska.* 

*Libby won the 1 960 Nobel Prize for chemistry as a consequence of the work described here. His 
own account of the method, with its pitfalls and conclusions, can be found in his book Radiocarbon 
Dating, 2nd ed. (Univ. of Chicago Press, 1 955). 

28 1 
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PROBLEMS 

1-1 1 l!!!!I The bacteria in a certain culture increase according to 
the Jaw dN!dt = kN. If N = 2000 at the beginning and 
N = 4000 when t = 3, find (a) the value of N when t = I ;  and (b) the value of t when N = 48,000. 

2 If the rate of increase of the population of a country is 3 
percent per year, by what factor does it increase every 
1 0  years? What percentage increase will double the pop
ulation every 10 years? 

3 Sleepyville has 5 times the population of Boomtown. The 
first is growing at the rate of 2 percent per year, and the 
second at 1 0  percent per year. In how many years will 
they have equal populations? 

4 It is often assumed that t acre of land is needed to pro
vide food for one person. It is also estimated that there 
are I 0 billion acres of arable land in the world, and there
fore a maximum population of 30 billion people can be 
sustained if no other sources of food are known. The to
tal world population at the beginning of 1 970 was 3.6 
billion. Assuming that the population continues to in
crease at the rate of 2 percent per year, when will the 
maximum population be reached? What will be the pop
ulation in the year 2000? 

5 The half-life of radium is 1 620 years. What percentage 
of a given quantity of radium will remain after 1 00 years? 

6 Cobalt 60, with a half-life of 5.3 years, is extensively 
used in medical radiology. How long does it take for 90 
percent of a given quantity to decay? 

7 In a certain chemical reaction a compound C decomposes 
at a rate proportional to the amount of C that remains. It 
is found by experiment that 8 g of C diminish to 4 g in 
2 hours. At what time will only 1 g be left? 

8 "A fool and his money are soon parted." One particular 
fool loses money in gambling at a rate (in dollars per 
hour) equal to one-third of the amount he has at any given 
time. How long will it take him to lose half of his orig
inal stake? 

9 A cylindrical tank of radius 4 ft and height 1 0  ft, with 
its axis vertical, is full of water but has a small hole in 
the bottom. Assuming that water squirts out of the hole 
at a speed proportional to the pressure at the bottom of 
the tank, and that one-fifth of the water leaks out in the 
first hour, find a formula for the depth of the water left 
in the tank after t hours. 

10 According to Lambert 's law of absorption, the percent
age of incident light absorbed by a thin layer of translu
cent material is proportional to the thickness of the layer. 
If sunlight falling vertically on ocean water is reduced to 
one-half its initial intensity /0 at a depth of 10  m, show 
that the formula 

I =  Ioe-<x In 2)/10 

gives the intensity I at a depth of x meters. 

1 1  According to Newton 's law of cooling, a body at tem
perature T cools at a rate proportional to the difference 
between T and the temperature of the surrounding air. A 
vat of boiling soup at 1 00°C is brought into a room where 
the air is 20°C, and is left to cool. After 1 hour its tem
perature is 60°C. How much additional time is required 
for it to cool to 30°C? 

1 2  Consider a column of air of cross-sectional area 1 in2 ex
tending from sea level up to "infinity." The atmospheric 
pressure p at an altitude h above sea level is the weight 
of the air in this column above the altitude h. Assuming 
that the density of the air is proportional to the pressure 
(this is a consequence of Boyle's law pV = k at constant 
temperature), show that p satisfies the differential equa
tion 

dp 
dh = -cp, 

where c is a positive constant, and deduce that 

p = Poe-ch, 

where Po is the atmospheric pressure at sea level. Hint: 
If h increases by a small amount dh and dp is the corre
sponding change in p (see Fig. 8.9), then -dp is the 
weight of the air in the small portion of the column whose 
height is dh; and this weight is the density times the vol
ume, so -dp = (cp)( l  · dh). 

h 

Figure 8.9 

13  The radiocarbon in living wood decays a t  the rate of 
1 5 .30 disintegrations per minute (dpm) per gram of con
tained carbon. Using 5600 years as the half-life of ra
diocarbon, estimate the age of each of the following spec
imens discovered by archaeologists and tested for 
radioactivity in 1 950: 
(a) a piece of a chair leg from the tomb of King Tu

tankhamen, 10 . 1 4  dpm; 
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(b) a piece of a beam of a house built in Babylon dur
ing the reign of King Hammurabi, 9.52 dpm; 

(c) dung of a giant sloth found 6 ft 4 in under the sur
face of the ground inside Gypsum Cave in Nevada, 
4. 17  dpm; 

(d ) a hardwood atlatl (spear-thrower) found in Leonard 
Rock Shelter in Nevada, 6.42 dpm. 

14 Suppose that two chemical substances in solution react 
together to form a compound. If the reaction occurs by 
means of the collision and interaction of the molecules 
of the substances, then we expect the rate of formation 
of the compound to be proportional to the number of col
lisions per unit time, which in tum is joint! y proportional 
to the amounts of the substances that are untransformed. 
A chemical reaction that proceeds in this manner is called 
a second-order reaction, and this law of reaction is of
ten referred to as the law of mass action. t Consider a sec
ond-order reaction in which x grams of the compound 
contain ax grams of the first substance and bx grams of 
the second, where a + b = 1 .  If there are aA grams of 
the first substance present initially, and bB grams of the 
second, then the law of mass action says that 

dx dt = k(aA - ax)(bB - bx) = kab(A - x)(B -x). 

If A =I= B, show that 

B(A - x) 
= ekab(A-B)r 

A(B - x) 

provides a solution for which x = 0 when t = O.* Hint: 
Take the logarithm of both sides and differentiate with 
respect to t. 

15 In Problem 14, find lim,__.� x(t) 
(a) by solving equation ( *) for x as an explicit function 

of t and using this function; 
(b) by merely inspecting equation (*). 

16 A switch is suddenly closed in an electric circuit, con
necting a battery of voltage E to a resistance R and in
ductance L in series (Fig. 8 . 10) .  The battery causes a vari
able current I =  l(t) to flow in the circuit. By elementary 

tfor a first-order reaction, see Problem 7. 
*In Chapter 1 0  we develop a method for discovering this solution. 

physics, the voltage drop across the resistance is RI and across 
the inductance is L dl/dt, and the sum of these two voltage 
drops must equal the applied voltage £: 

L 
di

+ RI = E § dt . 

By separating the variables and integrating, and using the 
fact that I = 0 when t = 0, find the current I as a func
tion of t. Graph this function. 

Figure 8.1 0  

17  Consider a given quantity of gas that undergoes an adi
abatic expansion or compression, which means that no 
heat is gained or lost during the process. The French sci
entist Poisson showed in 1 823 that the pressure and vol
ume of this gas satisfy the differential equation 

dp + 'Y dV = O p v , 

where y is a constant whose value depends on whether 
the gas is monatomic, diatomic, etc.'ll I ntegrate this equa
tion to obtain 

pVY = c. 

This is called Poisson 's gas equation or the adiabatic gas 
law, and is of fundamental importance in meteorology. 

§Students who are unfamiliar with electric circuits may find it help
ful to think of the current I as analogous to the rate of flow of water 
in a pipe. The battery plays the role of a pump producing pressilte 
(voltage) that causes the water to flow. The resistance is analogous to 
friction in the pipe, which opposes the flow by producing a drop in 
the pressure; and the inductance opposes any change in the flow by 
producing a drop in pressure if the flow is increasing, and an increase 
in pressure if the flow is decreasing. 
1for more details on the physical background, see pp. 275-276 of 
R. A. Millikan, D. Roller, and E. C. Watson, Mechanics, Molecular 
Physics, Heat, and Sound (The M. l .T. Press, 1 965). 

As the reader is certainly aware, the problem of realistically analyzing the growth 
of a population is not adequately dealt with in Example 1 of Section 8.5. The 
difficulty with this discussion is that the basic equation, 

8 . 6  
MORE APPLICATIONS . 
INHIBITED 
POPULATIO N  
GROWTH, etc. 

dN = kN dt (k > 0), 

describes only the simplest ideal situation, in which the inner impulse of the pop
ulation to expand is given a completely free rein; it does not take into account 
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any of the inhibiting factors that put a ceiling on the possible size of a real pop
ulation. It is obvious, for example, that the human population of the earth can 
never expand to the stage where there will be only a small fraction of an acre of 
usable land per person. Long before the point is reached at which the whole sur
face of the earth becomes a teeming slum, the rate of population growth will be 
forced down; social, psychological, and economic effects will depress the 
birthrate, and there will also be an increase in the death rate due to the starva
tion, disease, and warfare that are the inescapable companions of overpopulation. 
In our next example we try to recognize some of these factors, and thereby mir
ror reality a little more closely. 

Example 1 Inhibited population growth. Consider a small colony of rabbits of 
population No that is "planted" at time t = 0 on a grassy island where they have 
no enemies. When the population N = N(t) is small, it tends to grow at a rate 
proportional to itself; but when it becomes larger, there is more and more com
petition for the limited food and living space, and N grows at a smaller rate. If 
N1 is the largest population the island can support, and if the rate of growth of 
the population N is assumed to be jointly proportional to N and to N1 - N, so 
that 

find N as a function of t. 

dN = kN(N - N) dt I (k > 0), ( I )  

Solution It should be noticed explicitly at the outset that N increases slowly 
that is, dN!dt is small-when N is small, and also when N is large but close to 
Ni , so that N1 - N is s mall . To solve ( 1 ), we separate variables and integrate, 

f N(N�N_ N) = f k dt. (2) 

The calculation of the integral on the left side of (2) requires the easily verified 
algebraic fact that 

I = _I_ (_!_ + _I_) 
N(N1 - N) N1 N N1 - N . 

With the aid of (3), we can write (2) in the form 

which yields 

or 

_I (J dN + J ___:!!!____) = J k dt, 
N1 N N1 - N  

I - [In N - In (N1 - N)]  = kt + c 1 N1 

I N N; In 
Ni _ N 

= kt +  c 1 •  

If we multiply through by  Ni ,  this becomes 

N In 
Ni _ N 

= N 1 kt + c, 

(3) 
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where c = N1c1 •  Since N = No when t = 0, we see that c = ln [Nof(N1 - N0)], 
so we have 

N No In --- = N1kt + ln N " , N, - N I - lYO 
whjch is equivalent to 

We solve this equation for N by writing 

and 

N(N, - No) = NoN1eN,kt - NNoeN,kr, 
N[NoeN,kr + (N1 - No) ]  = NoN1eN,kr, 

NoN1eN,k1 N = -���---
NoeN,kt + (N1 - No) . 

We can write this in a more convenient form, and thereby obtain our final result, 
by multiplying the numerator and denominator on the right by e-N,kt: 

N =  NoN1 
No + (N1 - No)e-N,kr . (4) 

It should be observed that (4) gives N = No when t = 0, and also that N � N1 
as t � oo, as we expect. The graph of ( 4) is shown in Fig. 8 . 1 1 . In ecology and 
mathematical biology this curve is called the inhibited growth curve, or some
times the sigmoid growth curve. 

In Example 1 of Section 5.5, we discussed the idealized problem of a freely 
falling body, in which we ignored the effect of air resistance and assumed that 
the only force acting on the body was the force of gravity. We are now in a po
sition to improve our discussion of this problem by talcing air resistance into ac
count. 

Example 2 Falling body with air resistance. Consider a stone of mass m that 
is dropped from rest from a great height in the earth's  atmosphere. If the only 
forces acting on the stone are the earth's  gravitational attraction mg (where g is  
the acceleration due to gravity, assumed to be constant) and a retarding force due 
to air resistance, which is assumed to be proportional to the velocity v, find v as 
a function of the time t. 

Solution Let s be the distance the stone falls in time t, so that the velocity v = 
ds/dt and the acceleration a = dvldt = d2s!dt2. There are two forces acting on 
the falling stone, a downward force mg due to gravity, and an upward force kv 
due to air resistance, where k is a positive constant. Newton's second law of mo
tion F = ma says that the total force acting on the stone at any moment equals 
the product of its mass and its acceleration. With our assumptions, the equation 
ma = F becomes 

dv 
m - = mg - kv dt ' 

285 

N 

Figure 8. 1 1  
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or dividing through by m, 

du dt = g - CV, (5) 

where c = k/m. We solve (5) by separating variables and integrating, which gives 

or 

f� - f dt g - CV 

1 
-- In (g - cv) = t + c 1 ;  c 

and by changing the notation for constants in a familiar way, we can write this 
in the form 

In (g - cv) = -ct + c2 
or 

(6) 
The initial condition v = 0 when t = 0 tells us that c3 = g, so (6) becomes 

g - cu = ge-ct 
or 

(7) 

Since c is positive, this formula tells us that v� glc as t � oo. It is a surprising 
fact that the velocity of our falling stone does not increase indefinitely, but in
stead approaches a finite limiting value. This limiting value of v is called the ter
minal velocity. If we differentiate (7), we find that the acceleration i s  given by 
the formula a = ge-c1, so a �  0 as t � oo . From the physical point of view, this 
means that as time goes on the air resistance tends to balance out the force of 
gravity, so that the total force acting on the stone approaches zero. 

Our next example is typical of many problems involving continuously chang
ing mixtures. 

Example 3 Mixing. Brine containing 2 lb of salt per gallon flows into a tank 
that initially holds 200 gal of water in which 1 00 lb of salt are dissolved. If the 
brine enters the tank at the rate of 1 0  gal/min, and if the mixture (which is kept 
uniform by stirring) flows out at the same rate, how much salt is in the tank af
ter 20 minutes? After 100 minutes? 

Solution Let x be the number of pounds of salt in the tank after t minutes. The 
key to thinking about this problem is the following fact: 

rate of change of x = rate at which salt enters tank - rate at which salt leaves tank. (8) 
It is clear that salt enters the tank at the rate of 2 · 1 0  = 20 lb/min. The concen
tration of salt at any time is x/200 lb/gal, so the rate at which it leaves the tank 
is (x/200) · 1 0  = x/20 lb/min. Accordingly, (8) becomes 

dx = 20 - � = 400 -x dt 20 20 . 
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By the familiar process of separating variables and integrating, and using the ini
tial condition x = 100 when t = 0, we obtain 

X = 400 - 300e-tlW (9) 
(As usual when we omit computational details, students should carry these de
tails through for themselves.) By  using a calculator, we now find that x = 289.7 
when t = 20, and that x = 398.0 when t = 100. Also, it is obvious from (9) that 
x �  400 as t �  °"· 

PROBLEMS 

1 In Example I ,  what is the population when its rate of 
growth is largest? 

2 In a genetics experiment, 50 fruit flies are placed in a 
glass jar that will support a maximum population of I 000 
flies. If 30 days later the population has grown to 200 
flies, when will the fly population reach half of the jar's 
capacity? 

3 Let x be the number of people in a community of total 
population x1 who have heard a certain rumor t days af
ter the rumor was launched. Common sense suggests that 
the rate of increase of x, that is, the rate at which this ru
mor spreads through the community, is proportional to 
the frequency of contact between those who have heard 
the rumor and those who have not, and this in tum is 
jointly proportional to the number of people who have 
heard the rumor and the number of those who have not. 
This yields the differential equation 

dx 
dt = cx(x1 - x), 

where c is a constant expressing the level of social ac
tivity. If the rumor is initially imparted to x0 individuals 
(x = x0 when t = 0), find x as a function of t. Use this 
function to show that x � x1 as t � oo. Sketch the graph. 

4 Rework Example 2 under the more general assumption 
that the initial velocity is v0. Show that the terminal ve
locity is still g/c, and therefore does not depend on v0. 
Convince yourself that this is reasonable. 

S A motorboat moving in still water is resisted by the wa
ter with a force proportional to its velocity v. Show that 
the velocity t seconds after the power is shut off is given 
by the formula v = v0e-c1, where c is a positive constant 

and v0 is the velocity at the moment the power is shut 
off. Also, if s is the distance the boat coasts in time t, 
find s as a function of t and sketch the graph of this func
tion. Hint: Use Newton's second law of motion. 

6 Consider the situation described in Problem 5, with the 
difference that the resisting force is proportional to the 
square of the velocity v. Find v and s as functions of t, 
and sketch the graph of the latter function. 

7 By the result of Problem 5, the distance s approaches a 
finite limit as t increases; but in Problem 6 this distance 
becomes infinite. Because the resisting force seems to be 
greater in the second case, we would expect the distance 
traveled to be less than in the first case. Explain this 
seeming contradiction. 

8 A tank initially contains 400 gal of brine in which 100 
lb of salt are dissolved. Pure water is run into the tank 
at the rate of 20 gal/min, and the mixture (which is kept 
uniform by stirring) is drained off at the same rate. How 
many pounds of salt remain in the tank after 30 minutes? 

9 Rework Problem 8 if instead of pure water, brine con
taining -fa- lb of salt per gallon is run into the tank at 20 
gal/min, the mixture being drained off at the same rate. 

10 A country has 5 billion dollars of paper money in circu
lation. Each day 30 million dollars is brought into the 
banks for deposit and the same amount is paid out. Be
cause of a change of regime, the government decides to 
issue new paper money displaying pictures of different 
people, so whenever the old money comes into the banks 
it is destroyed and replaced by the new money. How long 
wil l  it take for the paper money in circulation to become 
90 percent new? 

CHAPTER 8 REVIEW: CONCEPTS, FORMULAS 

Define and think through the following. 

1 Exponential and logarithm functions. 
2 Definition of e. The exponential function y = ex. 

d du J 3 dx eu = eu dx and eu du = eu + c. 

4 The natural logarithm function y = In x. 
d I du J du 

S - In u = - - and - = In u + c. dx u dx u 
6 Exponential growth and decay. 
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ADDITIONAL PROBLEMS FOR CHAPTER 8 
SECTION 8 .3  
In Problems 1 -6, find the derivative dyldx of the given func
tion. 

1 y = e�. 2 y = ( I _ e3x)2. 
3 y = ex'-2x+ 1 .  4 y = (e4x _ 3)3 . 
s y = e...r; + w. 6 y = Ye2x + 2x. 

Evaluate the integrals in Problems 7-1 1 . 

7 f e-3x dx. 8 f eax+b dx. 
f ellx dx 9 2 . x 

1 1  
* 1 2 Find the area between y = e x and the chord y = ex -x + L 
1 3  Find the point on the graph of y = eax at which the tan

gent line passes through the origin. 
1 4  Evaluate the following limits: 

(a) Jim ( 1 + -4 I 
2 )
411 +9; n---too n + 

(b) lim ( I + l_)n-\ n---too n 
(d ) lim ( 1 + -31 )11; n----t00 n 

( 1 )311 (c) lim I + - ; 11---too n 
( 1 )211 (e) lim I + -2 2 . n---too n 

15 Verify that y = ex' is a solution of the differential equa
tion y" - 2xy' - 2y = 0 .  

1 6  Verify that y = (e2x - l )l(e2x + I )  is a solution of the 
differential equation dyldx = I - y2. 

1 7  The area under y = e x  from x = 0 to x = 3 is revolved 
about the x-axis. Find the volume generated in this way. *1 8 Prove that for all x > 0 and all positive integers n, 

x2 x3 x" ex > I + x + - + - + · · · + -2 !  3 !  n ! ' 

where the symbol n !  (read "n factorial") denotes the 
product I · 2 · 3 · · · n. Hint: Since e1 > I for t > 0, 

ex = l + J: e1 dt > 1 + J: dt = I + x, 
ex = I + J: e1 dt > I + J: ( I  + t) dt 

and so on. 

x2 = I  + x + 2, 

*19 If n is any given positive integer, prove that ex > x" for 
all sufficiently large values of x. Hint: Use Problem 1 8  
for n + I .  

'�20 Prove that 

for any positive integer n. 
*21 If n is a positive integer, show that y = x11e-x assumes 

its maximum value at x = n, so that its values at x = 
n - 1 and x = n + I are less than the maximum. Use 
this fact to show that 

-- < e <  -- . (n + 1 )" ( n )" 

n n - 1 ' 
and use this in turn to show that 

( I )" ( 1 )"+ I  l + -;:;- < e <  1 + -;:;-

for every n. When n = 5, the second inequality here 
yields e < 3 . Verify this. 

SECTION 8.4 
22 Find dyldx in each case: 

(a) y = x In x2 - 2x; (b) y = I In (x2 + 2x); 
(c) y = x2 In x; (d ) y = In (5x4 - 7x3 + 3); 

In x (e) y = -2 ; (f) y = In x5; x 
(g) y = (In x)5; 
(i) y =  �-

I (h) y = - ; In x 
23 Find dyldx in each case: 

(a) 3x - y2 + In xy = I ;  x 
(b) x2 + In - + 3y + 2 = 0. y 

24 Find dyldx in each case: 
(a) y = In Vx; (b) y = In x Vx; 
(c) y = In ( �:: �} (d ) y = In Y2x3 - 4x; 
(e) y = In (x + 1 )5; (f ) y = In (x2Yx4+!); 

x (g) y = ln �; 

(h) y = In '-Y6x2 + 3x; 

(i) y = ln �; 

(j) y = In ( �); 
I + 1 + x2 

(k) y = x W-=-3 - 3 In (x + W-=-3); 
I (2 + Yx2+4 ) (I) y = - 2 In x . 
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25 Integrate each of the following: 

26 

f dx J dx 
(a) 1 + 2x ; (b) l - 3x

; 

( ' x2 dx 
(c) Jo 2 - x3 ' 

(6 x dx 
(e) Jo x + 3 '  

(g) 

(i) 

(k) 

(m) 

(o) 

r xl/3 dx 
o I + 3x413 ' r ln (x +  l ) dx . 
o x + I  ' 

J ex dx 
ex + I ' 

J (In x;2 dx ; 

J In (In x) dx . 
x In x ' 

(3 x dx 
(d ) Jo x2 + I ; 

(f) f '�; xv ln x 

(h) f x dx 
I - x2 ; 

( ' ) f (2x - I) dx . J 
3x2 - 3x + 7 '  J (2x + 3) dx (I) (x + l )(x + 2) ; 

(n) J In� dx;  

(p) J � In (�) dx. 

If p is a positive constant, show that 

lim 
In x = 0. 

x�oo xP 

Hint: Replace x by the variable y = xP. 
27 If a and b are positive constants, show that 

Jim 
(In x)a = 0. 

x-->� .x1> 
28 In Problem 27, find the largest value of 

(In x)0 y = -----;;- for x 2: I .  

29 If a is a positive constant, find the length of the curve 

x2 a y = - - - ln x  2a 4 
between x = I and x = 2. For what value of a is this 
length a minimum? 

30 If a and b are positive constants, find the length of the 
curve 

1. = (�)2 _ _l (a2 ) In � 
b a 8 b2 a 

from x = a to x = 3a. 
31 Use the fact that a = e10 a to find dy/dx in each of the 

following cases: 
(a) y = I OX; (b) y = Y; 
(c) y = �; (d ) y = 73x; 
(e) y = 6x'-2x; (f) y = 5v'X, 

32 Use the idea of Problem 3 1  to integrate each of the fol
lowing: 

(a) Io' 2x dx; (b) Io' 1 0x dx; 
(Yi ' 

(c) ), xrx- dx; (d ) ( 1 
72x- 1 dx· Jo , 

33 

34 

35 

(e) f rx dx; 

(g) L' 5-3x dx; 

(f) J x92x' dx; 

(h) f IO�dx . 

Sketch the graph of y = x2/Y, and locate its maximum 
and two points of inflection. 
(a) In changing logarithms from the base a to the 

base b, one needs the equations logb x = (logb a) · 
(loga x) and (loga b)(logb a) = 1 .  Prove them. 

(b) Compute J 1 
dx . 

x og 1 0 x 
(c) For each choice of the constant a > I ,  show that 

y = (log0 x)lx has a maximum at x = e and a point 
of inflection at x = eVe. Sketch the graph. 

Find dy/dx if 
(a) y = (In xY; 
(c) y = (In x)10 x; 
(e) y = xYx. 

(b) y = xln x; 
(d ) y = xYx; 

SECTION 8.5 
36 The number of bacteria in a culture doubles every hour. 

How long does it take for a thousand bacteria to pro
duce a billion? 

37 The world population at the beginning of 1 970 was 3 .6 
billion. The weight of the earth is 6586 X I 01 8 tons. If 
the population of the world continues increasing at a 
rate of 2 percent per year, and if the average person 
weighs 120 lb, in what year will the weight of all the 
people equal the weight of the earth? 

38 Cesium 137 is used in medical and industrial radiology. 
Estimate its half-life if 20 percent decays in 10 years. 

39 In a certain chemical reaction a substance S decomposes 
at a rate proportional to the amount of S not decom
posed. If 25 g of this substance is reduced to 10 g in 4 
hours, when will 2 1  g be decomposed? 

40 A certain object cools from 1 20°F to 95°F in half an 
hour when surrounded by air whose temperature is 
70°F. Use Newton's law of cooling to find its temper
ature at the end of another half hour. 

41  A cup of coffee is made with boiling water at 2 12°F 
and taken into a room whose air temperature is 72°F. 
After 20 minutes it has cooled to I 00°F. What is its tem
perature after cooling for a full hour? 

42 Assume that the atmospheric pressure p is related to the 
altitude h above sea level by the differential equation 

dp 
dh = -cp, 

where c is a positive constant. If p is 15 lb/in2 at sea 
level and I 0 lb/in2 at I 0,000 ft, find the atmospheric 
pressure at the top of Mount Everest, where h = 30,000 
ft. 
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43 A rocket of total mass m is traveling with velocity v in 
a distant region of space where the force of gravity is 
negligible. Its thrust is provided by burning an appro
priate fuel and expelling the exhaust products backward 
at a constant velocity a relative to the rocket. The mass 
m is therefore variable, and Newton's second law of mo
tion is 

44 

45 

d F = dt (mv), 

which in this case becomes 

(-�7) (a - v) = :t (mv). 

dv dm 
(a) Show that m - = -a  -. dt dt 

dm I 
(b) Use part (a) to show that -d = -- m. v a 
(c) Use part (b) to show that m = m0e- vta if v = 0 and 

m = mo when t = 0. 
(d ) The mass m clearly diminishes as the flight pro

gresses, so the velocity v increases. If m 1 is the mass 
of the initial fuel supply and v is the maximum 
velocity, show that 

v = a  In __ m_o�-mo - m1 
Notice that mo - m 1 is the so-called structural mass 
of the rocket, i .e . , its mass exclusive of fuel. 

The presence of a certain antibiotic destroys a type of 
bacteria at a rate jointly proportional to the number N 
of bacteria and the amount of antibiotic. If there were 
no antibiotic present, the bacteria would grow at a rate 
proportional to their number. Assume that the amount 
of antibiotic is 0 at t = 0 and increases at a constant 
rate. Construct a suitable differential equation for N, 
solve this equation, and sketch the solution. 
Assume for the sake of simplicity that uranium 238 de
cays directly into lead 206 with a half-life of T = 4.5 
billion years. 
(a) If a given quantity of just-solidified volcanic rock 

contains x0 atoms of uranium and no lead, show that 
t years later there are x = x0e-k' atoms of uranium 
and y = x0( 1  - e-kr) atoms of lead, where kT = 
In 2. 

(b) If we can measure the ratio r = ylx in an ancient 
volcanic rock, and if we have reasonable grounds 
for believing that all the lead comes from uranium 
that was locked in the rock when it solidified, then 
we can calculate the age of the rock with a fair de
gree of confidence. Show that this age i s  given by 
the formula 

I T Tr t = - In ( 1  + r) = - In ( I  + r) = -k In 2 ln 2 

when r is small. Hint: Examine the graph of 
In (1 + r) for small values of r. 

(c) In a certain rock, r is found to be 0.082. Show that 
this rock may be about 530 million years old. 

46 In the branch of psychology called psychophysics, an 
attempt is made to establish a quantitative connection 
between the sensation S experienced by a person and 
the stimulus R that causes this sensation, as in the sen
sation of heaviness produced by a weight held in the 
hand. If a small change dR in the stimulus from R to 
R + dR produces a corresponding change dS in the sen
sation, then dS is not proportional to dR. Thus, if a 
weight we hold in our hand is increased from 5 lb to 6 
lb, we detect much more of a difference in heaviness 
than when it is increased from 20 lb to 21 lb. The Fech
ner-Weber law was first formulated by E. H. Weber in 
1 834 and expounded in detail by G. T. Fechner in 1 860, 
and it played a substantial role in early experimental 
psychology through the influence of Wilhelm Wundt. 
This law states that dS is proportional, not to the actual 
amount dR the stimulus is changed, but to the relative 
amount it is changed, 

Find S as a function of R if S = 0 when R = I . 

SECTION 8.6 
47 A flu epidemic hits a city and spreads at a rate jointly 

proportional to the number of people who are infected 
and the number of those who are not. If the number of 
people stricken grows from I 0 percent to 20 percent of 
the population in the first 10 days, how many more days 

*48 
will be required for half the population to be infected? 
Volterra 's prey-predator equations describe an ecolog
ical community of the following kind. On an island with 
plenty of grass, there live x rabbits (the prey) and y foxes 
(the predator). The number of encounters per unit time 
between rabbits and foxes is proportional to the prod
uct xy of their populations. The rabbits tend to increase 
at a rate proportional to their number and to decrease 
at a rate proportional to the product xy. The foxes tend 
to decrease at a rate proportional to their number and 
to increase at a rate proportional to xy. This gives the 
system of differential equations 

dx - = ax - bxy dt , dy = -cy + dxy dt ' 

where a, b, c, d are positive constants. 
(a) Show that x = c/d and y = alb is a solution of the 

system. These are called the equilibrium popula
tions. 
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(b) Show that any solution x = x(t), y = y(t) satisfies 
the equation (xce-dx) (y"e-hY) = k, where k is a pos
itive constant. Hint: Eliminate dt from the system 
by division, separate variables, and integrate. 

(c) Use the equation in part (b) to show that neither x(t) 
nor y(t) can _..,, oo as t � oo. 

49 Consider a falling body of mass m and assume that the 
retarding force due to air resistance is proportional to 
the square of the velocity. If the body falls from rest, 
find a formula for the velocity in terms of the distance 
fallen, and thereby find the terminal velocity in this 
case. Hint: dvldt = (dvlds)(dsldt) = v dv/ds. 

*SO A torpedo is traveling at a velocity of 60 km/h at the 
moment it runs out of fuel. If the water resists its mo
tion with a force proportional to the velocity v, and if 
l km of travel reduces v to 40 km/h, find the distance 
s the torpedo coasts in t hours, and also the total dis
tance it coasts. 

51  Brine containing 1 l b  of salt per gallon flows at the rate 
of J O  gal/min into a tank initially filled with 120 gal of 
pure water. If the concentration is kept uniform by stir
ring, and the mixture flows out at the same rate, when 
will the tank contain 40 lb of salt? When will it contain 
100 lb of salt? 

52 A large tank initially contains 45 lb of salt dissolved in 
50 gal of water. Pure water flows in at the rate of 3 
gal/min, and the mixture (which is kept uniform by stir
ring) flows out at the rate of 2 gal/min. When will the 

tank contain 5 lb of salt? How many gallons of water 
will be in the tank at that time? 

53 An aquarium contains 10 gal of polluted water. A filter 
is attached to this aquarium which drains off the pol
luted water at the rate of 5 gal/h and replaces it at the 
same rate by pure water. How Jong does it take to re
duce the pollution to half its initial level? 

54 Let E be a small positive number. The differential equa
tion 

dN = kNI +< 
dt , 

where k is a positive constant, is called the doomsday 
equation because the "growth term" kN1+< is slightly 
larger than that for normal-or natural-exponential 
growth (that is, kN). 
(a) Solve this equation if N = No when t = 0. 
(b) Show that there is a finite time t = to such that 

N _..,, oo as t _..,, t0. rn (c) The fast-growing population of a certain inhabited 
planet has a growth term kN1 . 1 • If there are 5 bil
lion people initially and 6 bill ion people 10 years 

1--i later, when is doomsday? 
l!!!!J (d) In part (c), when is doomsday if the growth term is 

kN1 .o i and the other conditions are unchanged? (No 
matter how small the positive number E may be, 
there is an inescapable doomsday.) 



9 . 1 
REVIEW OF 

TRIGONOMETRY 

TRIGONOMETRIC 
FUNCTIONS 

We continue the program started in Chapter 8 of extending the scope of our work 
to include broader and broader classes of functions, this time the full range of 
trigonometric functions. In science, we have already pointed out that these func
tions are indispensable tools for the study of periodic phenomena of all kinds, 
ranging from the back-and-forth movement of the bob of a pendulum clock to 
the revolution of the planets in their orbits around the sun. And in mathematics 
-as we shall see in Chapter 10-almost all of the more advanced methods of 
integration lean heavily on the trigonometric functions and their properties. 

We assume that students have studied trigonometry in high school. Also, in 
Section 1 .7 we provided a brief account of a few of the simpler properties of the 
sine and cosine functions. Nevertheless, no matter how well the basic facts have 
been learned, they are easy to forget unless they are needed and used on a day
to-day basis, which they will be through most of the rest of this book. We there
fore devote this section to a review of the subject from the beginning, ignoring 
the fact that students already have a little knowledge of sines and cosines. There 
are a number of fundamental formulas built into this exposition, and these are so 
important for the purposes of calculus that students should relearn them system
atically and thoroughly. Even though our treatment is very concise, it is essen
tially self-contained; and hard-working students who have little previous experi
ence with trigonometry should be able to get along comfortably in the following 
chapters with only what they find in these pages. 

RADIAN MEASURE 

The most common unit for measuring angles is the degree (1 right angle = 90 
degrees = 90°) .  However, the standard unit for angle measurement in calculus is 
the radian. One radian is the angle which, placed at the center of a circle, sub
tends an arc whose length equals the radius (Fig. 9. 1 ,  left). More generally, the 
number of radians in an arbitrary central angle (Fig. 9. 1 ,  center) is defined to be 
the ratio of the length of the subtended arc to the radius, e = sir, so that s = re. 
Since the circumference of the circle is c = 2Trr, a complete central angle of 360° 
is equivalent to 2Trr!r = 2Tr radians. Thus, 
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2TT radians = 360°, 

1 radian = 
1 80 

= 57.296°, 7T 

TT radians = 1 80°, 

1° = 1;0 = 0.0175 radian. 
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8 = I radian 

8 

8 = � radians r 
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Area = t rs = t ,2 8 

Further, 90° = 7T/2, 60° = 1T!3, 45° = 7T/4, and 30° = 7T/6, where we  follow the 
convention of omitting the word "radian" in using radian measure. 

Just as the calculus of logarithms is simplified by using the base e, the calcu
lus of the trigonometric functions is simplified by using radian measure. We will 
point out the specific reason for this in Section 9.2 .  Throughout our work we will 
use radian measure routinely and mention degrees only occasionally. 

It is sometimes useful to know that the area A of the sector whose central an
gle is e (Fig. 9 . 1 ,  right) is given by the formula 

since s = re. This is easy to prove by using the fact that the area of the sector is 
to the area of the circle as the arc s is to the circumference: 

A s 
7rr2 27Tr ' so 1 A =  2rs. 

This is easy to remember by thinking of the sector as if it were a triangle with 
height r and base s. 

THE TRIGONOMETRIC FUNCTIONS 

Consider the unit circle in the .xy-plane (Fig. 9.2). If  e is a positive number, let 
the radius OP start in the position OA and revolve counterclockwise through e 
radians. Thus, e = 7T produces half a revolution and e = 27T produces a complete 
revolution, both counterclockwise. If e is negative, we let OP revolve clockwise 
through - e radians. See Fig. 9 .3 .  In this way, each real number fJ (positive, neg
ative, or zero) determines a unique position of OP in Fig. 9.2, and therefore a 
unique point P = (x, y) with the property that x2 + y2 = 1 .  The sine and cosine 
of e are now defined by 

sin () =  y and cos () =  x. 

It is evident from the definition that - 1 :::; sin e :::; 1 ,  and similarly for cos e; and 

Figure 9.1  

the algebraic signs of these quantities depend on which quadrant of the plane the Figure 9.2 

point p happens to lie in. For every e, the numbers e and e + 2 7T  clearly deter-
mine the same point P, so 

sin ( () + 27r) = sin () and cos ( () + 27r) = cos (). 
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Figure 9.3 

h 
a 

e 

b 
Figure 9.4 

TRIGONOMETRIC FUNCTIONS 

Thus the values of sin () and cos () repeat when () increases by 27T. We express 
this property of sin () and cos e by saying that these functions are periodic with 
period 27T. 

The remaining four trigonometric functions-the tangent, cotangent, secant, 
and cosecant-are defined by 

tan e = 1.., x cot () = �
' y 

I 
sec e = -, x 

I 
csc e = -. 

y 
The sine and cosine are the basic functions, and the others can be expressed in 
terms of these two [see identities ( l )  to (4) below]. 

When () is a positive number < 7T/2, the right triangle interpretations of the 
sine, cosine, and tangent are as follows (see Fig. 9.4): 

sin e = opposite side = !!:.. 
hypotenuse h ' 

cos e = 
adjacent side 

= 
!!._ 

hypotenuse h ' 

e - opposite side - !!:.. 
tan - adjacent side - b · 

We have drawn the right triangle here with base angle equal to the angle () shown 
in Fig. 9.2, and the validity of these statements rests on the similarity of the two 
triangles in the figures (since sin e = y = y/1 ,  etc.). In the equivalent forms 

a =  h sin e, b = h cos e, a =  b tan e, 

the right triangle interpretations have many uses in physics and geometry. Nev
ertheless, the purposes of calculus require that e be an unrestricted real variable, 
and for this reason the unit circle definitions are preferable. 

IDENTITIES 

Several simple relations among our functions are direct consequences of the de
finitions: 
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sin 8 
tan 8 =  --

8
, 

cos 
( 1 )  

cos 8 
cot 8 =  -. -

8
, 

sm 
(2) 

1 
sec 8 =  --

8
, 

cos 
(3) 

1 
csc 8 = -. -8

, 
sm 

(4) 

l (5) tan 8 =  --
8

. 
cot 

Altogether, there are 21 fundamental identities that express the main properties 
of the trigonomeric functions and constitute the core of the subject. These iden
tities fall into several natural groups, and are therefore easier to remember than 
we might expect. We emphasize these groups by enclosing them in boxes. 

Our next identities state the effect of replacing 8 by - 8. From Fig. 9.5 and 
the obvious fact that the endpoints of the two radii lie on the same vertical line 
for all values of 8, we at once have the first two of the identities 

sin (- 8) = - sin 8, 

cos < - 8) = cos 8, 

tan (- 8) = - tan 8, 

The third follows easily from ( 1 )  combined with (6) and (7). * 

(6) 
(7) 
(8) 

Our next group consists of three equivalent versions of the equation x2 + y2 = 

1 .  Before stating these, we must explain that the symbols sin2 8 and cos2 8 are 
standard notations for the numbers (sin 8)2 and (cos 8)2. If we write x2 + y2 = Figure 9.5 

1 in the form y2 + x2 
= 1 ,  then this yields the first of the identities 

sin2 e + cos2 8 = 1 ,  
tan2 e + 1 = sec2 8, 

l + cot2 8 = csc2 8. 

(9) 
( 1 0) 
( 1 1 )  

The second and third i n  this group are obtained by dividing (9) first by cos2 8, 
and then by sin2 8. 

For obvious reasons, the following are called the addition formulas: 

sin (8 + cf>) = sin 8 cos 4> + cos 8 sin cf>, 

cos (8 + cf>) = cos 8 cos 4> - sin e sin cf>, 

tan ( 8  + cf>) = tan 8 + tan 4> 
l - tan 8 tan cf> 

( 1 2) 
( 1 3) 

( 14) 

'It is clear that there are similar identities for the cotangent, secant, and cosecant. However, these 
are of little significance; and in keeping with our purpose of presenting a stripped-down version of 
trigonometry, we ignore them. 
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We indicate in Problem 1 0  a method for proving the first two of these-which 
are not obvious and ought to be memorized- and the third follows from the first 
two by a straightforward argument. Write 

( (}  A.) _ sin ( (} + </J) _ sin (} cos <P + cos (} sin <f> tan + ..,, - cos ( (} + </J) - cos (} cos <P - sin (} sin <P · 

Now, by dividing both numerator and denominator on the right by cos 8 cos <f>, 
we obtain 

sin (}/cos (} + sin </Jf cos <P tan ( (}  + </J) = I - (sin (}/cos (})(sin </Jfcos </J) ' 

which is essentially ( 14). The corresponding subtractionformulas are 

sin ( (}  - </J) = sin (} cos <P - cos (} sin </J, 

cos ( (}  - </J) = cos (} cos <P + sin (} sin </J, 

tan ( (} _ </J) = tan (} - tan <P 
l + tan (} tan </J 

( 1 5) 

( 1 6) 

( 1 7) 

These follow directly from the addition formulas by replacing <f> by - cp and us
ing (6), (7), and (8). 

The double-angle formulas are 

sin 2(} = 2 sin (} cos (}, 

cos 2(} = cos2 (} - sin2 e. 

( 1 8) 
( 1 9) 

These are the special cases of ( 12) and ( 13) obtained by replacing <f> by 8. (There 
is also an obvious double-angle formula for the tangent; but this is of mjnor im
portance and we omit it.) 

The half-angle formulas are 

2 cos2 (} = I + cos 2(}, 

2 sin2 (} = 1 - cos W. 

These are easy to prove by writing (9) and ( 1 9) together, as 

cos2 (} + sin2 (} = I ,  

cos2 (} - sin2 (} = cos 2 (}. 

Adding yields (20), and subtracting yields (2 1 ) .  

VALUES 

(20) 

(2 1 )  

If we keep firmly i n  mind the definitions o f  sin 8, cos 8, and tan 8 ,  then there 
are several first-quadrant values of 8 for which the exact values of these func
tions are easy to find. All that is necessary is to remember the Pythagorean the
orem and look carefully at the three parts of Fig. 9.6: 



. 7T 1 sm 6 = 2 

7T 1 • ;:;-cos - = - v3  6 2 

45° ; !!. 4 

. 7T I V2 sm 4 = 2 

7T I . � cos - = - v2  4 2 

7T tan 4 = 1 
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60° ;.!!.. 3 

I 2 

• 7T 1 . �3 sm - = - v j 
3 2 

7T 1 cos 3 = 2 

7T tv'3 
tan - = -- = \/3 

3 .!. 
2 

Also, an inspection of Fig. 9.2 with OP in various positions gives us similar in
formation for the cases (} = 0, 7r/2 ,  7r, 37r/2, and 27T (the entry * means that the 
quantity is undefined ): 

sin 0 = 0 

cos 0 = I 

tan 0 = 0 

. 7T sm 2 = 1 

7T cos 2 = 0 

7T tan 2 = * 

sin 7T = 0 . 37T sin 27T = 0 sm - = -1 2 

cos 7T = - 1  37T cos 2 = 0 cos 27T = I 

tan 7T = 0 
37T tan 27T = 0 tan 2 = * 

In our subsequent work, facts of this kind will often be needed at a moment's 
notice. They are best learned, not by an effort of memory, but rather by an act 
of understanding-knowing the definitions of the trigonometric functions and 
visualizing (or quickly sketching) appropriate pictures. We also emphasize the 
way the algebraic signs of our functions vary from one quadrant to another. The 
facts are obvious from the definitions and Fig. 9.2,  and are stated in the follow
ing table: 

GRAPHS 

Quadrant 2 

sin (} + + 
cos (} 
tan (} 

+ 
+ 

3 4 

+ 
+ 

The graph of sin (} is easy to sketch by looking at Fig. 9.2 and following the way 
y varies as (} increases from 0 to 27T, that is, as the radius swings around through 
one complete counterclockwise revolution. It is clear that sin (} starts at 0, in
creases to I ,  decreases to 0, decreases further to - 1 , and increases to 0. This 
gives one complete cycle of sin 8, as shown on the left in Fig. 9.7. The complete 
graph (on the right in Fig. 9.7) consists of infinitely many repetitions of this cy
cle, to the right and to the left. The graph of cos (} can be sketched in essentially 
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Figure 9.6 
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Figure 9.7 

Figure 9.8 

Figure 9.9 

TRIGONOMETRIC FUNCTIONS 

sin e 

cos e cos e 

e e 

the same way (Fig. 9 .8) ,  the main difference being that cos () starts at 1 ,  decreases 
to 0, decreases further to - 1 , increases to 0, and increases further to 1 .  

The graph of tan () i s  quite different from the graphs of sin e and cos e. We 
point out first that tan () i s  periodic with period 7T: 

( l) ) 
sin ( 0 + 7T) -sin 0 l) tan u + 1T = = --- = tan "· 
cos (0 + 7T) -cos (] 

This permits us to get the full range of values of tan () by visualizing the ratio 
y!x in Fig. 9 .2 and allowing () to increase from - 7T/2 to 7T/2 .  The result is the 
central curve shown in Fig. 9.9, and the complete graph of tan e consists of in
finitely many repetitions of this curve to the right and to the left. The fact that 
tan () � oo as () � 7T/2 ( from the left) is often loosely expressed by writing 
tan 7TL2 = oo . 

tan e 

e 
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LAW OF COSINES 

This is a useful tool in a variety of situations in mathematics and physics. It ex
presses the third side of a triangle (Fig. 9 . 1 0) in terms of two given sides a and 
b and the included angle 8: 

c2 = a2 + b2 - 2ab cos e. 

The proof is routine if we place the triangle in the xy-plane as shown in the fig
ure and apply the distance formula to the vertices (a cos 8, a sin 8) and (b, 0) . 
The square of the side c is clearly 

c2 = (a cos (} - b)2 + (a sin (} - 0)2 

= a2(cos2 (} + sin2 8) + b2 - 2ab cos 8 
= a2 + b2 - 2ab cos 8, 

and the argument is complete. An important application of the law of cosines is 
made in Problem 10, where it is used to prove identity ( 1 6), and thereby identi
ties ( 1 2) and ( 1 3). 

PROBLEMS 

(a cos 8 , a  sin 8 ) 

Figure 9.10 

1 Convert from degrees to radians: (b) 3 sin 28; (c) sin 4(}; 
(a) 1 5°; (b) 1 05° ;  (c) 1 20°; (d ) sin f8; (e) 2 cos 3 (}. 
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(b, 0) 

(d ) 75°; (e) 1 50°; (f) 1 35° ;  
(g) 225°; (h) 2 1 0° ; (i) 630°; 
(j) 900°. 

2 Convert from radians to degrees: 
(a) 57T/3; (b) 77T/6; (c) 27T/9; 

10 In this problem we outline a method of proving identi
ties ( 1 2) and ( 1 3) by first establishing ( 1 6). Figure 9. 1 1 
shows the unit circle with two arbitrary angles (} and <P 
and their corresponding points Pe = (cos (}, sin (}) and 
P </> = (cos ¢, sin ¢). 

(d ) 37T/2; (e) 47T/3; (f) 37T;  
(g) 77T/15; (h) 7T/36; (i) 7T/5 ;  
( j )  257T/3. 

3 A decorative garden is to have the shape of a circular 
sector of radius r and central angle 8. If the perimeter 
is fixed in advance, what value of 8 will maximize the 
area of the garden? 

4 Find the values of sin 8, cos (}, and tan 8 when (} equals 
(a) - 7T/6; (b) 37T/4; (c) 47T/3; 
(d ) -57T/4; (e) 27T/3 ; (f) 1 77T; 
(g) - 1027T. 

5 If the base of an isosceles triangle is 1 0, express its area 
A as a function of the vertex angle e. 

6 If the height of an isosceles triangle is h, express its 
perimeter p as a function of the base angle 8. 

7 Express the height H of a flagpole in terms of the length 
L of its shadow and the angle of elevation (} of the sun. 

8 A hunter sits on a p latform built in a tree 30 m above 
the ground. He sees a tiger at an angle of 30° below the 
horizontal. How far is he from the tiger? 

9 Sketch the graph of 
(a) sin 2(J (hint: this curve runs through one complete 

cycle as 2(J increases from 0 to 27T) ; 

( I , 0) 

Figure 9.11 

(a) Calculate the square of the distance between these 
points in two ways, by using the distance formula 
and the law of cosines, and thus prove identity ( 1 6), 

cos ( 8  - ¢) = cos (} cos <P + sin (} sin ¢. 

(b) Use part (a) to prove identity ( 1 3), 
cos (8 + ¢) = cos (} cos <P - sin (} sin ¢. 
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(c) Use part (a) to show that cos ( 7T/2 - c/J) = sin c/J. 
(d ) Use part (c) to show that sin (7T/2 - c/J) = cos </J. 

Hint: Replace <P by 7T/2 - </J. 
(e) Use parts (a), (c), and (d) to prove identity ( 1 2), 

sin (() + c/J) = sin () cos <P + cos () sin c/J. 

Hint: sin (() + c/J) = cos [7T/2 - (() + c/J)] 
= cos [(7T/2 - ()) - <Pl = . . . . 

1 I Derive formulas for sin 3()  in terms of sin (), and for 
cos 3 () in terms of cos (). 

12 Derive a formula for cos 4() in terms of cos (). 
13 Derive a formula for sin 4() in terms of sin () and cos (). 

14 If a and b are any constants, show that there exist con-
stants A and B with the property that a sin () + b cos () 
can be written in the form A sin ( () + B). 

15 Compute sin 15° by using 
(a) 15 °  = 45° - 30°; (b) 15° = tC30°). 

16 Find all solutions of the given equation in the interval 
0 $ () $ 27T: 
(a) sin () = 0; (b) sin () = 1; 
(c) sin () = - 1 .  

1 7  Find all solutions of the given equation in the interval 
0 $ () $ 27T: 
(a) cos () = l ; (b) cos () = O; 
(c) cos () = - 1 .  

1 8  Find all values of () in the interval 0 :::: () :::: 2 7T for which 
(a) sin () = -t; (b) cos () = tv2; 
(c) sin () = t\/3; (d) sin () = cos 0. 

19 Find all solutions of each of the following equations: 
(a) sin 3 ()  = tV2; (b) cod() = - I ;  
(c) sin 5() = -t. 

20 Show that 
(a) sin () sin <P = tlcos ( ()  - </J) - cos (() + c/J)] ;  
(b) cos () cos <P = tlcos ( ()  - c/J) + cos ( () +  c/J)] ; 
(c) sin () cos <P = tlsin ( ()  + c/J) + sin ( ()  - c/J)] . 

21 Show that 

(a) sin () + sin <P = 2 sin ( () � <P ) cos ( () ; <P} 
(b) sin () - sin <P = 2 cos ( () � <P ) sin ( (); <P} 
( c) cos () + cos <P = 2 cos ( () � <P ) cos ( () ; <P} 
(d) cos () - cos <P = -2 sin ( () � <P ) sin ( (); <P ) . 
Hint: These identities can be established laboriously, by 
working from the right sides to the left sides, or easily, 
by an ingenious use of Problem 20. 

Establish the identities in Problems 22-32. 
22 

. 2 tan () s1n 2() = I + tan2 o · 
I - tan2 () 

23 cos 28 = l 2 0 . + tan 

24 tan () =  sin () +  sin 2()  
1 + cos () + cos 2() . 

25 tan () =  sin 2() 
1 + cos 2() '  

26 cot () =  sin 2()  
1 - cos 20 · 

27 2 () _ 
1 - cos 2 () tan -
1 + cos 2 () · 

28 tan () tan to = sec e - 1 .  
1 sin () 

29 tan 28 = 1 () + cos 

30 
1 + sin () + cos () 1 . () () = cot 28. I + Sin - cos 

3 1  1 - 4 sin4 () = cos 2 ()  ( I  + 2 sin2 ()) . 
32 tan to + cot to = 2 csc O. 
33 Sketch the graph of the function 

. 1 b) . I (a) y = Sill - ; ( y = X Sill -; x x 

2 . 1 (c) y = X Sill -. x 
Notice particularly that each of these functions is un
defined at x = 0. 

34 In Problem 33, supplement the definition of each func
tion by specifying that y = 0 when x = 0. With these 
changes, show that at the point x = 0 the function (a) 
is discontinuous, the function (b) is continuous but not 
differentiable, and the function (c) is differentiable. 

35 If one side and the opposite angle of a triangle are fixed, 
and the other two sides are variable, use the law of 
cosines to show that the area is a maximum when the 
triangle is isosceles. (Can you prove this by using 
geometry alone?) 

*36 A conical paper cup is formed from a circular sheet of 
paper by cutting out a circular sector and joining the 
two straight edges of the remaining piece. What should 
the central angle of the sector be in order to maximize 
the volume of the cup? 

37 A light hangs above the center of a circular table whose 
radius is 3 ft. The illumination at any point on the table 
is directly proportional to the sine of the angle between 
the table and the ray of light to that point, and inversely 
proportional to the square of the distance from the point 
to the light source. How high should the light be hung 
in order to maximize the illumination at the edge of 
the table? 

*38 A heavy spherical ball is lowered carefully into a full 
conical wine glass whose depth is a and whose gener
ating angle (between the axis and a generator) is a. 
Show that the greatest overflow occurs when the radius 
of the ball is 

a sin a 
sin a +  cos 2a ' 
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The calculus of the trigonometric functions begins with two o f  the most impor-

9 2 tant formulas in all of mathematics, 
• 

and 

d . d.x sm x = cos x 

d . d.x cos x = -sm x. 

( 1 )  

(2) 

We have already discussed these formulas in Section 3 .4. However, no harm will 
be done-and perhaps much good- if we pretend that we have never heard of 
them before and discuss them all over again from the beginning. We emphasize 
that the letter x used here is simply an ordinary real variable, as in any function 
y = f(x); and if it is thought of as an angle, then this angle is always to be un
derstood in radian measure. 

Formulas ( 1 )  and (2) can be proved by straightforward applications of the de
finition of the derivative, 

.!!__ f(x) = lim f(x + ilx) - f(x) 
dx �->O fu (3) 

In order to carry through these calculations, it turns out that we need to know 
the following two special limits, 

and 

I . sin (} 1 1m -- = 0->0 (} 

r 1 - cos e _ 0 • 
e1.!Jb (} - . 

(4) 

(5) 

The validity of these statements can be understood directly from geometry, by 
thinking of 8 as a small angle and looking at the unit circle on the left in Fig. 
9 . 1 2, where the definitions given in the previous section tell us that PQ = sin 8, 

PR = 8, and QR = 1 - cos 8. It is easy to see that the ratio (sin 8)18 = PQIPR 
is < 1 and close to 1 ,  and it visibly approaches 1 as 8 approaches 0. This be
havior of the ratio (sin 8)18 is further emphasized by the magnified version of 

*These limits were both established in Section 2.5. For the sake of variety, we offer supporting ar
guments here that are somewhat different from those used before. 

- - - - - - -

Origin 

I - cos e 

-- -- - - - - - - - - - - - - 1 
I I I I 

sin e i 
I I 

Q I 
� 
I - cos e 

THE DERIVATIVES OF 
THE SINE AND COSINE 

Figure 9.12 
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part of the picture that is shown on the right in Fig. 9 . 1 2, where () is taken to be 
very small and the origin is understood to be several feet to the left. The same 
type of "proof by inspection" can also be applied to (5). This time the figure tells 
us that the ratio (1 - cos 8)18 = QR/PR is a small number that clearly approaches 
0 as 8 approaches 0. 

To establish formula ( 1 ) , we apply (3) to the function f(x) = sin x, 

d . . sin (x + Ill) - sin x -d Sill X = !Jm A .. X 6.x-->0 UA 

Since sin (x + Ax) = sin x cos Ax + cos x sin Ax, we exercise a little ingenuity 
and write 

_!!:___ . _ I' 
sin x cos LU + cos x sin Lil - sin x dx Sill x - iJ�o LU . [ ( sin LU ) . ( l - cos LU )] 

= 11�o 
cos x � - Sill x LU . 

Using (4) and (5) with 8 replaced by Ax now yields 

d . . 0 dx Sill x = (cos x) · l - (sill x) · = cos x, 

which concludes the proof of ( 1 ) . To prove formula (2), we begin with 

_!!:.___ _ J' 
cos (x + Ill) - cos x 

dx cos x - iJ�o Lil . 

Since cos (x + Ax) = cos x cos Ax - sin x sin Ax, we have 

d . cos x cos Lil - sin x sin Lil - cos x -d COS X = !Jm A .. X 6.x-->0 UA . [ . ( sin LU ) ( l - cos LU )] = l;�0 -sill x � - cos x LU 

= (-sin x) · l - (cos x) · 0 = -sin x, 

and the proof of (2) is complete. The addition formulas for the sine and cosine 
obviously play essential roles in these arguments, and this is their main use in 
mathematics. 

We now generalize ( 1 )  and (2) by means of the chain rule, and obtain the ex
tremely useful formulas 

and 

d . du dx Sill U = COS U dx 

d . du 
dx cos u = - srn u dx '  

A s  usual, u i s  understood to be any differentiable function o f  x. 

Example 1 Find the derivative of each of the following functions: 
(a) y = sin 5x; (b) y = sin Vx; (c) y = cos (2 - 3.x4). 

Solution For (a), we use (6) with u = 5x, so 

(6) 

(7) 
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dy d 
dx = cos Sx dx (Sx) = 5 cos Sx. 

For (b), u = Yx = x 1 12, so 

dy = cos Vx .!!:.._ (x112) = -1- cos Vx. dx dx 2Vx 
For (c), we use (7) with u = 2 - 3x4, so 

2 = - sin (2 - 3x4) ! (2 - 3x4) = 1 2x3 sin (2 - 3x4). 

Students must learn to use formulas (6) and (7) in combination with all pre
vious rules of differentiation. In this connection it is necessary to remember the 
standard notation for powers of trigonometric functions: sinn x means (sin x)n. 
There is one exception to this usage, for (sin x)- 1 is never written sin - t x; the 
latter expression is reserved exclusively for the inverse sine function discussed 
in Section 9.5. 

Example 2 Find the derivative of each of the following functions: 
(a) y = sin3 4x; (b) y = ecos x; 
(c) y = In (sin x) ; (d) y = sin (ln x). 

Solution 

(a) � = 3(sin 4x)2 ! (sin 4x) = 3(sin 4x)2(cos 4x) · 4 

= 1 2  sin2 4x cos 4x. 

(b) 
dy 

= ecos x ..!!:__ (cos x) = - sin x ecos x. 
dx dx 

dy 1 d . cos x 
(c) dx = -.- -

d 
(sm x) = -.- = cot x. 

sm x x sm x 

(d) 
dy 

= (l ) ..!!:__ (I ) = 
cos (In x) 

dx 
cos n x 

dx 
n x 

x 
. 

Example 3 Show that (d/dx)(1 cos3 x - cos x) = sin3 x. 

Solution 

.!!:.._ (2- cos3 x - cos x) = l_ · 3 cos2 x(- sin x) + sin x dx 3 3 
= sin x(l - cos2 x) = sin3 x. 

Remark 1 Formulas (6) and (7) enable us to understand very clearly why ra
dian measure is preferred to degree measure when working with the trigonometric 
functions in calculus. Let sin x0 and cos x0 denote the sine and cosine of an an
gle of x degrees. We know that x degrees equals 7T.X/l 80 radians, so 

. 0 . 1TX sm x = sm lSO. 
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Figure 9. 13 
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PROBLEMS 

TRIGONOMETRIC FUNCTIONS 

By formula (6), 

or 

and similarly 

d . 0 d . 7T.X 7T 7TX d.x sm x = d.x sm 
1 80 

= 180 cos 
1 80 

d . 0 7T 0 d.x sm x = 
1 80 

cos x ; 

d 7T . 0 
dx cos x0 = -180 sm x .  

These formulas make it obvious why we use radian measure routinely in calcu
lus-for the sake of simplicity, in order to avoid the repeated occurrence of the 
nuisance factor 7T/l 80. 

Remark 2 There is  another way of obtaining the basic derivative formulas ( 1 )  
and (2) for the sine and cosine. This alternate approach has the advantage of pro
viding direct insight into why these formulas are true. We start with the defini
tions from Section 9. 1 (see Fig. 9. 1 3) ,  

y = sin e and x = cos e, 

in which we use e for the independent variable because x and y are the coordi
nates of P We change e by a small amount ti.e and examine the resulting changes 
6.y and ti.x in y and x, as shown in the figure. If we think of PQR as a tiny "right 
triangle" with hypotenuse" ti.e, then the crux of the present argument is the fact 
that the triangles PQR and POS are similar. By using proportional sides of sim
ilar triangles we obtain the approximate equations 

and 

As ti.e approaches 0, these approximations get better and better, and we conclude 
that 

or equivalently, 

dy = lim �Y = x dB M->0 �8 

d . 
dB sm B = cos B 

and 

and 

d.x 
dB 

I' � 
ti&�o M = -y

, 

d B . 
dB cos = - sm B. 

This geometric reasoning may be somewhat lacking in the precision of the tra
ditional proofs of formulas ( 1 )  and (2) given at the beginning of this section. 
Nevertheless, it has the great merits of simplicity and directness. 

In each of Problems 1 - 1 8, find the derivative dyldx of the 
given function. 

3 y = 3 sin 1 6x. 
4 y = sin2 x. 

1 y = sin (3x - 2). 
2 y = cos ( I  - 7x). 

5 y = sin x2. 
6 y = sin2 6x. 
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7 y = 5 sin 3x + 3 cos Sx. 
8 y = sin2 x + cos2 x. 
9 y = x sin x. 

10  y = x3 sin 3x. 
1 1  y = sin2 3x cos2 3x. 
12 y = cos4 x - sin4 x. 
13 y = t sin5 x - t sin3 x + s in x . 
14 y = sin (sin x). 
1 5  y = e2x sin 3x. 
16 y = sin ( In x2). 
1 7  y = In (cos x). 
18 y = eX'+sin x. 
1 9  If a i s  a positive constant, verify that y = c1 sin ax +  c2 • 

cos ax is a solution of the differential equation 

d2y 
- + a2y = 0 
dx2 

for every choice of the constants c1 and c2• (In the Ad
ditional Problems we outline a proof of the important 
fact that every solution of this differential equation has 
the stated form. For this reason, y = c 1 sin ax + c2 • 
cos ax is called the general solution of the differential 
equation.) 

20 Show that (d/fil) cos x = -sin x by using the identity 
cos x = sin ( TT/2 - x) and formula (6). 

21 Find the angle at which the curve y = } sin 3x crosses 
the x-axis. 

22 Sketch the graph of y = sin x + cos x on the interval O :::; 
x :5 2 TT, and find the maximum height of this curve above 
the x-axis. 

23 Find the maximum height of the curve y = 4 sin x -
3 cos x above the x-axis. 

24 Obtain the second of the following identities by differ
entiating the first: sin 2x = 2 sin x cos x, cos 2x = 

cos2 x - sin2 x. 
25 Obtain the second of the following identities by differ

entiating the first: sin 3x = 3 sin x - 4 sin3 x, cos 3x = 

4 cos3 x - 3 cos x. 
26 Obtain the second of the following identities by differ

entiating the first with respect to either of the variables, 
keeping the other fixed: 

sin (x + y) = sin x cos y + cos x sin y, 

cos (x + y) = cos x cos y - sin x sin y. 

27 Show that y = sin x and y = tan x have the same tangent 
at x = 0. 

28 Show that the function y = x + sin x (x 2:: 0) has no max
imum or minimum values even though there are many 
points where dylfil = 0. Sketch the graph. 

29 A regular polygon with n sides is inscribed in a circle of 
radius r. 
(a) Show that the perimeter of this polygon is P1t = 2nr · 

sin ( TTln). 
(b) Find limit_,� pit, and verify by elementary geometry 

that your answer is correct. 
30 If a, b, c are constants with ab =f. 0, show that the graph 

of y = a sin (bx + c) is always concave toward the 
x-axis and that its points of inflection are the points where 
it crosses the x-axis. 

31  Sketch the graphs of  y = sin x and y = sin 2x together 
on a single set of axes. These curves have many points 
of intersection. Find the smallest positive x-coordinate of 
such a point, and calculate the acute angle at which the 
curves intersect at this point. Hint: See identity (1 7) in 
Section 9. 1 .  

32 The functionsf(x) = sin x and g(x) = cos x have the fol
lowing properties: (a) f'(x) = g(x); (b) g ' (x) = -f(x); 
(c) f(O) = O; (d ) g(O) = I .  If F(x) and G(x) is any pair 
of functions with the same properties, prove that F(x) = 
sin x and G(x) = cos x. Hint: Show that 

[F(x) -f(x)]2 + [G(x) - g(x)]2 = a constant, 

and find the value of this constant. [This problem has a 
very remarkable meaning: The functions sin x and cos x 
are completely described by properties (a) to (d), and 
therefore the total nature of these functions-everything 
that is now known about them or ever will be known
is implicitly contained in these four simple properties.] 

In each of Problems 33-43, find the value of the indicated 
limit. 

33 

35 

37 

39 

41 

43 

I . tan x 1m --. 
x->0 X 
I . tan x 1m -. -. 
x->0 sm x 

lim tan 3x csc 6x. 
x->0 

I . . l 1m x srn -. 
x---?oo X 
r 2x2 + 2x 
x� sin 2x . 

Jim �. X->'TT/2 X - 7T/2 

34 

36 

38 

40 

42 

1. sin 3x 1m ---. 
x->0 X 
r sin 3x 
x� sin sx · 

1 - cos x lim ----
x->O x2 

Jim 3x tan 'TT . x�oo X 
Lim sin 3x cot Sx. 
x->0 

44 The graph of y = cos (} has an obvious maximum at the 
point corresponding to (} = 0, so the tangent is horizon
tal there. Show that this fact is equivalent to the limit (5). 
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9 . 3 
THE INTEGRALS OF 

THE SINE AND COSINE. 
THE NEEDLE PROBLEM 

TRIGONOMETRIC FUNCTIONS 

The differential versions of formulas (7) and (6) in the previous section are 

d(cos u) = - sin u du and d(sin u) = cos u du. 

These immediately yield the integration formulas 

J sin u du = -cos u + c 

and 

J cos u du = sin u + c. 

Example 1 Evaluate f cos 5x dx. 

Solution Let u = 5x. Then du = 5 dx, dx = ± du, and formula (2) gives 

J cos 5x dx = J cos u · (f du) = f J cos u du 

= f sin u + c = f sin 5x + c. 

( I )  

(2) 

After a little practice, it will be easy for students to make this kind of substitu
tion mentally. In fact, we can dispense with the new variable u altogether, and 
compress this solution to the following simple steps: 

J cos 5x dx = f J cos 5x d(5x) = f sin 5x + c. 

Example 2 Evaluate f7x sin (2 - 9x2) dx. 

Solution Let u = 2 - 9x2. Then du = - 1 8x dx, x dx = --k du, and 

J 7x sin (2 - 9x2) dx = J 7 sin u · (-.fg du) 

= --ls J sin u du 

= -is cos u + c = -is cos (2 - 9x2) + c. 

Here the auxiliary variable u plays an important part in our work. It not only em
phasizes the need to apply formula ( 1 ) , but also helps us keep track of the vari
ous coefficients and algebraic signs that appear in the calculation-and there
fore helps us avoid mistakes. 

Example 3 Compute the definite integral 

(7Tl4 cos 2x dx 
J7T16 sin3 2x · 

Solution We begin by finding the indefinite integral. Since d(sin 2 x) = 
2 cos 2 x  dx, we put u = sin 2x. This gives du = 2 cos 2 x  dx, so 

I f cos 2x dx = J 
2 du 

= _!_J u_3 du = _ 
_!_u_2 = sm3 2x u3 2 4 4 sin2 2x ' 
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We remind students that the constant of integration can always be ignored in 
computing definite integrals, and for this reason we don't bother to write it here. 
The Fundamental Theorem of Calculus now permits us to complete the solution 
by writing 

(7T14 cos 2x dx I ]7T'4 I ( I )  I 
J7T16 sin3 2x = - 4 sin2 2x 7Tl6 

= -4 - -3 = 12· 

In our next example we discuss an application of these methods to a famous 
problem about probability that was invented by the French scientist Buffon in 
the early eighteenth century. 

Example 4 Buff on 's needle problem. A needle 2 in long is tossed at random 
onto a floor made of boards 2 in wide. What is the probability that the needle 
falls across one of the cracks? 

Solution We begin with a brief digression to explain our use of the word "prob
ability." In mathematics this word means a numerical measure of the likelihood 
that a certain event will occur. As an example, consider the rectangle shown on 
the left in Fig. 9. 14, in which a portion of the figure is shaded. If a point is cho
sen at random in this rectangle, for instance by making the rectangle into a tar
get and throwing a dart blindfolded, then the probability of choosing a shaded 
point is ±. We assume here that each point is just as likely to be chosen as any 
other, and this number expresses the fact that the proportion of shaded points 
among all points in the rectangle is ±. In the second rectangle the probability of 
choosing a shaded point is t, and in the third rectangle it is i. We take it as self
evident that the probability of choosing a shaded point equals the ratio of the 
shaded area to the total area. 

Let us now return to the needle problem. We describe the position in which 
the needle falls on the floor by the two variables x and 8 shown in Fig. 9 . 15 ;  x 
is the distance OP from the midpoint of the needle to the nearest crack, and 8 is 
the smallest angle between OP and the needle. A toss of the needle amounts to 
a random choice of the variables x and 8 in the intervals 

and Q :s (J :s
'Tr

, 2 (3) 

and this in tum amounts to a random choice of a point in the rectangle shown in 
Fig. 9. 16 .  Furthermore, a close inspection of Fig. 9 . 1 5  shows that the event we 
are interested in, namely, that the needle falls across a crack, corresponds to the 
inequality 

x < cos 0. (4) 

307 

Figure 9.14 
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Needle crosses crack Needle misses crack 

This inequality describes the shaded region in Fig. 9. 1 6  under the graph of 
x = cos (). We therefore conclude that the probability of the needle falling across 
a crack equals the following ratio of areas: 

area under curve 
area of rectangle 

l'TT/2 0 cos 8 d8 
7r/2 7r/2 

2 (5) 

which i s  slightly less than t. This calculation can be extended at once to the more 
general situation in which d is the distance between adjacent cracks and the length 

e of the needle is L ::s d. The inequalities (3)  are replaced by 

and ( 4) becomes 

I 0 :s x :s -d 2 and 

x < tL cos 8. 
In this case the probability of the needle falling across a crack is easily seen to 
be 

area under curve 
area of rectangle 

l'TT/2 I 0 -zL cos 8 d8 2L 
(td)( 77-/2) 7rd . (6) 

(Students should draw their own sketch for this case similar to Fig. 9. 16, and in 
particular should notice the reason for the restriction L ::s d.) 

Remark We obtained these conclusions about the probability of success in the 
needle experiment by pure reason alone, without any appeal to experience. How
ever, the "sequence of trials" approach to the concept of probability has some 
interesting implications for the needle problem. In the case of the 2-in needle 
and the 2-in floorboards,  let us actually perform the experiment of tossing the 
needle onto the floor a large number of times, say n times, where n = 1 00 or 
n = 1000 depending on our ability to tolerate boredom. Let us also keep careful 
count of the number k of times the needle falls across a crack. Then the abstract 
probability that the needle falls across a crack on any one toss should be closely 
approximated by the ratio kin, and this approximation should improve as n in
creases. Roughly speaking, this means that 
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so we should have 

. k 2 
ltm - = -, 
,1---+oo n 1r 

k 2 - = -· n TT, 
and solving this approximate equation for 7T yields 

2n 7T =k 
for large values of n. In principle, therefore, this provides an experimental method 
of calculating TT. In fact, however, this method is not capable of much accuracy 
because of the inherent errors that appear in all measurements. We will discuss 
practical methods for computing 7T to very great accuracy in Chapter 1 3 .  

PROBLEMS 
Evaluate the indefinite integrals in Problems 1-20. 
1 J sin Sx d.x. 
2 J cos (2x - 5) d.x. 
3 J sin ( I  - 9x) dx. 
4 f (3 cos 2x - 2 sin 3x) dx. 
5 f2 sin x cos x d.x. 
6 J cos2 x sin x d.x. 
7 J sin3 2x cos 2x d.x. 
8 J sin x cos x (sin x + cos x) d.x. 
9 J sin7 +x cos +x d.x. 

IO J 4x sin x2 d.x. 
1 1  J 

sin� d.x. 12 J 
cos (I: x) dx . 

13 J cos (sin 2x) cos 2x d.x. 
14 

16 

18 

19  
20 

f cos x d.x 
sin2 x · 

15 

f cos x d.x. 17 
sm x J cos 3x d.x . � f (2x + 1 ) cos (x2 + x) d.x. f (x + cos x)4( 1 - sin x) d.x. 

f sin [(2x - 1 )/3] d.x 
cos2 [(2x - 1 )/3] · 

f sin x d.x . 
cos x 

Evaluate the definite integrals in Problems 2 1-24. 
21  

23 

25 
26 

27 
28 

(7Tl5 
Jo sin Sx d.x. f 27T/3 22 cos 3x dx. -7T/6 l� � xd.x  

24 l� 2 . 2 . x cos x dx. 7Tl4 sm x o 
Find the area under one arch of y = sin 3x. 
In the first quadrant, the y-axis and the curves y = sin x 
and y = cos x bound a "triangle-shaped" region. Find its 
area. 
Find the area under one arch of y = 3 cos 2x. 
Find the area under one arch of y = 6 sin +x and above 
the line y = 3 .  

29 Find the volume generated by revolving about the x-axis 
the region under y = sin x and between x = 0 and x = TT. Hint: Remember the half-angle formula 2 sin2 x = 1 - cos 2x. 

30 Consider the region between y = sin x and the x-axis for 0 � x � TTl2 . For what constant c does the line x = c di
vide this region into two parts of equal areas? 

3 1  Anticipate the results of the next section by deriving the 
following differentiation formulas: 

32 

d 
- tan x = sec2 x· d.x , 
d 

- cot x = -csc2 x dx ' 
d d.x sec x = sec x tan x; 
d d.x csc x = -csc x cot x. 

Hint: Express each function in terms of sin x and cos x. 
Obtain the following integration formulas from the dif
ferentiation formulas in Problem 3 1 :  

J sec2 x d.x = tan x + c; 

J csc2 x d.x = -cot x + c; 

J sec x tan x d.x = sec x + c; 

J csc x cot x d.x = - csc x + c. 
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THE OTHER FOUR 
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TRIGONOMETRIC FUNCTIONS 

The results of Problem 3 1  in Section 9.3 enable us to complete our list of for
mulas for differentiating the trigonometric functions: 

d du 
- tan u = sec2 u -· dx dx ' 

d du 
- cot u = -csc2 u -· dx dx '  

d du dx sec u = sec u tan u dx ; 

d du 
dx csc u = -csc u cot u c1.x ·  

( I )  

(2) 

(3) 

(4) 

These formulas are quite easy to remember if we notice that the derivative of 
each cofunction (cot, csc) can be obtained from the derivative of the corresponding 
function (tan, sec) by (a) inserting a minus sign, and (b) replacing each function 
by its cofunction. Thus, formula (2) is obtained from formula ( 1 )  by inserting a 
minus sign, replacing tan u by cot u, and replacing sec u by csc u. In view of 
this rule, it is only necessary to memorize formulas ( 1 )  and (3), because the rule 
immediately produces the other two. 

Example 1 Find dy/dx if y = tan3 4x. 

Solution Since y = tan3 4x = (tan 4x)3, the power rule gives 

dy = 3(tan 4x)2 · !!:.._ tan 4x. 
dx dx 

By formula ( 1 )  with u = 4x, 
d 
dx tan 4x = (sec2 4x)(4), 

and by putting the various pieces together we obtain 

dy = 1 2  tan2 4x sec2 4x dx . 

Example 2 Find dy/dx if y = cot ( 1  - 3x) .  

Solution By formula (2) with u = 1 - 3x , 

dx = - csc2 ( 1  - 3x) · (-3)  = 3 csc2 ( 1  - 3x). 

The differentiation formulas ( 1 )  to (4) immediately produce four new integra
tion formulas: 

J sec2 u du = tan u + c;  (5) 

J csc2 u du = -cot u + c; (6) 

J sec u tan u du = sec u + c; (7) 



9.4 THE DERIVATIVES OF THE OTHER FOUR FUNCTIONS 

J csc u cot u du = -csc u + c. 

Example 3 Calculate f sec 3x tan 3x dx. 

Solution This reminds us of (7) with u = 3x, so we write 

J sec 3x tan 3x dx = t J sec 3x tan 3x d(3x) = t sec 3x + c. 

(8 )  

In this problem the structure of the integral is  clear enough so that there is  no 
real need to make an explicit change of variable. 

Example 4 Evaluate f3x sec2 x2 d.x. 

Solution This reminds us of (5)  with u = x2 . S ince du = 2x d.x and x dx = 1 du, 
we have 

J 3x sec2 x2 dx = 3 J sec2 u · ( ± du) = % J sec2 u du 

= t tan u + c = t tan x2 + c. 

Here we use the auxiliary variable u as insurance against error. After students 
have acquired a bit of experience with problems of this type, they will prefer to 
carry out the integration directly, by inspection. 

Example 5 Calculate f tan2 2x dx. 

Solution This integral doesn' t  resemble any of our types. However, the trigono
metric identity tan2 2x + 1 = sec2 2x connects our problem with formula (5) .  
Once this fact is noticed, we easily write 

J tan2 2x d.x = J (sec2 2x - 1 )  d.x = J sec2 2x d.x - J dx 

= ± J sec2 2x d(2x) - J dx = ± tan 2x - x + c. 

PROBLEMS 

In each of Problems 1-12, calculate dy/d.x. 
1 y = tan 4x2. 2 y = cot 4x. 
3 y = tan2 (sin x). 4 y = 3 cot ( 1  - x3). 

15 J sin� 2x. 16 J sec2 fx d.x. 

3 1 1 

5 y = sec2 x - tan2 x. 6 y = 2 sec 3x. 
7 y = 4 csc (-6x). 8 y = (cot x + csc x)2. 

17  J tan4 x sec2 x dx. 
(7Tl6 

18 Jo sec 2x tan 2x dx. 

9 y = Vcsc 2x. 10 y = cot (cos x). 
1 1  y = etan x. 1 2  y = In (csc x) . 

Evaluate the integral in each of Problems 1 3-20. J (7Tl8 
13 csc2 6x d.x. 1 4  Jo sec2 2x dx. 

1 9  J cot 7x csc 7x  d.x. 20 J sec7 x tan x d.x. 

2 1  Find the area bounded by the curve y = tan x sec2 x, 
the x-axis, and the line x = TTl4. 

22 Find the area in the first quadrant bounded by y = 
sec2 x, y = 8 cos x, and the y-axis. 
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23 Find the area in the first quadrant bounded by y = 
sec2 x, y = 2 tan2 x, and the y-axis. 

24 The region bounded by the curve y = tan x, the x-axis, 
and the line x = 7T'/3 is revolved about the x-axis. Find 
the volume of the solid of revolution generated in this 
way. 

25 Sketch the graph of the function y = tan x + cot x on 
the interval 0 < x < 7T'!2 and find its minimum value. 

26 Solve Problem 25 without calculus, by using the iden
tity 

2 tan x + cot x = -. -2-. sm x 

*27 Sketch the graph of the function y = 8 csc x - 4 cot x 
on the interval 0 < x � 7r/2 and find its minimum value. 
Is there a point of inflection? 

*28 The classic corridor problem (Problem 29 in Section 
4.3) can be expressed as follows. If two corridors of 
widths a and b meet at right angles (Fig. 9 . 1 7) , then the 

-b 

a 
I 

Figure 9.17 

length of the longest thin rod that can be moved in a 
horizontal position around the corner is the length of 
the shortest line segment placed like the one in the fig
ure. Find this length by using the angle () as the inde
pendent variable. 

29 A revolving light 6 mi offshore from a straight shore
line makes 4 revolutions per minute. How fast is the 
spot of light moving along the shore at the instant when 
the beam makes an angle of 30° with the shoreline? 

*30 A rope with a ring at one end is looped over two pegs 
in a horizontal line. The free end is passed through the 
ring and has a weight suspended from it, so that the rope 
is held taut. If the rope slips freely through the ring and 
over the pegs, then the weight will descend as far as 
possible in order to minimize its potential energy. Find 
the angle formed at the bottom of the loop. 

31  (Arterial branching) I n  the flow of blood through a hu
man artery as discussed in Example 3 of Section 7 .4, 
the physical resistance to the flow is called vascular re
sistance. This quantity is denoted by R and defined to 
be the ratio of the driving pressure P to the flow F: 

By rearranging Poiseuille's law in the example referred 
to, we find that 

R = 8TJL 
= k _f_ 

7rr4 r4 ' 

where L and r are the length and radius of the artery 
and k = 8TJ/7T' is a constant determined by the viscosity 
7) of the blood. Figure 9. 1 8  shows an artery with radius 
r1 branching into a smaller artery with radius r2 . 

a 

Figure 9.18 

(a) Show that the total resistance along the path ABC 
is 

R = k a - b cot () k b csc () 
4 + 4 . r1 rz 

(b) Show that the resistance along the path ABC is min
imized when 

cos () = (�� r 
IEJ ( c) In part (b ), find the value of () to the nearest degree 

if the radius of the branch artery is four-fifths the 
radius of the larger artery. 

tFor students who know a bit about electric circuits, we point out that 
this concept of vascular resistance, when rewritten in the form F = P/R, is precisely analogous to Ohm's law I =  EIR, which relates the 
current I in a circuit to the electromotive force E and the electrical 
resistance R. 
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Our attention in this section is focused on the two integration formulas 

and 

J dx 
= sin- 1 x \/l=7 

J � - - I 
1 + x2 - tan x. 

( 1 )  

(2) 

The unfamiliar functions on the right sides of these equations will be fully ex
plained below. They are called inverse trigonometric functions, and are created 
expressly to enable us to calculate the integrals on the left. These functions have 
other uses, but this is their primary purpose, the main justification for their ex
istence. 

Before we start at the beginning and give a careful and orderly description of 
these functions, we pause briefly to understand in a rough way how they origi
nate. The difficulty with the integral on the left of ( 1 )  is caused by the awkward 

expression � in the denominator. If we consider this obstacle for a mo
ment, the inside quantity 1 - x2 might make us think of the trigonometric ex
pression 1 - sin2 8, which of course equals cos2 8. Thus, if we write 

x = sin (}, (3) 

then we have � = v' 1 - sin2 e = � = cos e, and the square root 
sign disappears. But we also have dx = cos 8 d8, so we can unravel our trou
blesome integral as follows: 

J dx 
= J cos (} d(} 

= J d(} = 
{}, (4) � cos (} 

The process of solving (3) for 8 in terms of x is symbolized by writing 8 = 
sin- 1 x, so (4) yields ( 1 ) . A similar analysis can be applied to (2), but these re
marks are perhaps enough to make our point about the way the inverse trigono
metric functions arise- they are forced upon us by the need to calculate certain 
integrals .  Now for the details that make these functions respectable. 

THE INVERSE SINE 

We know that sin 1T/6 = t. Thus, if we are asked to find an angle (in radian mea
sure) whose sine is t, we can answer at once that 7T/6 is such an angle. We are 
also aware that there are many other angles with this property. 

As we have just seen, it is necessary in  calculus to have a symbol to denote 
an angle whose sine is a given number x. There are two such symbols in every
day use, 

and arcsin x. 

These notations are fully equivalent to each other and can be used interchange
ably, though we shall confine ourselves to the first. The first is read "the inverse 
sine of x," and the second "the arc sine of x," and both mean "an angle whose 
sine is x." It is essential to understand that in the symbol sin - I x, the - 1  is not 
an exponent, and therefore sin- 1 x never means l /(sin x). We discuss the reason 
for this seemingly strange notation in Remark 2. 

9 . 5 
THE INVERSE 
TRIGONOMETRIC 
FUNCTIONS 

3 1 3  
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TRIGONOMETRIC FUNCTIONS 

These ideas can be summarized as follows: The formulas 

x = sin y and y = sin- 1  x 

mean exactly the same thing, in the sense that 

x = 3y and y = +x 

mean exactly the same thing. In each case the equation is first written in a form 
solved for x, and then (the same equation ! )  in a form solved for y. 

In order to sketch the graph of y = sin- I x, it suffices to sketch x = sin y with 
y treated as the independent variable-on the horizontal axis-and then to turn 
the picture over, returning the axes to their customary positions ( Fig. 9 . 1 9) . It is 
clear that y exists only when x lies in the interval - 1  ::5 x ::5 1 .  However, for any 
such x there are infinitely many corresponding y's, and this situation cannot be 
allowed if y = sin- I x is to be considered a function. (Recall that a function is 
single-valued by the very definition of the concept.) We deal with this difficulty 
by means of a universally understood agreement: The only values of y = 
sin - I x we consider are those that lie in the interval - n/2 ::5 y ::5 n/2 ,  and this 
restriction is henceforth part of the meaning of the symbol y = sin- I x. The graph 
of the function y = sin - I x (it is truly a function now, because of the restriction 
just described ) is the heavy portion of the curve in Fig. 9. 1 9. 

- -- - - - - -- -
371' 

--- - - - - -

Figure 9.20 

2 THE INVERSE TANGENT 

x 

The function y = tan - •  x (the other notation here is y = arctan x) is defined in 
essentially the same way: 

y = tan- 1 x means x = tan y and 'TT 'TT -2 < y  < 1· 

The symbol tan - I x is read "the inverse tangent of x," and it means "the angle 
(in the specified interval) whose tangent is x." The graph of the function y = 
tan- I x is the heavy curve in Fig. 9.20. 

We now calculate the derivative dyldx of the function y = sin- I x by differ
entiating 

x = sin y 

implicitly with respect to x. The result is 

so 

dy = 

I = cos y dy 
dx' 

dx cos Y V 1 - sin2 y � -
We choose the positive square root here because y = sin - I x is clearly an in
creasing function (see Fig. 9 . 1 9) .  This result can be written in the form 

.!!:.._ . - I  -
1 dx Sm X -

, 
;:-----;; , 

v 1 - x2 
(5) 
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where - 1  < x < 1 .  In just the same way we find the derivative of y = tan- I x 
by differentiating 

x = tan y 

implicitly with respect to x. This gives 

so 

We therefore have 

for all x. 

dy 
= 

I = sec2 y 
dy 
dx'  

dx sec2 y I + tan2 y 1 + x2 · 

d 1 
- tan- 1 x = -
dx 1 + x2 

(6) 

Formulas (5) and (6) are the facts that lead to the main tools of this section. 
First, we have the chain rule extensions of these formulas, which greatly broaden 
their scope: 

and 

d . 1 I du - sm- u = ---
dx � dx 

d _ 1 _ I du 
dx 

tan u - I + u2 dx 
. 

As usual, u is understood to be any differentiable function of x. 

Example 1 Find dy/dx for each of the following functions: 
(a) y = sin- I 4x; (b) y = sin- I x3; (c) y = t tan- I (3x - 5). 

Solution For (a), we use (7) with u = 4x, so 

dy 
= 

1 _!!:_ 
(4x) = 

4 
dx Yl - (4x)2 dx Yl - 16x2 

For (b), we use (7) with u = x3, so 

dy 
= 

1 _!!:_ 
(x3) = 

3x2 
dx Yl _ (x3)2 dx � 

For (c), we use (8) with u = 3x - 5, so 

dy
=

_!_ 1 d 1 
dx 3 1 + (3x - 5)2 dx 

(3x - 5) = 
1 + (3x - 5)2 · 

(7) 

(8) 

Even more important for our future work are the integration formulas equiv
alent to (7) and (8): 

f du . I --- = sm- u + c  
� 

(9) 

3 1 5  
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and 

J du 
-- = tan- 1 u + c. 
I + u2 ( I  0) 

These formulas are indispensable tools for integral calculus, and all by them
selves amply justify the study of trigonometry. 

Example 2 Calculate each of the following integrals: 

J dx J dx J (a) y ; (b) 
1 + 25 2 ; (c) 

1 - 9x2 x 

Solution (a) Put u = 3x. Then du = 3dx, and by (9) 

Sx2dx 

l + 4x6 · 

J dx 
J 

t du I I 
---- = = - sin - I u + c = - sin- I 3x + c. 
V1 - 9x2 � 3 3 

(b) Put u = Sx. Then du = Sdx, and by ( 1 0) 

J dx 
J 

f du I I 

I + 25x2 = 
I + u2 = S tan - ' u + c = S tan - I Sx + c. 

(c) To get started here we must notice that 4x6 = (2x3)2 . This suggests putting 
u = 2 x3 . Then du = 6x2 dx, and by ( 1 0) 

J 
Sx2 dx J i du 5 5 

--- = 5 -- = - tan- 1 u + c = - tan- I 2x3 + c. 
I + 4x6 l + u2 6 6 

The crucial feature of this integral is clearly the presence of x2 in the numerator, 
for without this factor the method we have used would be unworkable. 

Remark 1 As students doubtless suspect, four other inverse trigonometric func
tions can be defined if we wish to do so. However, these functions are not really 
needed for the purpose of integration. We can illustrate this point by observing 
that if u > 0 then 

J du = J du = J du 
uVu2=I uYu2(1 - l /u2) u2Y! - ( l/u)2 

= -J d( llu) = -sin- I _!_ + c. 
YI - ( 1/u)2 u 

(If u < 0, the factor u2 under the radical in the second step comes out of the rad
ical as - u. )  This integral is a standard type that many writers integrate by using 
the inverse secant-which this calculation clearly shows to be superfluous. The 
fact of the matter is that the inverse sine and the inverse tangent suffice for all 
our purposes for calculating integrals, so for the sake of simplicity we ignore the 
other inverse trigonometric functions. (The notation cos- I x will occasionally be 
used, but only for convenience in designating the angle between 0 and 1T whose 
cosine is x, where x is a number between 1 and - 1 .) 

Remark 2 Suppose that a variable x is a function of a variable y as shown on 
the left in Fig. 9.2 1 .  In this case, not only does each y (in a certain interval) de-
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termine a unique x, but also each x determines a unique y. Thus, y is also a func
tion of x. If the given function is written x = l(y), then the second function is 
often called the inverse function of the first and denoted by the symbol y = 1- 1 (x) 
[read ''.{ inverse of x"] . The graph of y = 1- 1 (x) is simply the graph of x = l(y) 
turned over as shown on the right in Fig. 9.2 1 ,  so that the axes are returned to 
their normal positions. The essence of this situation is that when two functions 
are related in this way, then each undoes what the other one does, in the sense 
that 

r 1 <J(y)) = y and 

It is this reciprocal relation that is suggested by the word "inverse" and the sym
bo11- 1 . We have encountered inverse functions in Chapter 8 and also in this sec
tion, but we have no special need to develop the subject in detail. We do point 
out, however, that any increasing or decreasing function x = l(y) obviously has 
an inverse; and it can be proved that if either function has a nonzero derivative 
at a point, then so does the other and 

dy I 
d.x = d.x/ dy . 

Here again-as in the case of the chain rule-we have a situation in which the 
Leibniz fractional notation for derivatives strongly suggests a true theorem in the 
guise of a simple manipulation of differentials. 

Remark 3 Formula ( 1 0) leads rather quickly (though unrigorously) to the fa
mous Leibniz formula 

'TT I 1 I - = ! - - + - - - + · · ·  
4 3 5 7 , ( 1 1 )  

which connects the number 7T with the odd numbers 1 ,  3 ,  5 ,  7 ,  . . . . To see this 
connection, we begin with the formula from elementary algebra for the sum of 
a geometric series, 

l 
I + r + r2 + r3 + · · · = --. I - r ( 1 2) 

(The reader will perhaps recall from high school algebra that this formula is valid 
for lrl < 1 ,  but here we pay little attention to such cautionary details.) If r in ( 1 2) 
is replaced by - t2 and the resulting equation is reversed, we get 

3 1 7 
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1 --- = l - t2 + t4 - t6 + · · ·  1 + t2 ( 13 ) 
We now apply ( 1 0) to obtain 

tan- 1 x =  (x_.!!!__ = rx [ l - t2 + t4 - t6 + · · · ] dt Jo 1 + t2 Jo 
x3 xs x1 = x - - + - - - +  . . .  3 5 7 , 

which yields Leibniz's formula ( 1 1 )  when x = 1 .  These ideas and the legitimacy 
of these procedures will be studied much more carefully in Chapters 1 3  and 1 4. 

PROBLEMS 

1 Given that (} = sin- 1 ( -±), find cos 8, tan 8, cot 8, 1 7  f dx 
VI="4x2 '  

18  f I :3x2 · sec 8, csc 8. 
2 Given that 8 = tan- 1 \13, find sin 8, cos 8, cot 8, sec 8, 

csc 8. 
3 Evaluate each of the following: 

19  f/2 dx o I + 4x2 · 
20 J x dx 

I + 4x4 · 
(a) sin- 1  I - sin- 1  (- 1 ) ; (b) tan- 1 I - tan- 1 (- 1 ) ; 2 1  f dx 

22 f dx . 
(c) sin (sin- 1  0. 123); (d) cos (sin- 1  0.6); 
(e) sin (2 sin- 1 0.6); (f) tan-1  (tan 7T/7); 

V9 - 4x2 . V16 - 9x2 
(g) sin- 1  (sin 57r/6); (h) tan- 1 (tan [ - 37T/4]). 23 J 4 :9x2 · 24 r dx 

Vi x�· 
Find dyldx in each of Problems 4-13. 
4 y = sin- 1  ±x. 5 y = t tan- 1 tx. 

x - 1 
8 y = tan- 1 --. x + 1 
9 y = x sin- 1 x + �. 

10 y = x tan- 1 x - In �. 

x - 1 y = sin- 1 --. x + l 

1 1  y = x(sin- 1 x)2 - 2x + 2� sin- 1 x. 
12 y = ±<sin- 1  x + x�). 

13 1 4 sin x y = tan - 3 + 5 cos x 
14  I f  a i s  a positive constant, show that 

I du . I U 
---- = sm- - + c Ya2 - u2 . a 

and 

I du 1 u 
--- = - tan- 1 - + c. a2 + u2 a a 

These simple generalizations of formulas (9) and ( 10) are 
often more convenient in applications. 

Evaluate the integrals in Problems 1 5-25. 

15 (01 12 dx 1 6  f I dx Jc � · - 1  1 + x2 · 

25 

26 A picture hangs on a wall with its base a feet above the 
level of an observer's eye. If the picture is b feet high 
and the observer stands x feet from the wall, show that 
the angle 8 subtended by the picture is given by the for
mula 

a + b a 8 = tan - 1  -- - tan- 1  -. x x 
What value of x maximizes this angle? 

27 The points ( 1, 2) and (2, I )  in the first quadrant are joined 
by two segments to a variable point (0, y) on the y-axis, 
where y < 3. If 8 denotes the angle between these seg
ments, what is the largest value (} can have? 

28 A balloon is released at eye level and rises at the rate of 
5 ft/s. An observer 50 ft away watches the balloon rise. 
How fast is the angle of elevation increasing 6 seconds 
after the moment of release? 

29 The top of a 1 5-ft ladder is sliding down a wall. When 
the base of the ladder is 9 ft from the wall, it is sliding 
away at the rate of 3 ft/s. (a) What is the angle between 
the wall and the ladder at that moment? (b) How fast is 
the angle increasing at that moment? 

30 Sketch the curve y = 1 /( 1 + x2). Find the area of the re
gion under this curve between x = 0 and x = b, where b is a positive constant. Find the limit of this area as b � =. 
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31 Comment on the legitimacy of the formula 

(o3 dx . 1 3 
and x = b where 0 < b < 1 .  Find the limit of this area 
as b � 1 .  Jr --- = sm- . 

� 33 The circle x2 + y2 = a2 is revolved about the line y = a .  

32 Sketch the curve y = 1 /� on the interval 0 :s 
x < 1 .  Find the area under this curve between x = 0 

Find the area of the resulting surface of revolution. 

Most people understand that sound is vibration, and for this reason alone the 
study of vibrations is an important part of science. But vibrations-or oscilla
tions, or waves, or periodic phenomena generally-are much more pervasive 
than this. They appear in many contexts having little to do with sound, for in
stance in connection with radio waves, light waves, alternating electric currents, 
the vibration of atoms in crystals, etc. The study of vibrations in this broader 
sense is clearly one of the most fundamental themes of physical science, and in 
any such study sines and cosines play a central role. 

One of the simplest types of vibrations occurs when an object or point moves 
back and forth along a straight line (the x-axis) in such a way that its accelera
tion is always proportional to its position and is directed in the opposite sense: 

d2x 
dt2 = -kx, k >  0. ( I )  

Motion of this kind is called simple harmonic motion. To emphasize that the con
stant k is positive, it is customary to write k = a2 with a > 0. The differential 
equation ( 1 )  then takes the form 

It is easy to see that any function of the form 

x = A  sin (at + b), 
satisfies equation (2). * We merely calculate 

A ,e 0, 

dx 
dt = Aa cos (at + b) 

and observe that 

and d2x - = -Aa2 sin (at + b) = -a2x dt2 ' 

(2) 

(3) 

It is equally true, though not so easy to see, that every nontrivial solution of (2) 
can be written in the form (3). We will demonstrate this in Remarks 1 and 2, but 
meanwhile we take it for granted. 

Since the function sin (at + b) oscillates between - 1  and 1 ,  the function (3) 
oscillates between - IA I  and IA I .  The number IA I is called the amplitude of the 
motion ( Fig. 9 .22). Also, since the sine is periodic with period 2 7T, sin (at + b) 
is periodic with period 2 7T/a, because this is the amount t must increase in order 
to increase at + b by 27T. This number T = 2 1T!a is called the period of the mo
tion, and is the time required for one complete cycle. If we measure t in seconds, 

*We add the condition A * 0 to avoid the trivial case in which x is identically zero and consequently 
there is no motion. 
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then the number f of cycles per second satisfies the equationfT = 1, and is there
fore the reciprocal of the period, 

This number is called the frequency of the motion. 
Another equivalent form of the general solution (3) that is often useful is 

x = A  cos (at + b). (4) 

This is easily seen from the fact that b in (3) is an arbitrary constant, and can 
therefore be replaced by the equally arbitrary constant b + 7T/2.  This gives 

x = A  sin (at + b + ; ) = A  cos (at + b), 

since sin ( () + 7T/2) = cos (). 
There are two main interpretations of simple harmonic motion, one geometric 

and the other physical. 
The geometric meaning can be understood by considering a point P that moves 

with constant angular velocity around a circle of radius A ( Fig. 9.23). If this con
stant angular velocity is denoted by a, then 

d8 - = a  dt and therefore 8 = at + b, 

where b i s  the value of () when t = 0. If Q is the projection of P on the x-axis, 
then its x-coordinate is 

x = A  cos (} = A  cos (at + b). 
This shows that Q moves back and forth along the x-axis in simple harmonic mo
tion as P moves steadily around the circle in uniform circular motion, and any 
simple harmonic motion can be visualized in this way. 

The physical meaning appears when we think of equation ( 1 )  as describing the 
motion of a body of mass m rather then merely a point. Newton's second law of 
motion says that F = ma, so equation ( 1 )  becomes 

I - F =  -kx or F = - krnx. 
rn 

A force F of this kind is called a restoring force, because its magnitude is pro
portional to the displacement x and it always acts to pull the body back toward 
the equilibrium position x = 0. We discuss the idea more fully in our first two 
examples. 

Example 1 Consider a cart of mass m attached to a nearby wall by means of a 
spring ( Fig .  9 .24). The spring exerts no force when the cart is at its equilibrium 
position x = 0. If the cart is pulled aside to a position x, then the spring exerts a 
restoring force F = -kx, where k is a positive constant whose magnitude is a 
measure of the stiffness of the spring (see Example 1 in Section 7 .7). Suppose 
that the cart is pulled out to the position x = x0 and released without any initial 
velocity at time t = 0. Discuss its subsequent motion if friction and air resistance 
are negligible. 
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Solution We are assuming that the only force acting on the cart is the restoring 
force F = - kx, so by Newton's second law of motion we have 

d2x m - = -kx dt2 or d2x k 
-d 2  + -x = O. t m 

It is convenient to write this equation as 

d2x 
-

+ a2x = O  dt2 ' 

where a = �. The form of the general solution we prefer here i s  

x = c 1 s in at + c2 cos at, 
which can be obtained by expanding either (3) or (4). The initial conditions 

X = XQ and dx v = - = O  dt 
imply that c2 = xo and c1  = 0, so (5) becomes 

x = x0 cos at. 

when t = 0 

(5) 

It is clear from this that the cart moves in simple harmonic motion with period 
T = 21Tla = 21Tv;:;;/k and frequency 

f = + = 217T [[;. (6) 

We see from (6) that the frequency of this vibration increases if the stiffness k 
of the spring is increased, and decreases if the mass m of the cart is increased, 
as our common sense would have led us to expect. 

Example 2 Suppose that a tunnel is bored straight through the center of the earth 
from one side to the other, and that a body of mass m is dropped into this tun
nel. Assuming as usual that the earth is a perfect sphere of uniform density and 
radius R of about 4000 mi , the effect of gravity is such that the body is attracted 
toward the center of the earth by a force F proportional to its distance x from the 
center ( Fig. 9.25). * Show that the body traverses the tunnel from one end to the 
other and back again with simple harmonic motion, and calculate the period of 
this motion. 

Solution Clearly F = -kx for a suitable constant k. To find the value of this 
constant we use the fact that F = - mg at the surface of the earth, where x = R, 
so 

-mg = -kR or k = mg 
R . 

Newton's second law of motion therefore takes the form 

d2x mg m - = --x dt2 R or 

*The reason for this law of force will be explained in a later chapter, in connection with triple inte
grals in spherical coordinates. 
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No further discussion i s  needed in order to conclude that this is simple harmonic 
motion with period 27TVR/i. A sequence of easy approximate calculations gives 

/R 4000 · 5280 ft -
= 6 3 J.Soo · 5280 21T .Y-g = 6 ·3 32 ft1s2 · 4 s 

= 6.3 500 . 5280 . 6 3 Y20o . 4 · 3600 mm = · mm 

= -!f · 1 4  min = 89 min. 

The period is of course the total time required for a round trip through the tun
nel to the other side of the earth and back again. A one-way trip requires only 
about 45 minutes, and the journey to the center of the earth only about 22 min
utes. 

Example 3 A pendulum consists of a bob (a weight) suspended at the end of a 
light string and allowed to swing back and forth under the action of gravity. As 
usual, we idealize the situation and consider a particle of mass m at the end of 
a weightless string of length L ( Fig. 9.26). Find the period of this pendulum un
der the assumption that its oscillations are small. 

Solution The downward force of gravity on the bob is mg, and this has a com
ponent mg cos </> = mg sin () tangent to the path. Since s = L(), the tangential ac
celeration of the bob is  

d2s d2(L8) d2(J - = -- = L -dt2 dt2 dt2 ' 

and Newton's second law applied to the motion of the bob along its circular path 
is 

d2(J 
mL dt2 = -mg sin (} or 

d2(J g . -;Ji2 + L sm (} = 0. (7) 

The presence of sin () makes this differential equation impossible to solve ex
actly, and the motion is not simple harmonic. However, for small oscillations we 
recall that sin () is approximately equal to e, so (7) becomes (approximately) 

d2(J g -;Ji2 + £ 8 = o. 
This equation tells us that the angular motion is approximately simple harmonic 
with period 2TTVUg. When these ideas are analyzed in more detail, it turns out 
that the period of this oscillation actually depends on the amplitude of the mo
tion, and this is the source of the so-called circular error in pendulum clocks. 

Remark 1 We return to the matter of proving that (3) is indeed the general so
lution of (2) . By Problem 19 in Section 9.2 we know that every nontrivial solu
tion of (2) has the form 

x = c1 sin at + c2 cos at, (8) 
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where the constants c1 and c2 are not both zero. To write (8) in the form (3), we 

begin by setting A = v' c 1 2 + c22. Then the point (c 1/A ,  c2/A) is a point on the 
unit circle, and therefore there is an angle b such that 

C J  cos b = "A  and 

These equations now enable us to write (8) as 

x = A(sin at cos b + cos at sin b) 
= A  sin (at + b), 

by the addition formula for the sine. 

Remark 2 It is also possible to obtain (3) directly from (2), as follows. If we 
write 

d2x du du dx du 
- = - = - - = u -dt2 dt dx dt dx'  

then (2) becomes 

du u- + a2x = 0 dx 
and by integrating we get 

u2 + a2x2 = a constant 

or u du + a2x dx = 0, 

or 

where A is the positive value of x at which v = 0. This yields 

dx = u = +aYA2 - x2 dt - or dx - + d .� - -a t, VA" - x2 

(9) 

where the choice of sign here depends on whether the velocity v is positive or 
negative at the moment. We suppose for definiteness that v > 0 and integrate 
again to obtain 

so 

which is (3). 

PROBLEMS 

sin - l � = at + b A or f = sin (at + b), 

x = A sin (at + b), 

323 

1 In each of the following motions calculate the amplitude 
and period by rewriting in the form x = A sin (at + b). 
(a) x = 5 sin t - 5 cos t; 

2 In any simple harmonic motion of the form (3), show 
that the velocity u is related to the position x by the equa
tion 

(b) x = v'3 cos 3t - sin 3t; 
( c) x = sin t + cos t; 

u2 = a2(A2 - x2). 
(d ) x = 2v'3 sin 2t - 2 cos 2t. Deduce that the speed is greatest when the body passes 
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through its equilibrium position, and is zero at the ends 
of the interval, where the body reverses the direction of 
its motion. 

at one end will roll through the earth under its own 
weight, stop at the other end, and return. Show that the 
time required for a complete round trip is the same for 
all such tunnels, and estimate its value. 3 In Example 1 ,  suppose the spring is stretched 3 in by a 

force of 6 lb. If the cart weighs 1 2  lb, and if it is pulled 
out 4 in from its equilibrium position and struck a sud
den blow sending it back toward its equilibrium position 
at a velocity of 3 ft/s, find the amplitude and period of 
the resulting simple harmonic motion. Hint: Recall that 
mass is weight divided by g. 

*6 A spherical buoy of radius r floats half submerged in wa
ter. If it is depressed slightly, Archimedes' principle tells 
us that a restoring force equal to the weight of the dis
placed water presses it upward; and if it is released, it 
will bob up and down. Show that if the friction of the 
water is negligible, then the motion will be simple har
monic, and find its period. 4 A body in simple harmonic motion passes through its 

equilibrium position at t = 0, 1 ,  2, . . . .  Find a position 
function of the form (3) if v = dx/dt = - 3 when t = 0. 

5 Suppose that a straight tunnel is bored through the earth 
between any two points on the surface. If tracks are laid, 
then-neglecting friction-a train placed in the tunnel 

7 People who manufacture grandfather clocks have a pro
fessional interest in pendulums that take 1 second for 
each swing and thus have a period of 2 seconds. Esti
mate the length of such a pendulum. 

9 . 7  
(OPTIONAL) 

HYPERBOLIC 
FUNCTIONS 

The hyperbolic functions are certain combinations of exponential functions that 
occur in various applications, with properties similar to those of the trigonomet
ric functions. The reason for the name will be made clear below. 

The two basic hyperbolic functions are the hyperbolic sine and hyperbolic co
sine, defined by 

and ( I )  
The symbol "sinh" i s  pronounced "cinch," rhyming with "pinch," and "cosh" 
rhymes with "gosh." Just as in trigonometry, inspection of the definitions shows 
at once that these functions have the simple properties 

sinh ( -x) = -sinh x and cosh ( -x) = cosh x. (2) 

On the other hand-in contrast to the sine and cosine-these functions are not 
periodic. The other four hyperbolic functions are less often used and are defined 
by identities analogous to those of trigonometry: 

sinh x tanh x = --h-, cos x 

1 coth x = --h -, tan x 

1 sech x = --h-, cos x 

1 csch x = -.-h -. sm x 

There are numerous relations among these functions that are similar to the 
trigonometric identities. Also, their derivatives and integrals resemble those of 
the corresponding trigonometric functions. However, there is a different pattern 
of algebraic signs, and close attention is needed in order to avoid making mis
takes. Since these identities and formulas are so easily confused with those of 
trigonometry- which are much more important-we do not recommend that 
students make an effort to learn them. 

IDENTITIES 

Among the many identities, we mention only the ones most frequently used: 

cosh2 x - sinh2 x = 1 ,  (3) 
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cosh2 x + sinh2 x = cosh 2.x, 
sinh (x + y) = sinh x cosh y + cosh x sinh y, 
cosh (x + y) = cosh x cosh y + sinh x sinh y. 

(4) 

(5) 

(6) 

Each of these, and many others, can be proved directly from the definitions ( 1 ) . 
Thus, in the case of (3), 

cosh2 x - sinh2 x = tcex + e-x)2 - tcex - e-x)2 

= t[e2x + 2 + e-2x _ (e2x _ 2 + e-2x)] 

= I . 

This identity can also be established by multiplying together 

e = cosh x + sinh x and e-x = cosh x - sinh x, 
which are the results of adding and subtracting equations ( 1 ) .  
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WHY THE NAME? �-r-----+-�-�IW-'--+- X 

If t is any real number, then the point P = (cos t, sin t) lies on the unit circle 
x2 + y2 = 1 ,  because 

cos2 t + sin2 t = I .  

In fact (see Fig. 9.27), the definitions of the sine and cosine allow us to interpret 
t as the angle AOP from OA to OP, where the angle is understood to be mea
sured in radians. For this reason the sine and cosine are often called circular func
tions. 

Similarly, for any real number t the point P = (cosh t, sinh t) lies on the right 
branch of the curve x2 - y2 = 1 (see Fig. 9.28), because 

cosh2 t - sinh2 t = I 

and cosh t > 0. We shall see later that this curve is called a hyperbola, and ac
cordingly cosh t and sinh t are called hyperbolic functions. This time the vari
able t is not the angle AOP. However, it turns out (see Problem 3 1 )  that t is twice 
the area of the shaded hyperbolic sector in the figure, just as in the trigonomet
ric case t is twice the area of the shaded circular sector in Fig. 9 .27. 

DERIVATIVES AND INTEGRALS 

Figure 9.27 

The derivatives are similar to those of the trigonometric functions, but not ex- Figure 9.28 
actly the same: 

d . du 
dx smh u = cosh u dx ' 

d . du 
dx cosh u = smh u dx , 

d du - tanh u = sech2 u -dx dx " 
The first, for example, comes from 

d . l d J - smh x = - - (e - e-x) = -(e + e-x) = cosh x dx 2 dx 2 . 

(7) 

(8) 

(9) 

( I ,  0) 

y 

= (cosh t, sinh t) 

0 A =  ( I ,  0) 
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By turning these around we have the integration formulas 

J cosh u du = sinh u + c, 

J sinh u du = cosh u + c, 

and so on. In the case of tanh u we have 

GRAPHS 

I h d I sinh u du J d(cosh u) 1 ( h ) tan u u = h = h = n cos u + c. cos u cos u 

( 1 0) 

( 1 1 )  

( 1 2) 

We begin with y = cosh x. First, the fact that cosh ( -x) = cosh x shows that the 
graph is symmetric about the y-axis, and it crosses the y-axis at the point (0, 1 )  
because 

We see that 

if and only if x = 0, so the graph has a horizontal tangent at the point (0, 1) and 
at no other point. Since 

d2 d . 
dx2 cosh x = dx 

smh x 

= cosh x = f(ex + e-x) > 0, 

the graph is concave up everywhere and therefore has the appearance shown in 
Fig. 9.29. This graph can also be obtained by geometrically adding the two curves 
y = ex and y = e-x-that is ,  by adding the two y's for each x - and tiling half 
of each resulting y-value. 

Now for the graph of y = sinh x. This graph ( Fig. 9.30) passes through the 
origin since 

sinh 0 = f(e0 - e-0) = 0, 

and the identity sinh ( -x) = - sinh x shows that it is symmetric about the ori
gin. The graph is rising at every point because 

The fact that 

! sinh x = cosh x = f(ex + e-x) > 0. 

d2 ' h  d h ' h  dx2 
sm x = dx 

cos x = sm x 

is 
{> 0 

< O  

for x > 0, 

for x < 0, 

shows that the graph is concave up for x > 0 and concave down for x < 0. The 
point (0, 0) is the only point of inflection. Figure 9.30 shows a comparison of 
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the two graphs. The graph of y = cosh x lies above the graph of y = sinh x be
cause 

and their difference e
-x --7 0 as x --7 °"· 

INVERSE FUNCTIONS 

The inverse hyperbolic functions can be expressed in terms of logarithms, and 
therefore present nothing new. We illustrate with the hyperbolic sine. The graph 
is rising at all points ( Fig. 9.30), so there exists an inverse 

y = sinh- 1 x 

which is obtained by solving 

x = sinh y = t(eY - e-Y) 

for y in terms of x. This can be written as 

2x = eY - e-y or e2Y - 2xeY - I = 0, 

which is a quadratic equation in eY. Solving this by the quadratic formula gives 

2x ::':: v'4x2+4 eY = 2 
= x + w+l, 

where the minus sign is discarded because it gives a negative value to eY. By 
solving for y we now obtain 

y = sinh- 1  x = ln (x + �). ( 1 3) 

The derivative can be found by differentiating this logarithm. A better way is to 
differentiate sinh y = x implicitly :  

cash y dy = 1 dx 

This gives the formulas 

and 

or dy 
dx cosh y Yl + sinh2 y � · 

!!:.__ sinh-1 u = du 
dx VI+:2 dx 

J � = sinh-1 u + c. 
1 + u2 

( 14) 

( 1 5) 

We ask the student in the problems to provide a similar discussion of the inverse 
function y = tanh- 1 x. 

THE CATENA RY 

The most famous application of the hyperbolic functions is to the following clas
sical problem: Determine the exact shape of the curve assumed by a flexible chain 
or cable of uniform density which is suspended between two points and hangs 
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under its own weight. This curve is called a catenary, from the Latin word for 
chain, catena. 

Let the y-axis pass through the lowest point of the chain (Fig. 9 .3 1 ), let s be 
the arc length from this point to a variable point (x, y), and let w0 be the linear 
density (weight per unit length) of the chain. We obtain the differential equation 
of the catenary from the fact that the part of the chain between the lowest point 
and (x, y) is in static equilibrium under the action of three forces: the tension To 
at the lowest point; the variable tension T at (x, y), which acts in the direction of 
the tangent because of the flexibility of the chain; and a downward force w0s 
equal to the weight of the chain between these two points. 

Equating the horizontal component of T to To and the vertical component of 
T to the weight of the chain gives 

T cos (} = To and T sin (} = was, 
and by dividing we eliminate T and get tan 8 = w0s!T0 or (since tan 8 = dy/dx) 

dy = as dx ' where 

We next eliminate the variable s by differentiating with respect to x, 

d2y ds v' dx2 + dy2 
dx2 = a dx = a  dx 

This is the differential equation of the catenary. 

( 1 6) 

We now solve equation ( 16) by two successive integrations. This process is fa
cilitated by introducing the auxiliary variable m = dy/dx, so that ( 16) becomes 

dm . � - = a v  I + m2 . dx · 

On separating variables and integrating we get 

and by ( 1 5) this yields 

sinh- 1  m = ax +  c 1 . 

Since m = 0 when x = 0 (why?), we see that c1 = 0, so sinh- 1 m = ax or 

m = sinh ax. 

But m = dy/dx, so we  have another differential equation to solve: 

dy . 
- = smh ax dx ' 

dy = sinh ax dx, 

y = J sinh ax dx 
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If  we now place the origin of  the coordinate system at  just the right level so that 
y = l!a when x = 0, then c2 = 0 and our equation for the catenary takes its fi
nal form, 

1 y = - cosh ax. a ( 17) 

Equation ( 17) reveals the precise mathematical nature of the catenary and is the 
basis for a number of practical applications to problems such as the sag of tele
phone lines and the design of suspension bridges like the Golden Gate Bridge in 
San Francisco. 

PROBLEMS 

Find the exact numerical value of 
(a) sinh (In 2);  (b) cosh ( -In 3);  (c) tanh ( 2  l n  3) .  

Establish the identities in Problems 2-1 1 .  
2 sinh (x + y) = sinh x cosh y + cosh x sinh y. 
3 cosh (x + y) = cosh x cosh y + sinh x sinh y. 
4 sinh (x - y) = sinh x cosh y - cosh x sinh y. 
5 cosh (x - y) = cosh x cosh y - sinh x sinh y. 
6 sinh 2x = 2 sinh x cosh x. 
7 cosh 2x = cosh2 x + sinh2 x. 
8 2 cosh2 x = cosh 2x + I .  
9 2 sinh2 x = cosh 2x - I .  

10  tanh2 x + sech2 x = I .  
1 1  coth2 x - 1 = csch2 x. 
1 2  Show that (cosh x + sinh x)" = cosh nx + sinh nx for 

any positive integer n. 

In Problems 1 3- 1 8, find dy/dx. 
13  y = sinh x3. 
14 y = cosh (5x - 3). 
1 5  y = I n  (tanh 3x). 
16 y = sinh4 3x. 
1 7  y = cosh2 5x  - sinh2 5x. 
1 8  y = tanh x2. 

In Problems 19-24, find the integral . 
1 9  J sinh (5x - 3)  dx. 
20 J sinh 3x dx 

I + cosh 3x · 

2 1  JYl + cosh x dx. 
22 J ex - e=x 

dx [compare with formula ( 1 2)) .  ex + e x 
23 J tanh2 x dx. 
24 J(sinh2 x + cosh2 x) dx. 
25 Sketch the graph of y = tanh x by merely inspecting Fig. 

9.30. 
26 Use tanh y = x to express the inverse function y = 

tanh- J x in the form 

I 1 + x y = tanh- J x = - In --. 
2 1 - x 

27 Use Problem 26 to show in two ways that 

so that 

d 
- J _ 1 dx tanh x - I - x2

, 

f�- - J  
1 _ x2 - tanh x. 

28 Use formula ( 1 5) to show that 

r � = In ( 1  + Vl). 0 9 

29 Find the area under the catenary y = _!_ cosh ax from x = 
0 to x = I/a. a 

30 If an object moving on the x-axis is repelled from the 
origin (instead of being attracted to it) with a force pro
portional to its position x, then its motion satisfies the 
differential equation 

where a is a positive constant. Show that for any con
stants CJ and c2 the function 

x = CJ sinh at + c2 cosh at 
is a solution of this differential equation. 
(a) Find the solution of 

d2x df2" = 9x 

that satisfies the initial conditions x(O) = 2 and x' (0) = 
1 .  
(b) Find the solution of 

d2x 4 - = x dt2 

that satisfies the initial conditions x(O) = 1 and x' (0) = 
2.  
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31 Show that the area A(t) of the shaded hyperbolic sector 
in Fig. 9.28 is tr, so that t = 2A(t), as stated. Hint: Be
gin by observing that 

I (cosh t , � 
A(t) = 2 cosh t sinh t - J I v x2 - 1 dx. 

Then show that A'(t) = t by using various identities and 
the rule for differentiating integrals given in Section 6.7. 
Finally, use the fact that A(O) = 0. 

CHAPTER 9 REVIEW: DEFINITIONS, FORMULAS 

Think through and learn the following. 

1 Basic trigonometry (see front endpaper). 
2 The derivatives of the six trigonometric functions, and the 

corresponding integral formulas. 
3 The definitions of sin- 1 x and tan- I x. 
4 The derivatives of sin- I x and tan - I x, and the corre

sponding integral formulas. 

ADDITIONAL PROBLEMS FOR CHAPTER 9 

SECTION 9.2 
In each of Problems 1-18, find the derivative dyldx of the 
given function. 

1 y = sin (1 - 9x). 2 y = 7 cos (7x - 1 3). 
3 y = cos2 x. 4 y = cos x2 . 
5 y = cos2 5x. 6 y = 5 sin ( 1  - 1 8x). 
7 y = cos2 3x - sin2 3x. 8 y = cos2 9x + sin2 9x. 

sin x 
9 y = x2 cos x. 10 y = -x-. 
1 1  y = x sin x + cos x. 12 y = '\

/,-
l
-
+-si_n_2

_
x. 

13 y = cos (cos x). 14 y = e•in' x. 
15 y = cos (sin x). 16 y = In (x sin x). 
17 y = sin (e10 x) . 18 y = In [sin (In x)]. 
19 Consider the differential equation 

d2y 
dx2 + a2y = 0, 

where a is a positive constant. Use the following steps 
to prove that every solution of this equation has the 
form 

y = c1 sin ax + c2 cos ax 
for a suitable choice of the constants c1 and c2. 
(a) If y = g(x) and y = h(x) are solutions, show that 

every linear combination y = c1 g(x) + c2 h(x) is 
also a solution. 

(b) If y = f(x) is a solution, show that 
a2(f(x)]2 + [f (x)]2 = a constant. 

Deduce that if y = f(x) is a solution such that 
/(0) = J' (O) = 0, thenf(x) = 0 for all x. 

(c) If y = f(x) is any solution, show that 

5 The differential equation �:� + a2x = 0 of simple 

harmonic motion, and its solutions. 
6 The definitions of sinh x and cosh x. 

f(x) = c1 sin ax + c2 cos ax 

for a suitable choice of the constants c1 and c2. 
Hint: Apply part (b) to 

f(x) - ..!.. f (0) sin ax - /(0) cos ax. a 
20 Use Problem 2 1 (b) in Section 9 . 1 to give another proof 

of the formula (d/dx) sin x = cos x. 
21 Give another proof of the limit (4) in Section 9.2 by 

the following steps: If (} is a small positive angle (0 < 
(} < -rr/2) in the unit circle shown in Fig. 9.32, then 
(a) area t:i.OPQ < area sector OPQ < area t:i.OQR; 
(b) t sin (} < te < t tan O; 

0 

Figure 9.32 

( ) I < _e_ < _1 _. c sin e cos (} ' 

Q 

sin (} (d) 1 > -0- > cos e. 
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*22 Figure 9.33 shows the familiar mechanism of a piston 
(which moves back and forth in a cylinder) attached 
at a point P to a connecting rod of length b which in 
tum is attached to a point Q on a crankshaft that ro
tates in a circle of radius a with center at 0. 

Figure 9.33 

(a) Find dxldt, the velocity of the piston, in terms of 
d(}/dt, the angular velocity of the crankshaft. Hint: 
Use the law of cosines. 

(b) If the angular velocity of the crankshaft is denoted 
by the customary symbol w, show that the speed 
of the piston is w · OR, where R is the point in 
which the line PQ intersects the line through 0 
perpendicular to OP 

*23 A given fixed circle has radius a. A second circle has 
its center on the given circle, and the arc of the sec
ond circle that lies inside the given circle has length 
s. Show that s has its largest value when a suitable an
gle (} satisfies the equation cot (} = e. 

24 A heavy block of weight W is to be dragged along a 
flat table by a force F whose line of action is inclined 
at an angle (} to the line of motion, as shown in Fig. 
9.34. The motion is resisted by a frictional force µN 
which is proportional to the normal force N = W - F · 
sin (} with which the block presses perpendicularly 
against the surface of the table (µ, is a constant called 
the coefficient of friction). The block moves when the 
forward component of F equals the frictional resis
tance, i.e., when F cos (} = µ,(W - F sin 0). Find the 
direction and magnitude of the smallest force F that 
will move the block. 

N =  W - F sin li J 
µN -

Figure 9.34 

In each of Problems 25-36, find the value of the indicated 
limit. 

3 
25 Jim tan x . x->0 x2 26 r sin x 

x� �· 

27 

29 

31 

33 

35 

r sin x 
1m --. 

X-+7T 7f - X 

lim x + tan x 
sin x x->0 

r 2x 1m -.-3-· X->0 S!Il x 
r sin 2x 1m ---. 
x->0 3x2 + x 
r cos Trix 1m ---. 
x->2 X - 2 

SECTION 9.3 

. 2 
28 )' S!Il X 1m --. 

x->0 x 

30 
r tan 3x 1m --. 
x->0 4x 

32 Jim x cot 3x. x->0 

34 Jim x csc2 �. 
x->0 

36 
r sin 2x 1m --. 

X-t1T 'TT - X 

Evaluate the indefinite integrals in Problems 37-54. 
37 f cos 3x dx. 
38 f sin (7x + I )  dx. 
39 f cos ( I  - tx) dx. 
40 f cos2 1x sin 1x dx. 
41 f sin5 3x cos 3x dx. 
42 f cos2 tx sin tx dx. 
43 f (2 - cos2 3x) sin 3x dx. 
44 f3 sin x sin 2x dx. 
45 f x2 cos x3 dx. 
46 f Vx sin x3

1
2 dx. 

47 f sin (cos 2x) sin 2x dx. 
48 f V cos 2x sin 2x dx. 

J 
cos 4x dx 

49 sin2 4x · 

J 
sin x dx 

50 cos5 x · 

51 J 
sin x dx 

(3 + 2 cos x)2 ' 
52 f YI + sin 2x cos 2x dx. 

J 
cos 5x dx 

53 
Y7 - sin 5x · 

54 f ( 1  + 4 sin 8x)7 cos Sx dx. 
Evaluate the definite integrals in Problems 55-58. 

(7Tll4 
55 Jo cos 7x dx. 

{ 7Tl6 sin 2x dx 
57 Jo cos2 2x · 

f 7T/18 
56 Jo sin 6x dx. 

r� 58 Jo 10 x4 sin x5 dx. 
59 Find the area bounded by y = sin x and y = cos x be

tween the first two positive values of x at which these 
curves intersect. 

60 Find the area bounded by y = I - cos 2x and y = 
cos x - I between x = 0 and x = 27T. 

61 Find the area bounded by y = 4 - 3 sin 2x and y = 
2 cos 5x - 3 between x = 0 and x = 37T. 

62 Show that if m and n are positive integers, then 
f27T { 0 Jo sin mx sin nx dx = 1T 

if m * n, 
if m = n, 
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*63 

r2- { o  Jo cos mx cos nx dx = 7T 
if m =t- n, 
if m = n, 

f2 • Jo sin mx cos nx dx = 0. 

Hint: See Problem 20 in Section 9. I .  (These facts are 
very important in the theory of Fourier series, which 
is one of the most useful parts of advanced mathe
matics from the point of view of applications to sci
ence.) 
In this problem we ask students to establish the for
mula 

fb sin x dx = cos a - cos b (*) Ja 
directly from the limit definition of the integral, with
out making any use of the Fundamental Theorem of 
Calculus. 
(a) Show that 

sin x + sin 2x + · · · + sin nx 

cos tx - cos (n + t)x 

2 sin tx 

Hint: Write down the identity 2 sin e sin </J = 
cos (e - </J) - cos (8 + </J) for the n cases in which 
the pair (8, </J) is taken to be (x, tx), (2x, tx), 
. . .  , (nx, h), and add. 

(b) For b > 0, the limit definition of the integral gives 

fb fl ( kb ) b Jr sin x dx = lim L sin - · -
0 11-too k= 1 n n 

1. b .!!:: . kb 
= 1m - L..., sm -. n---too n k= I n 

Use part (a) with x = bin to show that the value 
of this limit is I - cos b. 

(c) Use simple area arguments to show that the result 
in part (b) is also valid for the cases b = 0 and b < 
0. 

(d ) Use parts (b) and (c) to establish (*). 
*64 Establish the formula 

65 

r cos x dx = sin b - sin a (**) 

by a line of reasoning similar to that in Problem 63. 
Give another proof of formula (**) in Problem 64 by 
using the following reasoning: If the graph of y = 
cos x is moved a distance 7r/2 to the right, it is trans
lated into the graph of y = sin x; the integral in (**), 
which represents the area between the curve y = 
cos x and the x-axis from x = a to x = b, can there-

fore be written as another integral representing the area 
between the curve y = sin x and the x-axis from x = 
a + 7r/2 to x = b + 7r/2. 

SECTION 9.4 
In each of Problems 66-79, calculate dy/dx. 

66 y = cot (2 - Sx). 67 y = 4 tan 3x. 
68 y = t sec4 x. 69 y = V cot 2x.  
70 y = csc ( I  - 2x). 71 y = sec4 x - tan4 x. 
72 y = 2x + tan 2x. 73 y = cot2 Sx. 

74 y = sec3 x. 
1 

75 y = x tan -. 
x 

76 y = cot (In x). 77 y = Ysec Vx. 
79 y = tan (tan x). 78 y = csc3 x + csc x3. 

Evaluate the integral in each of Problems 80-87. 

80 J ----.!!;---. 8 1  J csc ix cot ix dx. 
cos Sx 

82 iw/4 csc2 x cot x dx. w/6 83 J csc2 3x dx. 

84 f (2 + 5 tan x)7 sec2 x dx. 85 J csc4 x cot x dx. 
86 J � csc2 x dx. 87 J cot3 x csc2 x dx. 
88 The region under the curve y = sec x between x = 0 

and x = 7T/4 is revolved about the x-axis. Find the vol
ume of the solid of revolution generated in this way. 

89 Solve Problem 88 for the curve y = sec2 x. 
90 Sketch the graph of the function y = i tan 2x + 

cot 2x  on the interval 0 < x < 7r/4 and find its mini-
mum value. 

91 A racing car is moving around a circular track at a 
constant speed of 1 00 km/h. There is a bright light at 
the center of the track and a straight fence tangent to 
the track at a point T How fast is the shadow of the 
car moving along the fence when the car is f lap be
yond T? 

*92 In Problem 1 8  of Section 4.4 students were asked to 
show that the volume of the smallest cone that can be 
circumscribed about a given sphere of radius a is ex
actly twice the volume of the sphere. Solve this prob
lem by trigonometric methods, by taking the generat
ing angle of a circumscribed cone (half the vertex 
angle) as the independent variable. 

SECTION 9.5 
93 Evaluate each of the following: 

(a) tan- 1 ( -\/3); (b) sin- 1 t\13; 
(c) 4 sin- I (-tV2); (d ) Sin (sin- I 0.7); 
(e) sin- 1 (sin 0.7); (f) tan- 1  (tan [ - ! ]) ;  
(g) sin- 1 (cos 7r/6). 

94 If the base b and area A of a triangle are fixed, use 
geometry alone to find the base angles if the angle op
posite the base has its largest value. 
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Find dyldx in each of Problems 95-103 . 
95 y = sin- 1 tx. 
96 y = 1 tan- 1 tx. 
97 y = t tan- 1 xs. 
98 y = Vx - tan- 1 Vx. 
99 y = tan- 1 -v'T-1. 

100 

1 01 

. I 1 y = -sm- -x y = tan- 1 x + In�. 

1 02 y = a  sin- 1  � + v'a2 - x2. a 
1 03 y = -v'T-1 - tan- 1  -v'T-1. 

Evaluate the integrals in Problems 1 04- 1 1 2 .  dx 
1 04 r!J dx 

105 rl/2)VJ o 1 + x2 · - 1/2 � · 
1 06 

108 

1 1 0 

1 1 2 

1 13 

1 14 

J dx 
YI - 1 6x2 107 J dx 

1 + 5x2 · 

f dx 
109 f dx 

I /VJ X v'4x2=l . v'25 - 4x2 
J 49 :36x2 · 1 1 1  J x3dx 

1 + x8 · 

A billboard is perpendicular to a straight road, and its 
nearest edge is 1 8  ft from the road. The billboard is 
54 ft wide. As a motorist approaches the billboard 
along the road, at what point does he see the billboard 
in the widest angle? 
An airplane at an altitude of 7 mi and a speed of 500 
mi/h is flying directly away from an observer on the 
ground. What is the rate of change of the angle of el
evation when the airplane is over a point 4 mi away 
from the observer? 

1 15 A woman is walking along a sidewalk at the rate of 6 
ft/s. A police car spotlight 30 ft from the sidewalk fol
lows her as she walks. At what rate is the spotlight 
turning when the woman is 40 ft past the point on the 
sidewalk nearest the light? 

SECTION 9.6 
1 16 With reference to Example 1 ,  recall the definitions of 

kinetic and potential energy given in Section 7. 7 .  

1 17 

1 18 

1 1 9 

1 20 

* 12 1 

(a) Show that the potential energy Vofthe cart is 1kx2, 
where it is understood that V = 0 when x = 0 .  

(b) Show directly from Newton's second law of mo
tion 

d2x m - = -kx dt2 
that the sum of the kinetic and potential energies 
of the cart is constant. Hint: Use equation (9) in 
Section 9.6. 

(c) Express the total energy E of the cart in terms of 
its initial position x0 and initial velocity v0. 

(d ) Express the total energy E of the cart in terms of 
the amplitude A and frequency f of the vibration. 

A block of wood 6 in on an edge and weighing 4 lb 
floats upright in water. If the block is depressed 
slightly and released, find its period of oscillation as
suming that the friction of the water is negligible. Hint: 
Use w = 62.5 lb/ft3 for the density of water. 
A body in simple harmonic motion has amplitude A 
and period T. Find its maximum velocity. 
Find the amplitude and frequency of the simple har
monic motion x = 3 sin 2t + 4 cos 2t. 
If the period of a simple harmonic motion is 2n/3, find 
a position function of the form (3) that satisfies the 
conditions x = 1 and v = dx!dt = 3 when t = 0. 
Let the pendulum in Example 3 be pulled to one side 
through an angle a and released. Use the principle of 
conservation of energy to show that the period T of 
oscillation is given by the formula 

T = 4 {Lr ---;:::=d=(}== y zg 0 v'cos (} - cos a 



1 0 . 1 
INTRODUCTION. THE 

BASIC FORMULAS 

METHODS OF 
INTEGRATION 

If we start with the constants and the seven familiar functions x, eX, In x, sin x, 
cos x, sin- 1 x, and tan- 1 x, and go on to build all possible finite combinations 
of these by applying the algebraic operations and the process of forming a func
tion of a function, then we generate the class of elementary functions. Thus, 

In 
[ tan-1 (x2 + 35x3) ] 
ex + sin � 

is an elementary function. These functions are often said to have closed form, 
because they can be written down in explicit formulas involving only a finite 
number of familiar functions. 

It is clear that the problem of calculating the derivative of an elementary func
tion can always be solved by a systematic application of the rules developed in 
the preceding chapters, and this derivative is always an elementary function. How
ever, the inverse problem of integration -which in general is much more im
portant- is very different and has no such clear-cut solution. 

As we know, the problem of calculating the indefinite integral of a function 
f(x), 

J f(x) dx = F(x), 

is equivalent to finding a function F(x) such that 

d dx F(x) = f(x). 

( 1 )  

(2) 

It is true that we have succeeded in integrating a good many elementary func
tions by inverting differentiation formulas. B ut this doesn't carry us very far, be
cause it amounts to little more than calculating the integral ( 1 )  by knowing the 
answer (2) in advance. 

The fact of the matter is this: There does not exist any systematic procedure 
that can always be applied to any elementary function and leads step by step to 
a guaranteed answer in closed form. Indeed, there may not even be an answer. 
For example, the function f(x) = e-x2 looks simple enough, but its integral 

J e-x2 dx (3) 

334 
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cannot be calculated within the class of elementary functions. This assertion is 
more than merely  a report on the present inability of mathematicians to integrate 
(3); it is a statement of a deep theorem, to the effect that no elementary function 
exists whose derivative is e -x2.* 

If all this sounds discouraging, it shouldn't be. There is much more that can 
be done in the way of integration than we have suggested so far, and it is very 
important for students to acquire a certain amount of technical skill in carrying 
out integrations whenever they are possible. The fact that integration must be 
considered as more of an art than a systematic process really makes it more in
teresting than differentiation. It is more like solving puzzles, because there is less 
certainty and more scope for individual ingenuity. Many students find this an 
agreeable change from the cut-and-dried routines that make some parts of math
ematics rather dull. 

Since integration is  differentiation read backwards, our starting point must be 
a short table of standard types of integrals obtained by inverting differentiation 
formulas as we have done in the previous chapters. Much more extensive tables 
than the one given below are available in libraries,  and with the aid of these ta
bles most of the problems in this chapter can be solved by merely looking them 
up. However, students should realize that if they follow such a course they will 
defeat the intended purpose of developing their own skills. For this reason we 
make no use of integral tables beyond the short list of 1 5  formulas given below. 
Instead, we urge students to concentrate their efforts on gaining a clear under
standing of the various methods of integration and learning how to apply them. 

In addition to the method of substitution, which is already familiar to us, there 
are three principal methods of integration to be studied in this chapter: reduction 
to trigonometric integrals, decomposition into partial fractions, and integration 
by parts. These methods enable us to transform a given integral in many ways. 
The object of these transformations is always to break up the given integral into 
a sum of simpler parts that can be integrated at once by means of familiar for
mulas. Students should therefore be certain that they have thoroughly memorized 
all the following basic formulas. These formulas should be so well learned that 
when one of them is needed it pops into the mind almost involuntarily, like the 
name of a friend. 

J un+ l  un du = -- + c  n + 1 

J du 2 -;; = In u + c. 
(n i' - 1). 

*Let there be no misunderstanding. The indefinite integral (3) does exist, because the function F(x) 

defined by 

F(x) = t e_,, dt 

is a perfectly respectable function with the property that 

! F(x) = e-x'. 

[See equations ( 1 2) and ( 1 3) in Section 6.7.] The difficulty is that it can be proved that there is no 
way of expressing F(x) as an elementary function. Some of the facts in this interesting part of cal
culus are described in Appendix A.9. 
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3 

4 

5 

6 

7 

8 

9 

1 0  

L I  

1 2  

1 3  

1 4  

1 5  

J e" du = e" + c. 

J cos u du = sin u + c. 

J sin u du = -cos u + c .  

J sec2 u du = tan u + c .  

J csc2 u du = -cot u + c. 

J sec u tan u du = sec u + c. 

J csc u cot u du = -csc u + c. 

J du u 
= sin- 1 - + c. 

Ya2 - u2 a 

J du 1 u 
--- = - tan- 1 - + c. 
a2 + u2 a a J tan u du = - In (cos u) + c. 

J cot u du = In (sin u) + c. 

J sec u du = In (sec u + tan u) + c. 

J csc u du = -In (csc u + cot u) + c. 

The last four formulas are new, and complete our list of the integrals of the six 
trigonometric functions. Formulas 1 2  and 13 can be found by a straightforward 
process: 

and 

f f sin u du J d(cos u) 
tan u du = = - = -In (cos u) + c 

cos u cos u 

f f cos u du J d(sin u) . cot u du = . = -.-- = In (sin u) + c. 
sin u sin u 

Many people find that the easiest way to remember these two formulas is to think 
of the process by which they are obtained. Formula 14 can be found by an in
genious trick: If we multiply the integrand by I = (sec u + tan u)/(sec u + tan u), 
then we obtain 

f sec u du = J (sec u + tan u) sec u du 
= J (sec2 u + sec u tan u) du 

sec u + tan u sec u + tan u 

f d(sec u + tan u) 
= �----� = In (sec u + tan u) + c. sec u + tan u 

A similar trick yields formula 1 5 . 
We repeat: These 1 5  formulas constitute the foundation on which we build 

throughout this chapter, and they must be at our fingertips. Take 20 or 30 min
utes to memorize them. And then tomorrow, when they have been partially for
gotten, memorize them again. And so on. The effort will be well rewarded. 



1 0.2 THE METHOD OF SUBSTITUTION 

In the method of substitution we introduce the auxiliary variable u as a new sym
bol for part of the integrand in the hope that its differential du will account for 
some other part and thereby reduce the complete integral to an easily recogniz
able form. Success in the use of this method depends on choosing a fruitful sub
stitution, and this in turn depends on the ability to see at a glance that part of the 
integrand is the derivative of some other part. 

We give several examples to help students review the procedure and make cer
tain that they fully understand it. 

Example 1 Find Jxe-x2 dx. 

Solution If we put u = -x2, then du = -2x dx, x dx = -}- du, and therefore 

It will be noticed that we insert the constant of integration only in the last step. 
Strictly speaking, this is incorrect; but we willingly commit this minor error in 
order to avoid cluttering up the previous steps with repeated e's. We also point 
out that this integral is easy to calculate even though the similar integral Je-x2 dx 
is impossible. The reason for this is clearly the presence of the factor x, which 
is essentially (that is, up to a constant factor) the derivative of the exponent -x2. 

Example 2 Find 

J cos x d.x 
YI +  sin x · 

Solution Here we notice that cos x dx is the differential of sin x, and also of 
I + sin x. Thus, if we put u = I + sin x, then du = cos x dx and 

J cos x dx 
= J !!!!:.._ = J u- 112 du 

Yl + sin x Vu 

u112 
= - = 2Vu = 2Yl + sin x + c. 

I 2 

Example 3 Find 

J x�x · 

Solution The fact that dx/x is the differential of In x suggests the substitution 
u = In x, so du = dx/x and 

J dx J du 
-1- = - = In u = In (In x) + c. 
x n x u 

Example 4 Find 

1 0 . 2 
THE METHOD OF 
SUBSTITUTION 
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Solution Since 4x2 = (2x)2 we put u = 2x, so that du = 2dx, dx = t du, and 

J dx l J du 1 . u l . 2x 
Y9 - 4x2 = 2 � = 1 sm- 1 3 = 2 sm- I 3 + c. 

Example 5 Find 

J x dx 

'\/9 - 4x2 • 
Solution Here the fact that the x in the numerator is essentially the derivative 
of the expression 9 - 4x2 inside the radical suggests the substitution u = 9 -

4x2. Then du = -8x dx, and 

J x dx = _ _!_ J !!!!:..._ = _ _!_ J u- 1 12 du '\/9 - 4x2 s -Vu s 

In any particular integration problem the choice of the substitution is a matter 
of trial and error guided by experience. If our first substitution doesn' t  work, we 
should feel no hesitation about discarding it and trying another. Example 5 is 
similar in appearance to Example 4 and it might be thought that the same sub
stitution will work again, but in fact-as we have seen-it requires an entirely 
different substitution. 

We remind students of the summary of the method of substitution given at the 
end of Section 5.3 . Also, we repeat the justification of the method given there 
because we now wish to extend this method to cover the case of definite inte
grals as well. 

We start with a complicated integral of the form 

J f[g(x)]g'(x) dx. ( 1 )  

I f  we put u = g(x), then du = g' (x) dx and the integral takes the new form 

J f(u) du. 
If we can integrate this, so that 

J f(u) du = F(u) + c, (2) 

then since u = g(x) we ought to be able to integrate ( 1 )  by writing 

J f[g(x)]g' (x) dx = F[g(x)] + c. (3) 

All that i s  needed to justify our procedure is to notice that (3) is a correct result, 
because 



1 0.2 THE METHOD OF SUBSTITUTION 

! F [g(x)] = F' [g(x)]g'(x) = f[g(x)]g' (x) 

by the chain rule. 
The method of substitution applies to definite integrals as well as indefinite 

integrals .  The crucial requirement is that the limits of integration must be suit
ably changed when the substitution is made. This can be expressed as follows: 

I: f[g(x)]g ' (x) dx = r f(u) du, 

where c = g(a) and d = g(b). The proof uses (2) and (3) and two applications 
of the Fundamental Theorem of Calculus, 

J: f[g(x)]g'(x) dx = F[g(b)] - F[g(a)] 

= F(d) - F(c) = r f(u) du. 

Thus, once the original integral is changed into a simpler integral in the variable 
u, the numerical evaluation can be carried out entirely in terms of u, provided 
the limits of integration are also correctly changed. 

Example 6 Compute 

frr/3 sin x dx 
Jo cos2 x · 

Solution We put u = cos x, so that du = - sin x dx. Observe that u = 1 when 
x = 0 and u = I when x = n/3. By changing both the variable of integration 
and the limits of integration we obtain 

frr/3 sin x dx 
= ( ' 12 -du 

= 
_!_] '12 

= 2 _ I = I Jo cos2 x J, u2 u 1 · 

This technique removes the necessity of returning to the original variable in or
der to make the final numerical evaluation. 

PROBLEMS 

Find the following integrals. 

J v3-=Tx dx. 2 J 2x dx 

(4x2 - 1 )2 · 1 1  J e5x dx. 

J In x dx J COS X e•in x dx. 13  J csc2 (3x + 2) dx. 3 4 x[l + (In x)2] . 

J sin 2x dx. J x dx 1 5  r 
dx 

5 6 -3 V3 - 2x . 
� · 

7 J cot (3x - 1 )  dx. 8 J sin x cos x dx. 1 7  J sin x dx 

\/1 - cos x . 

9 J xw+I dx. 10 J /!\· 1 9  J eian- 1  x 
-J--2 dx. + x  

3 3 9  

12 J x cos x2 dx. 

14 J x2�16 ' 

16 J (x3 + 1 )2 dx. 

18 J (2x + 1) dx 

x2 + x + z · 

20 J sin Vx 
dx

. 

Vx 
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21  

23 

25 

27 

29 

31 

33 

35 

37 

39 

41  

43 

J sec Sx tan Sx dx. 

J In� dx . 
rT/2 COS X dx 
o 1 + sin x ·  

I ex dx 
� · 

J sin2 x cos x dx. 

J ex dx 
I + ex J tan 3x dx. 

I 4x dx 
w+I "  J ex dx 
I + e2x . 

J (ex + 1 )6ex dx. J sec2 Sx dx. 
J csc 2x cot 2x dx. 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

42 

44 

J �. x� 

J sin x dx 
cos2 x · 

J cos 3x dx. 
J co�zx ·  

L3 I I 

0 tan2 3x sec2 3x dx. 
J cos (I: x) dx . 
J sec2 x dx . YI + tan x 
J ev'Xdx. 

Vx J sin- 1 x dx 
� · 

J 6x2e-x' dx. J cot 4x dx. 

r 2x dx 
2 x2 - 3 . 

Compute each of the following definite integrals by making 
a suitable substitution and changing the limits of integration. 

45 

47 

49 

50 

5 1  

f (2x + l )  dx . 
1 Yx2 + x + 2  
f �dx. I X 

46 rT/4 0 tan2 x sec2 x dx. 

48 r'3 
0 sec3 x tan x dx. 

Each of the following integrals is easy to compute for a 
particular value of n. Find this value and carry out the 
integration. For example, Jxn sin x2 dx is easily com-
puted for n = I : 

J x sin x2 dx = -� cos x2 + c. 

(a) Jx" ex4 dx. (b) f x" cos x3 dx. 
(c) Jx" In x dx. (d) f x" sec2 Vx dx. 
The derivation given in the text for formula 14 is some-
what tainted by rabbit-out-of-the-hat trickery. Derive this 
formula in a more reasonable way by using 

J sec u du = J � = J cos u du 
= J cos u du 

cos u cos2 u 1 - sin2 u 
to write the given integral as an integral of the form 
J du/( I - u2), and then use 

1 � u2 = + c ! u + I � u ). 
Give a similar derivation for formula 15 .  

10 . 3  
In the next two sections we discuss several methods for reducing a given inte
gral to one involving trigonometric functions. It will therefore be useful to in
crease our ability to calculate such trigonometric integrals. CERTAIN 

TRIGONOMETRIC 
INTEGRALS 

A power of a trigonometric function multiplied by its differential is easy to in
tegrate. Thus,  

J sin3 x cos x dx = J sin3 x d(sin x) = ± sin4 x + c 

and 

J tan2 x sec2 x dx = J tan2 x d(tan x) = f tan3 x + c. 

Other trigonometric integrals can often be reduced to problems of this type by 
using appropriate trigonometric identities. 

We begin by considering integrals of the form 

J sinm x cosn x dx, ( I )  
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where one of the exponents is an odd positive integer. If n is odd, we factor out 
cos x dx, which is d(sin x); and since an even power of cos x remains, we can 
use the identity cos2 x = 1 - sin2 x to express the remaining part of the inte
grand entirely in terms of sin x. And if m is odd, we factor out sin x dx, which 
is -d(cos x), and use the identity sin2 x = 1 - cos2 x in a similar way. The fol
lowing two examples illustrate the procedure. 

Example 1 

J sin2 x cos3 x dx = J sin2 x cos2 x cos x dx 

= J sin2 x( l - sin2 x) d(sin x) 

= J (sin2 x - sin4 x) d(sin x) 

= + sin3 x - t sin5 x + c .  

Example 2 

J sin3 x dx = J sin2 x sin x dx 

= -J ( I  - cos2 x) d(cos x) 

= -cos x + + cos3 x + c. 

If one of the exponents in ( 1 )  is an odd positive integer that is quite large, it 
may be necessary to use the binomial theorem, and in such a case an explicit use 
of the method of substitution may be desirable for the sake of clarity. For in
stance, every odd positive power of cos x, whether large or small, has the form 

cos2n+ 1 x = cos2n x cos x = (cos2 x)n cos x = (1 - sin2 x)11 cos x, 

where n is a nonnegative integer. If we put u = sin x and du = cos x dx, then 

J cos211+ 1 x dx = J ( 1  - sin2 x)n cos x dx 

= J ( 1 - u2t du. 

If necessary, the expression ( 1  - u2)11 can now be expanded by applying the bi
nomial theorem, and the resulting polynomial in u is easy to integrate term by 
term. 

If both exponents in ( 1 )  are nonnegative even integers ,  then it is necessary to 
change the form of the integrand by using the half-angle formulas 

cos2 e = to + cos W) and sin2 () = f( 1 - cos W). (2) 

We hope students have thoroughly memorized these important formulas, but if 
they are forgotten they can easily be recovered by adding and subtracting the 
identities 

34 1 
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cos2 (} + sin2 (} = 1 ,  

cos2 (} - sin2 (} = cos 2 (}. 
The uses of (2) are shown in the following examples. 

Example 3 The half-angle formula for the cosine enables us to write 

J cos2 x dx = t J ( 1  + cos 2x) dx = t J dx + t J cos 2x dx 

= h + t J cos 2x d(2x) = fx + t sin 2x + c. 

If we wish to express this result in terms of the variable x (instead of 2x), we use 
the double-angle formula sin 2x = 2 sin x cos x and write 

J cos2 x dx = tx + t sin x cos x + c. 

Example 4 Two successive applications of the half-angle formula for the cosine 
give 

so 

cos4 x = (cos2 x)2 = ±C l + cos 2x)2 = ±C 1 + 2 cos 2x + cos2 2x) 
= ±D + 2 cos 2x + f( l + cos 4x)] 
= t + t cos 2x + t cos 4x, 

J cos4 x dx = tx + t sin 2x + fi: sin 4x + c. 

As these examples show, the value of the half-angle formulas (2) for this work 
lies in the fact that they allow us to reduce the exponent by a factor of ± at the 
expense of multiplying the angle by 2, which is a considerable advantage pur
chased at very low cost. 

Example 5 By using both of the half-angle formulas we get 

J . 2 2 dx J 1 - cos 2x I + cos 2x 
dx sm x cos x = 2 · 2 

= t J ( 1  - cos2 2x) dx = t J [ I  - to + cos 4x)] dx 

= t J dx - t J cos 4x dx = ix - ti sin 4x + c. 

We can also find this integral by combining the results of Examples 3 and 4: 

J sin2 x cos2 x dx = J ( 1  - cos2 x) cos2 x dx 

= J cos2 x dx - J cos4 x dx 

= fx + t sin 2x - tx - t sin 2x - ti sin 4x 
= ix - ti sin 4x + c. 
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We next consider integrals of the form 

J tanm x seen x dx, 

where n is an even positive integer or m is an odd positive integer. Our work is 
based on the fact that d(tan x) = sec2 x dx and d(sec x) = sec x tan x dx, and we 
exploit the identity tan2 x + 1 = sec2 x. An example illustrating each case will 
be enough to show the general method. 

Example 6 

J tan4 x sec6 x dx = J tan4 x sec4 x sec2 x dx 

= J tan4 x (tan2 x + 1 )2 d(tan x) 

= J tan4 x (tan4 x + 2 tan2 x + 1 )  d(tan x) 

= J (tan8 x + 2 tan6 x + tan4 x) d(tan x) 

= t tan9 x + t tan7 x + t tan5 x + c. 

Example 7 

J tan3 x sec5 x dx = J tan2 x sec4 x sec x tan x dx 

= J (sec2 x - 1 )  sec4 x d(sec x) 

= J (sec6 x - sec4 x) d(sec x) 

= t sec7 x - t sec5 x + c. 

In essentially the same way we can handle integrals of the form 

J cotm x cscn x dx, 

where n is an even positive integer or m is an odd positive integer. Our tools in 
these cases are the formulas d(cot x) = -csc2 x dx and d(csc x) = -csc x cot x · 

dx, and when necessary we use the identity 1 + cot2 x = csc2 x. 
Another approach to trigonometric integrals that is sometimes useful is to ex

press each function occurring in the integral in terms of sines and cosines alone. 

Example 8 We already know from our work with derivatives that 

J sec x tan x dx = sec x + c. 

However, this formula can also be obtained directly, by writing f f 1 sin x 
J 
sin x dx sec x tan x dx = -- -- dx = ---. cos x cos x cos2 x 

343 
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If we now put u = cos x and du = - sin x dx, then we get 

f f sin x dx 
sec x tan x dx =  

2 cos x 

f -du 1 1 
= 7 = -;; = 

cos x 
= sec x + c. 

PROBLEMS 

Find each of the following integrals. 
1 f sin2 x dx. 2 f sin4 x dx. 
3 f cos6 x dx. 4 f cos2 3x dx. 
5 f sin3 x cos2 x dx. 6 f sin2 x cos5 x dx. 

7 J cos3 x dx. 8 
rT/2 
0 sin3 x cos3 x dx. 

9 J � cos3 x dx. 10 J sin3 Sx cos Sx d.x. 

1 1  J sin2 3x cos2 3x dx. 12 J sin x�os x · 

13 
rT/4 
0 sec4 x d.x. 14  J co� x · 

1 5  f tan5 x sec3 x dx. 16  f csc4 x dx.  
17  f cot2 x d.x. 18 f cot3 x dx. 

19 J sin�4x · 20 J cot2 Sx csc4 Sx d.x. 

2 1  22 tan2 x cos x dx. f I + cos 2x 
dx f sin2 2x · 

23 f sin 3x cot 3x dx. 
24 Find f tan x dx (which we already know) by the method 

of Example 7. 

25 Use the identity tan2 x = sec2 x - 1 to find 
(a) f tan2 x dx, f tan4 x dx, f tan6 x dx; 
(b) f tan3 x dx, f tan5 x dx, f tan7 x d.x. 

26 If n is any positive integer ;;:: 2, show that 

f tann- I  x J tan" x d.x = - tann-2 x dx. n - 1 

This is called a reduction formula, because it reduces the 
problem of integrating tann x to the problem of integrat
ing tann- 2  x. 

27 Find the volume of the solid of revolution generated 
when the indicated region under each of the following 
curves is revolved about the x-axis: 
(a) y = sin x, 0 s x s 7T; 
(b) y = sec x, 0 s x s 7T/4; 
(c) y = tan 2x, 0 s x s 7T/8 ;  
( d )  y = cos2 x ,  7T/2 s x s 7T. 

28 Find the length of the curve y = In (cos x) between 
x = 0 and x = 7T/4. 

29 Find f sec3 x dx by exploiting the observation that sec3 x 
will clearly appear in the derivative of sec x tan x. 

30 Find f csc3 x dx by adapting the idea suggested for Prob
lem 29. 

1 0 . 4 
TRIGONOMETRIC 

SUBSTITUTIONS 

An integral involving one of the radical expressions Y a2 - x2, Y a2 + x2, 
V x2 - a2 (where a is a positive constant) can often be transformed into a fa
miliar trigonometric integral by using a suitable trigonometric substitution or 
change of variable. 

There are three cases, which depend on the trigonometric identities 

I - sin2 (} = cos2 (}, 

I + tan2 (} = sec2 (}, 

sec2 (} - l = tan2 0. 

( 1 )  

(2) 

(3) 

If the given integral involves Y a2 - x2, then changing the variable from x to 8 
by writing 

x = a  sin (} replaces by a cos 0, (4) 
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because a2 - x2 
= a2 - a2 sin2 fJ = a2( 1  - sin2 fJ) = a2 cos2 fJ. Similarly, if the 

given integral involves Y a2 + x2, then by identity (2) we see that the substitu
tion 

x = a tan e replaces by a sec e, (5) 

because a2 + x2 = a2 + a2 tan2 fJ = a2( 1  + tan2 fJ) = a2 sec2 fJ; and if it in
volves V x2 - a2, then by identity (3) the substitution 

x = a sec e replaces by a tan e, (6) 

because x2 - a2 = a2 sec2 fJ - a2 = a2(sec2 fJ - 1) = a2 tan2 fJ. We illustrate 
these procedures as follows. 

Example 1 Find f \/a2 - x2 ---- dx. 
x 

Solution This integral is of the first type, so we write 

Then 

x = a  sin e, dx = a cos e de, v a2 - x2 = a cos e. 

f 
� 

- f a cos e - f cos2 e 
dx - . {) a cos e de - a . {) dB 

x a sm u sm "  f 1 - sin2 e f = a 
sin e de = a (csc e - sin 8) de 

= -a In (csc e + cot e) + a cos e. (7) 

This completes the integration, and we now must write the answer in terms of 
the original variable x. We do this quickly and easily by drawing a right triangle 
(Fig. 10. l )  whose sides are labeled in the simplest way that is consistent with the 
equation x = a sin fJ or sin fJ = xla. This figure tells us at once that 

csc e = E.., x 
\/a2 - x2 

cot e = ----
x 

and 
Ya2 - x2 

cos e = ----
a 

so from (7) we have 

f Y a2 - x2 , � (a + Y a2 - x2 ) ---- dx = v a2 - x2 - a In + c. 
x x 

Example 2 Find 
f dx 

Ya2 + x2
. 

Solution Here we have an integral of the second type, so we write 

This yields 

x = a  tan e, dx = a  sec2 e de, v a2 + x2 = a sec e. 

f dx = f a sec2 e de = f sec e de 
y a2 + x2 a sec e 

= In (sec e + tan e). (8) 
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Zl a 
Figure 1 0.2 

a 
Figure 10.3 

METHODS OF INTEGRATION 

The substitution equation x = a tan 8 or tan 8 = xla is pictured in Fig. 10.2, and 
from this figure we obtain 

V
a2 + x2 sec (} = ----
a and tan (} =

�
. a 

We therefore continue the calculation in (8) by writing 

J dx ( 
V 
a2 + x2 + x) ---- = In + c' Y

a2 + x2 a 

= In (
V 
a2 + x2 + x) + c. 

Students will notice that since 

(
Y
a2 + x2 + x) In a = In (

V 
a2 + x2 + x) - In a, 

(9) 

( 10) 

the constant -In a has been grouped together with the constant of integration c' ,  
and the quantity -In a + c' is  then rewritten as c. Usually we don't bother to 
make notational distinctions between one constant of integration and another, be
cause all are completely arbitrary; but we do so here in the hope of clarifying 
the transition from (9) to ( 1 0) .  

Example 3 Find 

J 
V
x2 - a2 

---- dx. x 

Solution This integral is of the third type, so we write 

Then 

x = a  sec (}, dx = a sec (} tan (} d(}, 
V 
x2 - a2 = a tan e. 

J � 
J a tan (} dx = ---(} a sec (} tan (} d(} x a sec 

= a J tan2 (} d(} = a J (sec2 (} - 1 )  d(} 

= a  tan (} - ae. 

In this case our substitution equation sec 8 = xla is portrayed in Fig. 10.3, which 
tells us that 

Y
x2 - a2 tan (} = ---a and 

V
x2 - a2 (} = tan-I ----a 

The desired integral can therefore be written as 

J 
V 
x2 - a2 

V 
x2 - a2 

---- dx = 
V
x2 - a2 - a tan-I + c. x a 

There is one feature of these calculations that we have not taken into account. 
In (4) we tacitly wrote 
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V 1 - sin2 (} = cos (} 

without checking the correctness of the algebraic sign. This was careless, because 
cos 8 is sometimes negative and sometimes positive. However, the variable 8, 

which in this case is sin- 1 x/a, is restricted to the interval -TTl2 :s 8 :s TTl2, and 
on this interval cos 8 is nonnegative, as we assumed. Similar comments apply to 
the substitutions (5) and (6). 

Example 4 As a concrete illustration of the use of these methods, we determine 
the equation of the tractrix. This famous curve can be defined as follows: It is 
the path of an object dragged along a horizontal plane by a string of constant 
length when the other end of the string moves along a straight line in the plane. 
(The word "tractrix" comes from the Latin tractere, meaning "to drag.") 

Suppose the plane is the xy-plane and the object starts at the point (a, 0) with 
the other end of the string at the origin. If this end moves up the y-axis as shown 
on the left in Fig. 1 0.4, then the string is always tangent to the curve, and the 
length of the tangent between the y-axis and the point of contact is always equal 
to a. The slope of the tangent is therefore given by the formula 

dy = � 
dx x 

and by separating the variables and using the result of Example 1 ,  we have 

J V a2 - x2 (a + V a2 - x2 ) • ro--;; 
y = - dx = a �  - v � - � + c. x x 

Since y = 0 when x = a, we see that c = 0, so 

( a +  Ya2 - x2 ) 
y = a In 

x 
- V a2 - x2 

is the equation of the tractrix, or at least of the part shown in the figure. 
If the end of the string moves down the y-axis, then another part of the curve 

is generated; and if these two parts are revolved about the y-axis, the resulting 
"double-trumpet" surface shown on the right in Fig. 1 0.4 is called a pseudo
sphere. In the branch of mathematics concerned with the geometry of curved sur
faces, the pseudosphere is a model for Lobachevsky's version of non-Euclidean 
geometry. It is a surface of constant negative curvature, and the sum of the an
gles of any triangle on the surface is less than 1 80°. 

Another famous curve whose equation can be determined by these methods of 
integration is the catenary, which is the curve assumed by a flexible chain or ca
ble hanging between two fixed points. The details are a bit complicated, so we 
give a derivation in Appendix 1 at the end of this chapter for students who have 
chosen to omit the optional Section 9.7. 

The substitution procedures described in this section can be given a general 
justification or proof similar to that provided in Section 10.2. Students who are 
interested in such matters will find the details in Appendix A. 10. 
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PROBLEMS 

Find each of the following integrals. 

J � dx. 2 J x2 dx 
x V4 - x2

. 

7 J dx 
xYa2 + x2

. 

9 J dx 
\lx2 - a2 . 

1 1  J V a2 + x2 dx.* 

13 J a2 � x2 · 

J � 
15 dx. x 

J � 
1 7  

2 
dx. x 

19 J x2Ya2 - x2 dx. 

4 J dx 
x2\f a2 + x2 . 

6 J dx 
xYa2 - x2

. 

8 J x :x3 · 

10 J dx 
x3\f x2 - a2 . 

J x3 dx 
12 a2 + x2 . 

14 J dx 
(a2 _ x2)312 · 

16 J x3Ya2 + x2 dx. 

18 J (x2 -�2)312 . 

20 J ( 1 - 4x2)312 dx. 

The following integrals would normally be found in a differ
ent way, but this time work them out by using trigonometric 
substitutions. 

21 J x dx 
\14 - x2 . 

23 J a2 � x2 · 

22 J x dx 
( a2 _ x2)312 · 

J x dx 
24 4 + x2 · 

•Hint: See Problem 29 in Section 10.3. 

25 J xY9 - x2 dx. 

27 J x dx 
� · 

26 f -dx-
\la2 - x2 . 

28 J x dx 
W=-4 "  

29 Use integration to show that the area of a circle of radius 
a is7Ta2 . 

30 In a circle of radius a, a chord b units from the center 
cuts off a chunk of the circle called a segment. Find a 
formula for the area of this segment. 

31 If  the circle (x - b)2 + y2 = a2 (0 < a <  b) is revolved 
about the y-axis, the resulting solid of revolution is called 
a torus (see Problem 1 1 in Section 7.3). Use the shell 
method to find the volume of this torus. 

32 Find the length of the parabola y = x2 between x = 0 
and x = 1 . Hint: Use the result of Problem 29 in Section 
10.3 . 

33 Find the length of the curve y = In x between x = 1 and 
x = Vs. 

34 The given region under each of the following curves is 
revolved about the x-axis. Find the volume of the solid 
of revolution. 

x312 
(a) y = • � between x = 0 and x = 4. 

v x2 + 4 
I (b) Y = x2 + 1 between x = 0 and x = 1 . 

(c) y = � between x = 1 and x = 2. 
35 The curve h2 + y2 = I is an ellipse. Sketch the graph 

and show that its complete length equals the length of 
one cycle of y = sin x. (This integral is a so-called 
elliptic integral, and is known to be impossible to eval
uate in terms of elementary functions. For more details 
see Appendix A.9.) 

1 0 . 5 
COMPLETING THE 

SQUARE 

In Section 10.4 we used trigonometric substitutions to calculate integrals con

taining Ya2 - x2, Y a2 + x2, and Y x2 - a2. By the algebraic device of com
pleting the square, we can extend these methods to integrals involving general 
quadratic polynomials and their square roots, that is, expressions of the form 

ax2 + bx + c and V ax2 + bx + c. We remind students that the process of com
pleting the square is based on the simple fact that 

(x + A)2 = x2 + 2Ax + A2; 

this tells us that the right side is a perfect square (the square of x + A) because 
its constant term is in the square of half the coefficient of x. 
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Example 1 Find 

J 
(x + 2) dx . 

Y3 + 2x - x2 

Solution Since the coefficient of the term x2 under the radical is negative, we 
place the terms containing x in parentheses preceded by a minus sign, leaving 
space for completing the square, 

3 + 2x - x2 = 3 - (x2 - 2x + ) = 4 - (x2 - 2x + l )  

= 4 - (x - 1 )2 = a2 - u2, 

where u = x - 1 and a = 2. Since x = u + 1 ,  we have dx = du and x + 2 = 
u + 3, and therefore 

J (x + 2) dx = J (u + 3) du = J 
u du + 3 J du 

Y 3 + 2x - x2 v' a2 - u2 Y a2 - u2 v' a2 - u2 

Example 2 Find 

= - Ya2 - u2 + 3 sin- I !:±_ 
a 

= - v'  3 + 2 x  - x2 + 3 sin- I ( x ; 1 ) + c. 

Solution We complete the square on the terms containing x, and write 

x2 + 2x + 10 = (x2 + 2x + ) + 10 = (x2 + 2x + I ) + 9 

= (x + 1 )2 + 9 = u2 + a2, 

where u = x + 1 and a = 3 .  We now have du = dx or dx = du, so 

f dx J du 1 u 
x2 + 2x +  10 

= u2 + a2 = -;- tan- I -;-

Example 3 Find 

Solution We write 

= - tan- I -- + c  1 (x + 1 )  
3 3 

. 

f x dx . 
Yx2 - 2x + 5 

x2 - 2x + 5 = (x2 - 2x + ) + 5 = (x2 - 2x + 1 )  + 4 

= (x - I )2 + 4 = u2 + a2, 

where u = x - 1 and a = 2. Then x = u + 1 ,  dx = du, and we have 

J x dx = J 
(u + 1 )  du 

= J u du + J du 
. v' x2 - 2x + 5 v' u2 + a2 Y u2 + a2 v' u2 + a2 
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PROBLEMS 

Calculate the following integrals .  

1 J dx 
V2x - x2 . 2 

3 J x2 + '!: + s ·  4 

5 J (x + 1 )  dx 
V2x - x2 . 6 

7 J x2 dx 
V6x - x2 . 8 

METHODS OF INTEGRATION 

The second integral here is the one considered in Example 2 in Section 1 0.4, so 
we have 

and therefore 

J du 
= In (u + V u2 + a2), 

Vu2 + a2 

J x dx = V u2 + a2 + In (u + V u2 + a2) 
Vx2 - 2x + S 

= V x2 - 2x + S + In (x - 1 + V x2 - 2x + S) + c. 

Example 4 Find 

J dx 
. Vx2 - 4x - S 

Solution Here we have 

x2 - 4x - S = (x2 - 4x + ) - S = (x2 - 4x + 4) - 9 

= (x - 2)2 - 9 = u2 - a2, 

where u = x - 2 and a = 3 .  By using the result of Problem 9 in Section 10.4 
(or by quickly working out the necessary formula again by putting u = a sec 8) 
we complete the calculation as follows: 

J dx = J du = ln (u + V u2 - a2) 
V x2 - 4x - S V u2 - a2 

= In (x - 2 + V x2 - 4x - S) + c .  

If an integral involves the square root of a third-, fourth-, or higher-degree 
polynomial, then it can be proved that there does not exist any general method 
for carrying out the integration. A few integrals of this kind are discussed in Ap

pendix A.9. 

J dx 
. Vs + 4x - x2 

9 J (x + 7) dx 
x2 + 2x + s · 

J 
x2 -� + 1 · 

1 1  J dx 
. 

Vx2 - 2x - 8 

J (x + 3) dx 
. Vs + 4x - x2 

1 3  J 
V4x2 +

dx
4x + 1 7 . 

J (x - 1 )  dx 
Vx2 + 4x + S

. 1 5  J 
(x2 - 2� - 3 )312 . 

10 

12  

14  

16 

J 
Vx2 + 2x - 3 dx. x + 1 

J dx 
. Vs + 3x - 2x2 

J (4x + 3) dx 
(x2 _ 2x + 2)312 · 

J dx 
. (x + 2)Vx2 + 4x + 3  
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We recall that a rational function is a quotient of two polynomials. By taking the 
denominator of such a quotient to be 1 ,  we see that the polynomials themselves 
are included among the rational functions. As we know, the simple rational func
tions 

2x + 1 ,  x 
and 

2 ' , x2 + l '  x2 + 1 x x 

have the following integrals:  

x2 + X, In x, t In (x2 + I ) ,  and tan- I X. 
x 

Our purpose in this section is to describe a systematic procedure for computing 
the integral of any rational function, and we shall find that this integral can al
ways be expressed in terms of polynomials, rational functions, logarithms, and 
inverse tangents. The basic idea is to break up a given rational function into a 
sum of simpler fractions (called partial fractions) which can be integrated by 
methods discussed earlier. 

A rational function is called proper if the degree of the numerator is less than 
the degree of the denominator. Otherwise, it is said to be improper. For example, 

x 
(x - l )(x + 2)2 

are proper, while 

and 

and 
x2 + 2 

x(x2 - 9) 

2x3 - 3x2 + 2x - 4 
x2 + 4 

are improper. If we have to integrate an improper rational function, it is essen
tial to begin by performing long division until we reach a remainder whose de
gree is less than that of the denominator. We illustrate with the second improper 
rational function just mentioned. Long division yields 

2x - 3 
x2 + 4 I 2x3 - 3x2 + 2x - 4 

2x3 + 8x 
- 3x2 - 6x - 4 

- 3x2 - 12 
- 6x + 8 

This means that the rational function in question can be written in the form 

2x3 - 3x2 + 2x - 4 -6x + 8 
x2 + 4 

= 2x - 3 + 
x2 + 4 . ( 1 )  

By applying this process, any improper rational function P(x)IQ(x) can be ex
pressed as the sum of a polynomial and a proper rational function, 

P(x) . R(x) 
Q(x) 

= polynonual + Q(x)
, (2) 

where the degree of R(x) is  less than the degree of Q(x). In the particular case of 
( 1 ), this decomposition by means of long division enables us to carry out the in
tegration quite easily, by writing 

3 5 1 

1 0 . 6  
THE METHO D  OF 
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f 2x3 - 3x2 + 2x - 4 J :c dx J dx ---,.---- dx = x2 - 3x - 6 -'-- + 8 --
x2 + 4 x2 + 4 x2 + 4 

x 
= x2 - 3x - 3 In (x2 + 4) + 4 tan- 1 2 + c. 

In the general case (2), these remarks tell us that we can restrict our attention to 
proper rational functions, since the integration of polynomials is always easy. 
This restriction is not only convenient, but also necessary, because it is only to 
proper rational functions that the following discussions apply. 

In elementary algebra we learned i�ow to combine fractions over a common 
denominator. We must now learn how to reverse this process and split a given 
fraction into a sum of fractions having simpler denominators. This procedure is 
called decomposition into partial fractions. 

Example J It is clear that 

_3_ + _
2
_ = 3(x + 3) + 2(x - 1 )  

x - I x + 3 (x - l )(x + 3) 
Sx + 7 

(3) 
(x - l )(x + 3) · 

In the reverse process we start with the right side of (3) as our given rational 
function and seek constants A and B such that 

Sx + 7 A 8 
----- = -- + --
(x - l )(x + 3) x - l x + 3 · 

(4) 

( For the sake of understanding the method, let us pretend for a moment that we 
don't know that A = 3 and B = 2 will work.) If we clear fractions in (4) by mul
tiplying through by (x - l )(x + 3), we get 

Sx + 7 = A(x + 3) + 8(x - I )  (5) 

or 

Sx + 7 = (A + 8)x + (3A - 8). (6) 

Since (6) is to be an identity in x, we can find A and B by equating coefficients 
of like powers of x. This gives a system of two equations in the two unknowns 
A and B, { A + 8 = 5  

3A - 8 = 7 ,  whose solution is  A =  3 ,  8 = 2. 

There is another convenient way to find A and B, by using (5) directly. Since (5) 
must hold for all x, it must hold in particular for x = I (which removes B) and 
for x = - 3 (which removes A). Briefly, 

x = l :  5 + 7 = A( l + 3) + 0, 4A = l 2, A = 3; 

x =  -3 :  - I S  + 7 = 0 + 8(  -3 - I ), -48 = -8 ,  B = 2 .  

This method i s  faster than i t  looks, and can be carried out by inspection. 
Whichever method we use to find A and B, (4) becomes 

Sx + 7 3 2 ----- = -- + --
(x - I )(x + 3) x - 1 x + 3 ' 

and this is the partial fractions decomposition of the rational function on the left. 
Of course, the purpose of this decomposition is to enable us to integrate the given 
function, 
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J 
Sx + 7 

dx _ J (-3- + _2_) dx (x - l )(x + 3) x - I x + 3 

= 3 In (x - l )  + 2 In (x + 3) + c. 

The type of expansion used in (4) works in just the same way under more gen
eral circumstances, as follows: Let P(x)IQ(x) be a proper rational function whose 
denominator Q(x) is an nth-degree polynomial. If Q(x) can be factored completely 
into distinct linear factors x - r1 , x - r2, . . .  , x - rm then there exist n constants 
A "  A1, . . .  , An such that 

P(x) A ,  A2 A11 -- = -- + -- + · · · + --. Q(x) x - r, x - r2 x - r11 (7) 

The constants in the numerators can be determined by either of the methods sug
gested in Example 1 ;  and when this is done, the partial fractions decomposition 
(7) provides an easy way to integrate the given rational function. 

Example 2 Find 

J 
6x2 + I 4x - 20 

3 dx. x - 4x 

Solution We factor the denominator by writing x3 - 4x = x(x2 - 4) 
x(x + 2)(x - 2). Accordingly, we have a decomposition of the form 

6x2 + 14x - 20 
x3 - 4x 

6x2 + 1 4x - 20 A B C ------ = - + -- + --x(x + 2)(x - 2) x x + 2 x - 2 (8) 

for certain constants A, B, C. To find these constants we clear fractions in (8), 
which yields 

6x2 + 1 4x - 20 = A(x + 2)(x - 2) + Bx(x - 2) + Cx(x + 2). 

By setting x = 0, - 2, 2 (this is the second method in Example 1 ), we easily see 
that A = 5, B = -3, C = 4, so (8) becomes 

We therefore have 

6x2 + 14x - 20 
x3 - 4x 

5 3 4 = - - -- + --. x x + 2  x - 2  

J 
6x2 + 1 4x - 20 

x3 _ 4x dx = 5 In x - 3 In (x + 2) + 4 In (x - 2) + c. 

In theory, every polynomial Q(x) with real coefficients can be factored com
pletely into real linear and quadratic factors, some of which may be repeated.* 

In practice, this factorization is hard to carry out for polynomials of degree 3 or 
more, except in special cases. Nevertheless, let us assume this has been done, 
and let us see how the decomposition (7) must be altered to take account of the 
most general circumstances that can arise. 

'This statement is a consequence of the Fundamental Theorem of Algebra, which is discussed in Sec
tion 1 4.8. 
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If a linear factor x - r occurs with multiplicity m, then the corresponding term 
Al(x - r) in the decomposition (7) must be replaced by a sum of the form 

_!!_i_ + B2 + . . . + Bm 
x - r (x - r)2 (x - rr 

A quadratic factor x2 + bx + c of multiplicity 1 gives rise to a single term 

Ax + B 
x2 + bx +  c '  

and i f  this quadratic factor occurs with multiplicity m, then i t  gives rise to a sum 
of the form 

A 1x + Bi Azx + B2 A,,.x + Bm 
----- + + . . . + -�'----"'--
x2 + bx + c (x2 + bx + c)2 (x2 + bx + er . 

This is the whole story, and the theory guarantees that every proper rational func
tion can be expanded into a sum of partial fractions in the manner described 
above.* 

Example 3 Find 

f 3x3 - 4x2 - 3x + 2 
x4 - x2 dx. 

Solution We have 

3x3 - 4x2 - 3x + 2 
x4 - x2 

3x3 - 4x2 - 3x + 2 
x2(x + 1 )(x - 1 ) 

A B C D = � + x2 + x + 1 + x - 1 · 

Clearing fractions gives the identity 

3x3 - 4x2 - 3x + 2 = Ax(x + l )(x - 1 )  + B(x + l )(x - I )  + Cx2(x - I ) + Dx2(x + 1 ). 
Now put 

x = 0: 

x = I : 

x = - 1 :  

2 = -B, 

-2 = 2D, 
-2 = - 2C, 

B = -2; 

D = - ! ; 
c = I . 

Equating coefficients of x3 gives 

3 = A + C + D, so A =  3 . 
Our partial fractions decomposition is therefore 

so 

3x3 - 4x2 - 3x + 2 
x4 - x2 

3 2 1 I = - - - + -- - --x x2 x + 1 x - I '  

f 3x3 - 4x2 - 3x + 2 2 
4 2 dx = 3 In x + - + In (x + I )  - In (x - 1 )  + c. x - x  x 

*This statement is called the Partial Fractions Theorem; it is proved in Appendix A. I I .  Students will 
notice that the above description of the partial fractions decomposition assumes that the highest power 
of x in Q(x) has coefficient I ;  this can always be arranged by a minor algebraic adjustment. 
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Example 4 Find 

J 
2x3 + x2 + 2x - I 

x4 - I 
dx. 

Solution We have 

so 

2x3 + x2 + 2x - I 
x4 - I 

2x3 + x2 + 2x - I 
(x + l )(x - I ) (  x2 + I )  

A B Cx + D  = -- + -- + ---x + 1 x - 1 x2 + I ' 

2x3 + x2 + 2x - I = A(x - l )(x2 + 1 )  + B(x + l )(x2 + 1) + Cx(x2 - I ) + D(x2 - I ). 

Now put 

x = 1 :  

x = - 1 :  

x = 0: 

4 = 4B, 

-4 = -4A, 

- 1 = -A + B - D, 

B = I ; 

A =  I ;  

D = 1 .  

Equating coefficients of x3 gives 

2 = A + B + C, so C =  0. 

Our partial fractions decomposition is therefore 

so 

2x3 + x2 + 2x - 1 
x4 - 1 

I 1 l = -- + -- + --x + I x - 1 x2 + 1 ' 

J 
2x3 + x2 + 2x - 1 ---

x
-,-
4
-
_-1

-- dx = ln (x + 1 )  + In (x - I ) + tan- 1 x + c. 

As a final comment, we point out that all the partial fractions that can possi
bly arise have the form 

A Ax + B  
n = I , 2, 3,  . . . .  (x - rr or (x2 + bx + er ' 

Functions of the first type can be integrated by using the substitution u = x - r, 
and it is clear that the results are always logarithms or rational functions. A func
tion of the second type in which the quadratic polynomial x2 + bx + c has no 
real linear factors, that is ,  in which the roots of x2 + bx + c = 0 are imaginary, 
can be integrated by completing the square and making a suitable substitution. 
When this is done, we get integrals of the form 

The first of these is  t In (u2 + k2) if n = 1 ,  and (u2 + k2) 1 -n/2( 1 - n) if 
n > 1 .  When n = 1 ,  the second integral is calculated by the formula 

J du _ I _ 1 u 
u2 + k2 - k tan k. 
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METHODS OF INTEGRATION 

The case n > 1 can be reduced to the case n = 1 by repeated application of the 
reduction formula 

I du 1 u 2n - 3 J du 
(u2 + k2)" = 2k2(n - I ) . (u2 + k2r- 1 + 2k2(n - 1 ) (u2 + k2)"- 1 · (9) 

We state this complicated formula for the sole purpose of showing that the only 
functions that arise from the indicated reduction procedure are rational functions 
and inverse tangents. The formula itself can either be verified by differentiation 
or obtained from scratch by the methods of the next section. 

This discussion shows that the integral of every rational function can be ex
pressed in terms of polynomials, rational functions, logarithms, and inverse tan
gents. The detailed work can be very laborious, but at least the path that must be 
followed is clearly visible. 

Express each of the following improper rational func
tions as the sum of a polynomial and a proper rational I x3 - 3x2 + 2x - 3 

20 x2 + 1 dx. 
function, and integrate: x2 x3 
(a) x - 1 ; (b) 3x + 2 ' 
(d ) 

x + 3 . x + 2 '  x2 - 1 
(e) x2 + l

. 

x3 
(c) x2 + 1 ; 

Find each of the following integrals. 

2 J 1 2x - 17 dx 3 J -�14_x_-_1_2_ (x - I )(x - 2) · 2x2 - 2x - 1 2  dx. 

4 I 1 0 - 2x 
dx x2 + Sx · 

6 J 9x2 - 24x + 6 dx x3 - 5x2 + 6x · 

I 1 6x2 + 3x - 7 
8 3 dx. x - x  

I 6x2 - 9x + 9 
10 dx x3 - 3x2 · 

I 4x2 + 2x + 4 1 2  x3 + 4x dx. 

1 4  I x/; 4 dx. 

I 2x + 2 1 5 2 dx. x - 7x 
7 

9 

1 1  

I x2 + 46x - 48 x3 + 5x2 - 24x dx. 

I 4x2 + I Ix - 1 17 x3 + 10x2 - 39x dx. 

I -4x2 - Sx - 3 
x3 + 2x2 + x dx. 

I 3x2 - x + 4 
13 dx x3 + 2x2 + 2x · 

I x4 + 3x2 - 4x + 5 
15 (x - 1 )2(x2 + I ) dx. 

I x2 + 2x 16 (x + l )2 dx. 

I x + 1 18 --1 dx. x -

I x2 
1 7  x + 2 dx. 

I x2 + I 
19 � dx. 

I cos () 
21 

sin2 () + 3 s in () - 4 d(). 

I 16 sec2 () 
22 tan3 () - 4 tan2 () 

dO. 

23 

25 

24 J l : ex dx. 

Use partial fractions to obtain the formula 

J� = � ln 
a + x  

a2 - x2 2a a - x · 
Also calculate this integral by trigonometric substitution, 
and verify that the two answers agree. 

26 Find 

I 3 sin () d() J Se' dt 
(a) cos2 () - cos () - 2 ; (b) e2' + e' - 6 · 

27 In Problem 14 of Section 8.5 it is stated that the differ
ential equation 

has 

dx dt = kab(A - x)(B - x), 

B(A - x) 
= ekab(A -B)r A(B - x) 

as a solution for which x = 0 when t = 0. Derive this so
lution by using partial fractions. 

28 Verify the reduction formula (9) by differentiating the 
first term on the right. 

29 Suppose that a given population can be divided into two 
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groups: those who have a certain infectious disease, and those 
who do not have it but can catch it by having contact with an 
infected person. If x and y are the proportions of infected and 
uninfected people, then x + y = 1 .  Assume ( 1) that the dis
ease spreads by the contacts just mentioned between sick peo
ple and well people, (2) that the rate of spread dx/dt is pro
portional to the number of such contacts, and (3) that the two 

such contacts, and (3) that the two groups mingle freely with 
each other, so that the number of contacts is jointly propor
tional to x and y. If x = x0 when t = 0, find x as a function of 
t, sketch the graph, and use this function to show that ulti
mately the disease will spread through the entire population. 
When the formula for the derivative of a product (the 

When the formula for the derivative of a product (the product rule) is written in 

1 o 7 the notation of differentials, it is • 

d(uu) = u dv + v du 

and by integrating we obtain 

or u dv = d(uv) - v du, 

J u dv = uv - J v du. ( 1 )  

This formula provides a method of finding f u d v  i f  the second integral f v du is 
easier to calculate than the first. The method is called integration by parts, and 
it often works when all other methods fail .  

Example 1 Find f x cos x dx. 

Solution If we put 

U = X, dv = cos x dx, 

then 

du = dx, v = sin x, 

and ( l )  gives 

J x cos x dx = x sin x - J sin x dx. 

This is good luck, because the integral on the right is easy. We therefore have 

J x cos x dx = x sin x + cos x + c. 

It is worth noticing that in this example we could have chosen u and dv dif
ferently. If we put 

u = cos x, dv = x dx, 

then 

du = -sin x dx, 

and ( 1 )  gives 

J x cos x dx = h2 cos x + t J x2 sin x dx. 

This equation is true, but it is completely worthless as a means of solving our 
problem, because the second integral is harder than the first. We urge students to 

INTEGRATION 
BY PARTS 
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learn from experience, and to use trial and error as intelligently as possible in 
choosing u and dv. Also, students should feel free to abandon a choice that 
doesn' t  seem to work, and quickly go on to another choice that offers more hope 
of success. 

The method of integration by parts applies particularly well to products of dif
ferent types of functions, like x cos x in Example 1 ,  which is a product of a poly
nomial and a trigonometric function. In using the method, the given differential 
must be thought of as a product u · dv. The part called dv must be something we 
can integrate, and the part called u should usually be something that is simpli
fied by differentiation, as in our next example. 

Example 2 Find f ln x dx. 

Solution Here our only choice is 

so 

and we have 

u = In x, dv = dx, 

dx u = -, v = x, x 

J ln x dx = x ln x - J x � = x In x - x + c. 

In some cases it is necessary to carry out two or more integrations by parts in 
succession. 

Example 3 Find f x2ex dx. 

Solution If we put 

then 

u = x2, 

du = 2x dx, 
and ( 1 )  gives 

dv = ex dx, 

(2) 

Here the second integral is easier than the first, so we are encouraged to con
tinue in the same way. When the second integral is integrated by parts with 

u = x, dv = ex dx, 
so that 

du = dx, v = eX, 
then we get 
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When this is inserted in (2), our final result is 

It sometimes happens that the integral we start with appears a second time dur
ing the integration by parts, in which case it is often possible to solve for this in
tegral by elementary algebra. 

Example 4 Find f ex cos x dx. 

Solution For convenience we denote this integral by J. If we put 

dv = cos x d.x, 

then 

du = ex d.x, v = sin x, 
and ( 1 )  yields 

J = ex sin x - J ex sin x d.x. (3) 

Now we come to the interesting part of this problem. Even though the new in
tegral is no easier than the old, it turns out to be fruitful to apply the same method 
again to the new integral. Thus, we put 

dv = sin x d.x, 

so that 

du = ex dx, v = -cos x, 
and obtain 

J ex sin x d.x = - ex cos x + J ex cos x d.x. (4) 

The integral on the right is J again, so ( 4) can be written 

J ex sin x d.x = -ex cos x + J. (5) 

In spite of appearances, we are not going in a circle, because substituting (5) in 
(3) gives 

J = ex sin x + ex cos x - J. 

It is now easy to solve for J by writing 

2J = ex sin x + ex cos x or J = +<ex sin x + ex cos x), 
and all that remains is to insert the constant of integration: 

J ex cos x d.x = tex(sin x + cos x) + c. 

The method of this example is often used to make an integral depend on a sim
pler integral of the same type, and thus to obtain a convenient reduction formula, 
by repeated use of which the given integral can easily be calculated. 
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Example 5 Find a reduction formula for ln = f sinn 
x dx. 

Sohaion We integrate by parts with 

dv = sin x dx, 
so that 

du = (n - 1) sinn-2 x cos x dx, v = -cos x, 
and therefore 

ln = -sinn- I  x cos x + (n - I )  J sinn-2 x cos2 x dx 

= -sinn- I  x cos x + (n - I )  J sinn-2 x( I - sin2 x) dx 

= -sinn- I  x cos x + (n - I )  J sin"-2 x dx - (n - 1 )  J sinn x dx 

= -sinn- I x cos x + (n - I )  ln-2 - (n - 1 )  ln· 
We now transpose the term involving ln and obtain 

so that 

nln = -sinn- I  x cos x + (n - l )ln-2, 

I n - I ln = -- sinn- I  x cos x + -- ln-2> n n 

or equivalently, 

J .  dx I . I n - I J . 2 dx smn x = --;;- sm"- x cos x + -n- smn- x . (6) 

The reduction formula (6) allows us to reduce the exponent on sin x by 2. By 
repeated application of this formula we can therefore ultimately reduce ln to 10 
or Ji , according as n i s  even or odd. But both of these are easy: 

lo = J sin° x dx = J dx = x and 11 = J sin x dx = -cos x. 

For example, with n = 4 we get 

J sin4 x dx = -t sin3 x cos x + i J sin2 x dx, 

and with n = 2, 

Therefore, 

J sin2 x dx = -f sin x cos x + t J dx 
= -t sin x cos x + fx. 

J sin4 x dx = -t sin3 x cos x + ic-t sin x cos x + tx) 

= -t sin3 x cos x - t sin x cos x + tx + c. 
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The same result can be achieved by earlier techniques depending on repeated use 
of the half-angle formulas, but our present methods are more efficient for large 
exponents. In our next example we illustrate another way in which the reduction 
formula (6) can be used. 

Example 6 Calculate 

(7Tl2 

Jo sin8 x dx. 

Solution For convenience we write 

(7Tl2 
In = Jo sin" x dx. 

By formula (6) we have 

so 

I . ]""'2 n - 1 f,7T12 . 
I = -- srn11- 1 x cos x + -- sm11-2 x dx n ' n o n o 

n - 1 
I,, = -- I,,-2. 

n 

We apply this formula with n = 8, then repeat with n = 6, n = 4, n = 2: 

Therefore 

(7T'2 sin8 x dx = ]__ · 2. . l . _!_ (7Tl2 dx = ]__ · 2. . l .  _!_ • 'TT = 35'1T 
Jo 8 6 4 2 Jo 8 6 4 2 2 256 · 

Remark 1 The reduction formula (6) can also be used to establish one of the 
most fascinating formulas of mathematics, Wallis 's infinite product for 7T/2: 

'TT 2 2 4 4 6 6  
2 3 3 5 5 7 

For the details of the proof, see Appendix 2 at the end of the chapter. 

Remark 2 In Section 9.5 we stated Leibniz 's formula for 7r/4, 

'TT 1 1 1 
4 = l - 3 + 5 - 7 + . .  · .  

For students who are interested in little-known comers of the history of mathe
matics, we describe in Appendix 3 at the end of the chapter how Leibniz him
self discovered his formula by a very ingenious application of integration by parts. 

At this point we have described all the standard methods of integration that the 
student is expected to be acquainted with. A few additional techniques of minor 
importance remain, and two of these are briefly sketched in the problems at the 
end of Appendix A.9; but for most practical purposes we have reached the end 
of this particular road. 
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PROBLEMS 

Find each of the following integrals by the method of inte
22 (a) J cos" x dx = � sin x cos11- 1 x gration by parts. 

1 Jx In x dx. 
3 Jx tan- 1 x dx. 
5 Jex sin x dx. 

7 f� dx. 

9 

1 1  

13 
1 5  

17  

J x sin- 1 x dx. 

J x cos (3x - 2) dx. 
Jx sec2 x dx. 
J In (a2 + x2) dx. J l:x dx. 

2 J tan- 1  x dx. 
4 Jxeax dx. 
6 J eax cos bx dx. 
8 J sin- 1 x dx. 

10  L7T/2 
0 x sin x dx. 

1 2  J tan
x
�1 x dx. 

14  J sin (In x )  dx. 
16 Jx2 In (x + l )  dx. 
1 8  J (In x)2 dx. 

23 

n - I J + -n- cos"-2 x dx. 
(7Tf2 

(b) Jo cos7 x dx. 

( 7T12 
(c) Jo cos8 x dx. 

(a) J(ln x)" dx = x(ln x)" - nf ( In x)11- 1 dx. 
(b) J(ln x)5 dx. 

24 The region under the curve y = sin x between x = 0 and 
x = TT is revolved about the y-axis. Find the volume of 
the resulting solid (a) by the shell method; and (b) by the 
washer method. 

25 The curve in Problem 24 is revolved about the x-axis. 
Find the area of the resulting surface of revolution. 

19  The region under the curve y = cos x between x = 0 and 
x = 7T/2 is revolved about the y-axis. Find the volume of 
the resulting solid. 

26 (The volcanic ash problem) When a volcano erupts, the 
cloud of ejected ash gradually settles onto the surface of 
the nearby land. The depth of the deposited layer of ash 
decreases with distance from the volcano. Assume that 
the depth of the ash r feet from the volcano is ae-br feet, 
where a and b are positive constants. 

20 Find J(sin- 1 x)2 dx. Hint: Make the substitution y = 
sin- 1 x. 

2 1  I f  P(x) i s  a polynomial, show that 

f P(x)ex dx = (P - P ' + P" - P"' + · · - )ex. 
(a) Find the total volume of ash that falls within a dis

tance c of the volcano. Hint: What is the element of 
volume d Vof ash that falls on a narrow ring of width 
dr and inner radius r centered on the volcano? In the next two problems, derive the given reduction formula 

and apply it to the indicated special case(s). (b) What is the l imit of this volume as c � c.o? 

1 0 . 8  
A MIXED BAG . 

STRATEGY FOR 
DEALING WITH 
INTEGRALS OF 

MISCELLANEOUS TYPES 

As the student understands by now, differentiation is straightforward but inte
gration is not. In finding the derivative of a function it is obvious which formula 
must be applied. But it may not be at all obvious which method should be used 
to integrate a given function. 

Since the problems in each section of this chapter have focused on the meth
ods of that section, it has usually been clear what method to use on a given in
tegral. Generally speaking, the methods at our disposal now are direct substitu
tion, trigonometric substitution, partial fractions, and parts. But what if an integral 
is met out of context, with no obvious clue as to how to work it out? In this sec
tion we try to suggest a strategy for this common situation. 

An essential prerequisite is a knowledge of the basic integration formulas. For 
the sake of emphasis, we repeat the list given in Section 10. 1 ,  together with three 
additional formulas arising from our work in this chapter. As we pointed out ear
lier, the first 1 5  formulas should be memorized, and we hope students will take 
our advice seriously this time. It is useful to know them all, but the last three 
(marked with an asterisk) need not be memorized since they are easy to derive, 
as follows. Formulas 1 6  and 1 7  are immediate from the simple partial fractions 
decompositions 
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1 1 l [ l 1 ] 
x2 - a2 

= (x + a)(x - a) 
= 

2a x - a 
- x + a  

and 
1 1 l [ 1 1 ] 

a2 - x2 = (a + x)(a - x) = 2a a + x + a - x · 

These decompositions can easily be understood by mentally recombining the 
terms in brackets with the aid of a common denominator; we then see directly 
what the constant factor outside the brackets must be. Formula 1 8 is almost im
mediate from the trigonometric substitutions x = a tan () and x = a sec (), re
spectively. In this list of formulas we use x instead of u as the variable of inte
gration- since the usefulness of the u-notation is now thoroughly familiar to us 
-and for the sake of simplicity we omit the constant of integration. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1 

12 

1 3 

14 

1 5 

* 16 

* 1 7 

* 1 8 

f xn+ I x" dx = --n + l 

J � = ln x. 
J ex dx = ex. 

J cos x dx = sin x. 

J sin x dx = -cos x. 

J sec2 x dx = tan x. 

J csc2 x dx = -cot x. 

(n 1' - 1 ). 

J sec x tan x dx = sec x. 

J csc x cot x dx = - csc x. 

f dx . I X = sm- -. '\/a2 _ x2 a 

J � = _!_ tan- 1 �. 
a2 + x2 a a 

J tan x dx = - ln (cos x). 

J cot x dx = ln (sin x). 

J sec x dx = ln (sec x + tan x). 

J csc x dx = -In (csc x + cot x). 

f � = __!___ In (�) 
x2 - a2 2a x + a · 

J� = -1 l n (�) 
a2 - x2 2a a - x · 

J 
dx = ln (x + V x2 ± a2). 

Vx2 ± a2 

363 
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METHODS OF INTEGRATION 

These formulas constitute our arsenal of weapons for attacking integrals, and 
it is up to us to decide which to use in a particular case. If we do not see what 
to do immediately, the following strategy may be helpful. 

STRATEGY FOR INTEGRATION 

Simplify the integrand. The use of algebraic or trigonometric identities will 
sometimes simplify the integrand and make a method of integration obvious. 
For example: 

J Vx(Vx + Vx) dx = J (x + x516) dx; 

J (sin x + cos x)2 dx = J (sin2 x + 2 sin x cos x + cos2 x) dx 

= J ( I  + 2 sin x cos x) dx; 

J 
l - tan2 x 

J --2-- dx = ( 1  - tan2 x) cos2 x dx sec x 

= 1 --- cos2 x dx J 
( sin2 x ) 

cos2 x 

= J (cos2 x - sin2 x) dx = J cos 2x dx. 

In the second problem, if we fail to notice that sin2 x + cos2 x = 1 ,  and in
stead integrate sin2 x and cos2 x separately, then we can still solve the prob
lem, but we have missed an opportunity to do things the easy way. A simi
lar remark applies to the third problem, with its use of the double-angle 
formula for the cosine. 

2 Look for an obvious substitution. Try to find some function u = g(x) in the 
integrand whose differential du = g ' (x) dx is also present, apart from a con
stant factor. For example, in 

J 
x dx 

4 - x2 

we notice that if u = 4 - x2, then du = -2x dx and x dx = -+ du. It is there
fore much simpler to use this substitution than to use partial fractions or the 
trigonometric substitution x = 2 sin 8, each of which also works but takes 
longer to carry out. 3 Classify the integrand. This is the heart of the matter. If Steps 1 and 2 have 
not helped, then we turn to a more careful examination of the form of the in
tegrand f(x). 
(a) If f(x) is (or can be written as) a product of powers of sin x and cos x, 

or tan x and sec x, or cot x and csc x, then the methods of Section 10.3 
can be used.* 

•A special method for integrating any rational function of sin x and cos x is described in Appendix 
A.9 at the end of the book. This method will not be needed for any of the review problems at the 
end of this section. 
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(b) If/(x) involves Ya2 ::+::: x2 or Y x2 ::+::: a2, or powers of these expressions, 
use the trigonometric substitutions of Section 1 0.4. 

(c) If /(x) is a rational function, use partial fractions as explained in Sec
tion 10.6-unless there is a better way for a particular integral. 

(d)  If /(x) is a product of functions of different types, try integration by 
parts. As we have seen in Section 1 0.7, this method also works for many 
individual inverse functions like ln x, sin- 1 x, and tan- 1 x. 

(e) Be observant, thoughtful, flexible and persistent- all of which are of 
course easier said than done. If a method doesn' t  work, be ready to try 
another. Sometimes several methods work. Keep your options open and 
do things the easy way-if any. And remember that doing a problem 
more than one way is a good learning experience. 

Our purpose in the following examples is to try to suggest possible lines of at
tack by "thinking out loud." We are interested mainly in brainstorming these in
tegrals, and in most cases we will not work out all the details to the final answer. 

I x2 
Example 1 

x6 
_ 1 

dx
. 

Comments Since the integrand is a rational function, partial fractions will work. 
This requires factoring x6 - 1 into (x3 + l )(x3 - 1 )  = (x + l )(x2 - x + 1 )  · 
(x - l )(x2 + x + 1 )  and then finding constants A, B, C, D, E, F such that 

x2 A Bx + C D Ex + F -- = -- + + -- +  . x6 - I x + I x2 - x + I x - 1 x2 + x + I 
We can do this if we must, but actually carrying out this work is not an attrac
tive prospect. 

Let us probe in a different direction. A much more promising method is to no
tice that x6 is the square of x3 and that the numerator of the integrand is almost 
the derivative of x3. Accordingly, if we put u = x3, then du = 3x2 dx, x2 dx = t du, and the integral becomes 

1 
J 

du 1 ( u - I ) 1 (x3 - 1 ) 3 u2 - 1 = 6 In -;:;-+! = 6 In x3 + 1 ' 

by formula 16. 

I x2 
Example 2 

1 + x2 
dx. 

Comments The trigonometric substitution x = tan e will work. Partial fractions 
will also work, but since the integrand is an improper rational function, we must 
begin with long division. However, an easier way to accomplish the result with
out actually carrying out the long division is simply to add and subtract 1 in the 
numerator, 

I� dx - J (x2 + I - 1 ) dx - J ( 1 - _1 ) dx 
I + x2 - 1 + x2 - 1 + x2 

= x - tan- 1  x. 

365 
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Example 3 J e2x dx 
ex - 1 · 

Comments We begin by noticing that e2x dx = ex(ex dx) = ex d(ex). This sug
gests that we put u = eX, so that e2x dx = u du and the integral can be written 

J u du = J u - 1 + 1 
du = J ( 1 + _I

_) du 
u - I  u - I u - I 

= u + In (u - 1) = ex + In (ex - 1 ). 
By subtracting and adding 1 here we employ a slight variation of the idea used 
in Example 2. 

Example 4 J 4x + 1 dx. 1 + x2 

Comments The numerator is nearly (but not quite) the derivative of the de
nominator. This suggests that we break the integrand into a sum and rearrange 
the constants to achieve this desirable condition: 

J 4x + 1 J ( 2x  1 ) 1 + x2 dx = 2 . 1 + x2 + 1 + x2 dx 

J 2x dx J dx = 2 1 + x2 + 1 + x2 = 2 I n  ( 1 + x2) + tan - I x. 

Example 5 J 2x + 6 
dx 

x2 + 7x + 10 · 

Comments In Example 4 we arranged part of the numerator to be the deriva
tive of the denominator. A similar purpose here suggests that we write 

J 2x + 6 dx _ J (2x + 7) - 1 dx x2 + 7x + 10 - x2 + 7x + 10 

J (2x + 7) dx J dx = x2 + 7x + 10 - x2 + 7x + 10 · 
The first of these integrals has been arranged to be ln (x2 + 7x + 1 0), and we 
can easily work out the second by factoring the denominator into (x + 2)(x + 5) 
and using partial fractions. 

Example 6 

Comments The trigonometric substitution x = tan () will work. Partial fractions 
will also work, but if we try this there will be eight unknown constants to find. 
We hope for something better. 

Let us try the substitution u = 1 + x2. Our only reason for this is that it sim
plifies the denominator to u4. Then du = 2x dx, and we have 
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I x5 dx 
= J (x2)2 (x dx) = _!_ J (u - 1)2 du 

( I + x2)4 ( I  + x2)4 2 u4 

1 J u2 - 2u + 1 1 J = 2 u4 du = 2 (u-2 - 2u-3 + u-4) du, 

which is easy. 

Example 7 J dx 
x(ln x)2 • 

Comments We notice at once that the differential of In x is dxlx. We therefore 
put u = ln x, so that du = dx/x and 

Example 8 J x dx 

� 

I dx J du I I 
x(ln x)2 = � = --;_; = - In x · 

Comments This requires a so-called rationalizing substitution, that is, one that 
eliminates the radical. We put u = �. so that u3 = x + 1 ,  3u2 du = dx, and 
x = u3 - 1 .  We can now write 

which is easy. 

J x dx = J 
(u3 - 1 )3u2 du = J (3u4 - 3u) du, 

� u 

Example 9 J J� � � dx. 
Comments The rationalizing substitution 

u = {l"+-; 'I/� 
will work here, but the result is a messy rational function. A better idea is to mul
tiply both numerator and denominator by v'l+x, which gives 

J J1 + x  dx = J J1 + x . v'l+x dx = J 
1 + x  dx 

1 - x 1 - x vT+x � 

Example 10 

= J dx 
+ J x dx 

= sin- I x - �-

� � 

J 1 dx. 
1 + cos x 

Comments This time we multiply both numerator and denominator by 1 - cos x 
to obtain a somewhat different application of the idea in Example 9: 

367 
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PROBLEMS 

Find the following integrals. 

I x dx 
� · 

2 

3 J sin2 x cos5 x dx. 4 

s J YI +  In x dx. x In x 6 

7 J sin Vx dx. 8 

9 J cos x tan x dx. IO 

1 1 J x sin2 x dx. 1 2  

13  J e2x 
I + ex dx. 14 

IS J x2 dx 
� · 

16  

17 J tan- 1  Vx d 
Vx x. 

18  

19  I 3x + s dx. x - 2  20 

f V4 - x2 
21 dx. 22 

x 
23 Jx5 e-x' dx. 24 

METHODS OF INTEGRATION 

J I dx = f I . I - cos x dx = J I - cos x dx 
I + cos x I + cos x I - cos x I - cos2 x 

Example 1 1  J e Yx dx. 

_ I 1 - cos x d _ J 2 d _ I cos x dx - sin2 x x - csc x x sin2 x 

I = -cot x + -.-. Sin X 

Co111111ents It is natural to try the substitution u = Vx, even though we have no 
idea what is likely to happen. Then u2 = x, 2u du = dx, and we have 

J eVx dx =  J 2 ue" du. 

This integral is now an obvious candidate for integration by parts. 

The following list of problems contains integrals of all the types we have en
countered, arranged in random order so that students can test their diagnostic 
powers. 

J x4 In x dx. 

J x3 � 4x · 

J (e3x)4 ex dx. 

J x3 
x4 - 1 

dx. 

J cos x dx 
1 + sin2 x · 

J ln x + Vx dx. x 

J ln (x +  I )  d 2 x. x 

Jsin x cos (cos x) dx. 

J sec4 x dx. 

J ( I  + Vx)8 dx. 

J e2x �sex · 
f(� + 1 )2 dx. 

25 

27 

29 

31 

33 

35 

37 

39 

40 

41  

43 

45 

J (x : 3)2 
dx. 

J x4 + 2:2 + I O  dx. 

J 
x In x 

W-=t 
dx. 

f x2 sin x3 dx. 

J (x2 + l�x2 + 4) dx. 

J x2 dx 
(x - I )3 . 

J tan3 x sec4 x dx. 

26 

28 

30 

32 

34 

36 

38 

J 
x
�

dx. 
1 - x2 + 1 - x2 

J x3e-2x dx. 

J sin2 x cos4 x dx. 42 

J � dx x + 3 
44 

J In (x2 + 3) dx. 46 

J x Yx+s dx. 

J x2 V x3 - 4 dx. 

J sin 2x 
Y4 - cos4 x 

dx. 

f x sec x tan x dx. 

I dx 
xY2x - 1 6

. 

J x3 Jn x dx. 

f (ex - �xY dx. 

I x dx 
vl-"4x2 ' 

I x3 
16 + x8 dx. 

J 
e••n- •  x 
-1--2 dx. + x  
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49 

51 

S3 

SS 

S7 

S9 

61  

63 

65 

67 

69 

7 1  

73 

7S 

77 

79 

81 

83 

8S 

87 

J e5x cos 3x dx. 
J x dx x4 - 2x2 - 3 · 

J x4 + 1  dx x5 + Sx + 3 
· 

J dx 
x + 7 + sVx+T · 

J sin x dx 
I + 3 cos2 x · 

J x3 
(x + 1 )8 dx. 

J tan6 x dx. 

J x dx. x2 + Sx + 6 

J 1n �dx. 
J J � �; dx. 
J sin2 Sx cos2 Sx dx. 

J cot x In (sin x) dx. 

J cot3 2x csc3 2x dx. 
J In (2x + x2) dx. 
J "Vxo - Vx) dx. 
J In ( 1  + x2) dx. 
J x tan2 x dx. 
J sec7 x tan x dx. 
J x sin - I x dx. 

J x3 
1 + XS dx. 

J sec2 x dx . 
v'sec2 x - 1 

48 

so 

S2 

S4 

S6 

S8 

60 

62 

64 

66 

68 

70 

72 

74 

76 

78 

80 

82 

84 

86 

88 
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J x + 1 d 
x2 - 2x + 2 x. 

J ex+e•· dx. 

J x sin- I  (x2) dx. 
J x3 + x:: x + I . 
J 2x + 3 dx. x2 + I 
J sin (In x) dx. 
J sin x + cos x dx. sm x - cos x 

J YI� 4x2 · 
J 4 dx 
x2 + 4x + 20 · 

J� dx. 
1 6  - x4 

J dx 
x2 + Sx - 6 "  

f e3/� ex ' 

f � dx. ex - I 

J si:4x · 

J ex dx 
e2x _ l '  

J x4 
(xs + 1)3 dx. 

J tan- I  2x dx 1 + 4x2 · 

J x2 + � + 6 '  

J 1 + cos2 x dx. I - cos2 x 
J tanx

�I x dx. 
J 1 + 2::- e-x · 

89 

91 

93 

95 

97 

98 

99 

101 

102 

103 

lOS 

107 

109 

1 1 1  

1 1 3  

l l S  

1 16  

1 17 

1 1 9  

121 

123 

12S 

J eYx 
Vx 

dx. 90 

J In xI0 --dx. 92 x 

J v:;--=z dx. x + 2 94 

J si�x· 96 

J Y( l + 3x)( l - 3x) dx. 
J sin3 x cos2 x dx. 

J 2x + 5 d x2 + Sx + 6 
x. JOO 

J x4 - 2
x
x2 - 3 dx. 

I v I + v I + Vx dx. 
J x4 
x3 - 1 dx. 

J sin3 x dx. cos5 x 
J sin x cos 2x dx. 

J x dx 
�· 

J In (ax + b) dx. 
f ex COS (ex) dx. 
fVx In x dx. 

J cos x 
sin2 x - 2 sin x + 3 

J(tan x + cot x)2 dx. 
J 32x + 80 dx (x - 1 )(x + 3)2 · 
J Jn ( 1 - Vx) dx. 
J x tan- I  (x - 1 )  d.x. 

J -x2 
� 

dx. 

104 

106 

108 

1 10 

1 1 2  

1 14 

dx. 
1 18 

120 

122 

1 24 
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J w+9 dx. x 
J co�sx · 

f I dx. 
Vx + Vx+i 

J dx . Y9x2 + 12x - 5 

J sin2 x cos3 x dx. 

J x sec2 x dx. 

J sin 2x cos x dx. 
J x4 � I dx. f ex + 5� 4e-x ' 

J c?s4 x dx. sm2 x 

J 3x2 -c��3x + 4 · 

f In (xVx) dx. 
J a2 :b2x2 ·  
J x2 dx 
(x2 + 1 )3 · 

J 2x2 -�x + i · 

From the point of view of the theorist, the main value of calculus is intellectual; 

1 0 . 9  it helps us comprehend the underlying connections among natural phenomena. 
However, anyone who uses calculus as a practical tool in science or engineering NUMERICAL 
must occasionally face the question of how the theory can be applied to yield INTEGRATION. 
useful methods for performing actual numerical calculations. SIMPSON'S RULE 

In this section we consider the problem of computing the numerical value of 
a definite integral 
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Figure 10.5 

METHODS OF INTEGRATION 

r f(x) dx ( 1 ) 

in decimal form to any desired degree of accuracy. In order to find the value of 
( 1 )  by using the formula 

r f(x) dx = F(b) - F(a), (2) 

we must be able to find an indefinite integral F(x) and we must be able to eval
uate it at both x = a and x = b. When this is not possible, formula (2) is useless. 
This approach fails even for such simple-looking integrals as 

�dx and -
dx, L" J,5 ex 

0 I X 

because there are no elementary functions whose derivatives are � and eX/x 
(see Appendix A.9). 

Our purpose here is to describe two methods of computing the numerical value 
of ( 1 )  as accurately as we wish by simple procedures that can be applied re
gardless of whether an indefinite integral can be found or not. The formulas we 
develop use only simple arithmetic and the values of f(x) at a finite number of 
points in the interval [a, b]. In comparison with the use of the approximating 
sums that are used in defining the integral (see Section 6.4), the formulas of this 
section are more efficient in the sense that they give much better accuracy for 
the same amount of computational labor. 

THE TRAPEZOIDAL RULE 

Let the interval [a, b] be divided into n equal parts by points x0, xi, . . .  , Xn from 
xo = a  to Xn = b. Let Yo. Y i • . . .  , Yn be the corresponding values of y = f(x). We 
then approximate the area between y = f(x) and the x-axis, for Xk- I ::5 x ::5 Xb by 
the trapezoid whose upper edge is the segment joining the points (Xk- i .  Yk- i )  
and (xk, Yk) [see Fig. 1 0.5) .  The area of this trapezoid i s  clearly 

If we write 

b - a  ilx = Xk - Xk- 1 = --, n 

(3) 

(4) 

then adding the expressions (3) for k =  1 ,  2, . . .  , n gives the approximation for
mula 

lb _ I I 
a f(x) dx = (2Yo + Yt + Y2 + · · · + Yn- 1 + IYn) Lil, 

because each of the y ' s  except the first and the last occurs twice. This formula 
is called the trapezaidal rule. 

Example 1 Use the trapezoidal rule with n = 4 to calculate an approximate value 
for the integral 

r �dx. 
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Here y = f(x) = � and xo = 0, x 1 = ±. x2 = t, x3 = i, X4 = 1 .  We can 
compute the y 's easily by using a calculator: 

Yo = 1 ,  

Y I  = lli = \/G.984 = 0.992, 

Y2 = ft = \/Q.875 = 0.935, 

Y3 = Pd = vQ.578 = 0.760, 

Y4 = 0. 

By the trapezoidal rule, we therefore have 

Io' Vl=7 dx = i<0.500 + 0.992 + 0.935 + 0.760 + 0.000) = 0.797. 

SIMPSON'S RULE* 

Our second method is based on a more ingenious device than approximating each 
small piece of the curve by a line segment; this time we approximate each piece 
by a portion of a parabola that "fits" the curve in a manner to be described. 

Again we divide the interval [a, b] into n equal parts, but now we require that n be an even integer. Consider the first three points x0, x 1 ,  x2 and the corre
sponding points on the curve y = f(x), as shown in Fig. 1 0.6. If these points are 
not collinear, then there is a unique parabola that has vertical axis and that passes 
through all three points. To see this, recall that the equation of any parabola with 
vertical axis has the form y = P(x) where P(x) is a quadratic polynomial, and ob
serve that this polynomial can always be written in the form 

P(x) = a + b(x - x1 ) + c(x - x1 )2 . (5) 

We choose the constants a, b, c to make the parabola pass through the three points 
under consideration, as indicated in the figure. Three conditions are necessary 
for this: 

a + b(xo - x1 ) + c(xo - x1 )2 = yo; (6) 

(7) 

Equations (6) and (7) can be solved for the constants b and c. However, it is more 
convenient to use the definition (4) of iix and the fact that a = y1 to write these 
equations in the form 

from which we obtain 

-b 6.x + c 6.x2 = Yo - Y 1 >  
b 6.x + c 6.x2 = Y2 - YI· 

2c 6.x2 = Yo - 2y1 + Y2· (8) 

•Thomas Simpson ( 1710-1761),  an English mathematics teacher whose name is wrongly attached 
to the rule that bears his name, was in his earlier years a professional astrologer and confidence man 
(one of his escapades forced him to flee to another town). His eventual success as a writer of ele
mentary mathematics textbooks was greatly helped by accusations of plagiarism. This success en
abled him to escape from poverty and leave his shady past behind him. 

I I I \ 
\ 

Yo 

Figure 1 0.6 

Y 1  

I I 

37 1 



372 METHODS OF INTEGRATION 

We now think of the parabola (5) as a close approximation to the curve y = 
fix) on the interval [x0, x2] ,  and we compute this part of the integral ( 1 )  accord
ingly, 

lx2 lx2 f(x) dx = [a + b(x - X1 ) + c(x - x1 )2] dx xo xo 
= [ax + tb(x - x1 )2 + tc(x - x1 >3J::. 

When this is evaluated in terms of iix, we obtain 

By using (8) and the fact that a = Y i .  we can write this in the form 

2y 1 11x + I(Yo - 2y 1 + Y2) 11x = I(Yo + 4y1 + Y2) 11x. 
The same procedure can be applied to each of the intervals [x2, x4] ,  [x4, x6], . . . . 
When the results are all added together, we get the approximation formula 

Lb I 
a f(x) dx = 3(yo + 4y 1 + 2y2 + · · · + 4Yn- I + y,,) !:u, 

which is called Simpson 's rule. We specifically point out the structure of the ex
pression in parentheses : Yo and Yn occur with coefficient 1 ,  the remaining y 's with 
even subscripts occur with coefficient 2, and the y 's with odd subscripts occur 
with coefficient 4. 

Example 2 Use Simpson's rule with n = 4 to calculate an approximate value 
for the integral 

(2 dx 
Jo 1 + x4 · 

This time we have y = j(x) = 1 /( 1  + x4) and xo = 0, x1 = t, x2 = 1 ,  x3 = f, 
x4 = 2. A simple table helps to keep the computations in order: 

Yo = I 

YI = -!* = 0.94 1 

Y2 = t = 0.500 

y3 = � = 0. 1 65 

Y4 = f; = 0.059 

Simpson's rule now yields 

Yo = 1 .000 

4y1 = 3 . 764 

2y2 = 1 .000 

4y3 = 0.660 

Y4 = 0.059 
sum = 6.483 

12 dx I 
-, --4 = 6(6.483) = 1 .08 1 .  0 + x 

Sometimes data is obtained from a scientific experiment with equally spaced 
observations. If this data represents isolated values of a function whose analytic 
expression is not known, then it may be wished to obtain an approximation to 
the integral of this function over the range of observation. Simpson's rule can be 
used in such a situation. 
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Example 3 If the experimental data is 

x 0 0.5 

y 1 .0000 1 .6487 

then 

1 .5 2 

2 .7 1 83 4.48 1 7  7.389 1 

L2 y dx = t[ l + 4( 1 .6487) + 2(2. 7 1 83) + 4(4.48 1 7) + 7.389 1 ]  

= 6.39 1 2. 

As a matter of fact, y = ex was the function used to generate this table of val
ues, so the value of the integral is e2 - 1 = 6.3890560989 to 10 decimal places. 

Any serious study of a method of approximate calculation must include a de
tailed estimate of the magnitude of the error committed so that definite knowl
edge is available of the level of accuracy attained. We do not pursue this matter 
very far here, but merely state that the error in Simpson's rule is known to be at 
most 

M(b - a) 6. 4 
1 80 x ,  (9) 

where M is the maximum value ofJC4l(x) on [a, b]. Derivations of this bound for 
the error can be found in books on numerical analysis. The power of Lix that ap
pears in  (9) tells us that if we reduce the width lix by a factor of 1 0  (using 1 0  
times a s  many subintervals), then we expect the maximum error to shrink b y  a 
factor of 1 04 = 10,000. If we replace Lix in (9) by (b - a)ln, the bound (9) takes 
the form 

M(b - a)5 
1 80n4 · 

( 1 0) 

This formula enables us to impose a previously determined bound on the error 
by specifying a suitable value for n. 
Example 3 (continued) We see that the actual error in the above calculation is 
about 0.002 1 when n = 4. What value of n will guarantee that the error will be 
at most 0.0001 ?  

In this case, assuming f(x) = ex really was the function underlying our data, 
then JC4l(x) = ex and M = e2. By ( 1 0) we therefore have 

so 

e2 . 2s 
1 80n4 = 0.000 1 ,  

or n = 10.7. 

Any integer n � 1 1  will therefore provide this level of accuracy. 

Students who own calculators and enjoy working with them should note that 
the methods and problems of this section-and also of others to come, espe-

3 7 3  
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cially Section 14.5-provide plenty of raw material for these calculator enthu
siasts. 

PROBLEMS 

rn 1 Clearly, 

1-1 2 � 

1-1 3 � 

1-1 4 � 

(I Yx dx = 1. = 0 666 Jo 3 • . . . . 

Calculate the value of this integral approximately with 
n = 4 by using 
(a) the trapezoidal rule (recall that v'2 = 1 .4 1 4  . . .  and 

v'3 = 1 .732 . . . ) ;  
(b) Simpson's rule. 
Since the two rules are almost equally easy to apply, and 
Simpson's rule is usually more accurate, the trapezoidal 
rule is rarely used in practical computations. 
Clearly, 

L7T sin x dx = 2. 

Calculate the value of this integral approximately by us
ing Simpson's rule with n = 4. 
The exact value of 

r � dx 
is not known. Find its approximate value by using Simp
son's rule with n = 4. 
The exact value of 

I I I I I I I I 1 1 85 
1 1 80 

I 1 75 1 1 70 
0 1 90 I I I I I I I I I I I 

0 100 200 300 400 500 

Figure 10.7 A dogleg fairway on a golf course. 

1-1 5 � 

1-1 6 � 

1-1 7 � 

I 
1 1 95 I I I I 

600 

is 

e" 

- dx 
I X 

is not known. Use Simpson's rule when n = 4 to find its 
approximate value. 
The exact value of 

is not known, but to 10 decimal places it is 0.88208 1 3908. 
Calculate this integral approximately by using Simpson's 
rule with n = 4. 
Find an approximate value for Jn 2 by using the fact that 

fi2 dx 
ln 2 =  -

I X 

and applying Simpson's rule with n = 4. (To 10 decimal 
places, In 2 = 0.693 147 1 806.) 
Use the formula 

7T (1 dx 
4 = Jo 1 + x2 

to find an approximate value for 7T by using Simp
son's rule with n = 4. (To 1 0  decimal places, 7T = 
3 . 141 5926536.) 

I I 
1 205 I I I 

700 800 900 

0 

1 000 1 100 1 200 
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8 In Example 3 , what positive integers n will guarantee that 
the error is at most 0.000001 ?  
The width, in feet, at equally spaced points along the fair
way of a hole on a golf course is given in Fig. 10.7. The 
management wishes to estimate the number of square 
yards of the fairway as a basis for deciding how long it 
should take a groundskeeper to mow it. Use Simpson's 
rule to provide such an estimate. 

IO Suppose that the three points on the curve in the deriva
tion of Simpson's rule are collinear. Use (8) to show that 

in this case c = 0, and conclude that under this as
sumption the curve through the points is a straight line 
instead of a parabola. 

11  Simpson's rule i s  designed to be exactly correct i f  f(x) 
is a quadratic polynomial. It is a remarkable fact that it 
also gives an exact result for cubic polynomials. Prove 
this. Hint: Notice that it suffices to establish the state
ment for n = 2; then prove it in this case for the func
tion j{x) = x3; then extend it to any cubic polynomial. 

12 Use formula (9) to prove the statement in Problem 1 1 . 

CHAPTER 1 0  REVIEW: FORMULAS, METHODS 

Think through and learn the following. 
1 The 15 basic formulas (write them down from memory). 
2 Method of substitution. 
3 Integrals of the form 

J sin"' x cos" x dx, J tan"' x sec" x dx, 

J cot"' x csc" x dx. 

ADDITIONAL PROBLEMS FOR CHAPTER 10 

SECTION 10.2 
Find each of the following integrals. 

1 

3 

5 

7 

9 

1 1  

13 

15 

17 

f v'3x+s dx. 

J 6x dx 
I +  3x2 ' 

J cos ( 1  - Sx) dx. 

J sec 
Vx tan Vx dx 

Vx 
. 

J 2x dx 
I + x4 ' 

J cot 4x dx. 

J x(l�x)2 · 

J sec2 x dx . tan x 

J . ( 3x - 5 ) sm --2- dx. 

2 

4 

6 

8 

IO 

12  

14  

16 

18 

J ( In x;6 dx . 

J e
llx dx 

2 . x 

J sin x sin (cos x) dx. 

J x3 dx 
� · 

J x2 + 5 dx. 
x2 + 4 

J si:X2x · 

J dx 
3 - x · 

J 10x4e' dx. 

J csc2 (2 - x) dx. 

4 The trigonometric substitutions x = a sin (}, x = a tan (}, 
x = a  sec (}. 

5 Completing the square: (x + A)2 = x2 + 2Ax + A2. 
6 Method of partial fractions. 
7 Integration by parts. 
8 Simpson's rule. 

19 J 6x2 cot x3 csc x3 dx. 20 J sec2 x dx . 
YI - tan2 x 

21 J x[l + �n x)2] ' 22 J cot 7TX dx. 

23 J (3x ! 5)2 ' 24 J tan x sec4 x dx. 

25 J 3 �2x · 26 J (ex + 2x) dx 
e + x2 - 2 . 

27 J x2 cos ( 1  + x3) dx. 28 J sin (2 - x) dx. 

29 J x csc2 (x2 + I )  dx. 30 f dx 
\13 - 4x2

. 

31 f cos x dx 
I + sin2 x ' 32 f I :4x2 · 

33 J ta:X2x · 34 J (csc x - 1 )2 dx. 

35 J tan- 1 x dx 
1 + x2 · 36 f V3x - 2 dx. 

37 f 2x� 1 ·  38 J (ex - e-x) dx . ex + e-x 
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39 

4 1  

42 

43 

45 

47 

49 

5 1  

S3 

SS 

S7 

59 

61 

63 

65 

67 

69 

7 1  

73 

74 

75 

77 

J ex/3 dx. 40 

J sec2 (sin x) dx . sec x 

J (csc x - cot x) csc x dx. 

f dx . 
\/1 - 25x2 

J sec x tan x dx 
I + sec2 x · 

J (In x;2 dx
_ 

J sin x dx 
I + cos x ·  

f �-
J sin (I: x) dx . 

J csc l /x cot ! Ix dx 
2 . x 

J e2x dx 
l + e4x · 

J x3� dx. 

J ( I  + ex) dx . ex + x 
f 2dx 

y;x· 

J si�x ·  

J x tan x2 dx. 

f x dx 
1 + x2 · 

f 3x2-2 dx xe . 

44 

46 

48 

50 

S2 

S4 

S6 

S8 

60 

62 

64 

66 

68 

70 

72 

J sec x (sec x + tan x) dx. 

J x2 dx 
9 + x6 · 

J x213� dx. 76 

J sec2 x e1"" x dx. 78 

METHODS OF INTEGRATION 

J se�2x · 79 J ( I  + cos x)4 sin x dx. 80 
f ( I + cos x) d.x

_ X + Sin X 

81 J cos (tan x) sec2 x dx. 82 
f csc2 o; x) dx . 

Compute each of the following definite integrals by making 
a suitable substitution and changing the limits of integration. 

J 1 6  :X2sx2 · 
LVz/2 2x dx Ly; 

83 84 0 x sin x2 dx. 
� -

J ( I  + sec x)2 dx. i 1Tl4 L1Tl2 cos x dx 
85 cot 2x csc2 2x dx. 86 

1Ti8 o I + sin2 x · 

J cos x dx fo4 2xw+9 dx. r x dx sin2 x · 87 88 0 v?-+16 "  
J 6 csc2 x dx 

I - 3 cot x · 

J ex cos ex dx. 
SECTION 10.3 

Calculate each of the following integrals. 

J csc2 Vx dx 89 J sin2 Sx dx. 90 J cos4 3x dx. 
Vx . 

J cos2 7x dx. J sin6 x dx. 91 92 
f 4dx 

3 + 4x2 · J sins x cos2 x dx. J sins x dx. 93 94 
f x dx 

sin x2 · 9S J cos3 4x dx. 96 J cos3 2x sin 2x dx. 

J x dx 
97 J cos3 x dx 

98 J sins x dx . � - sin4 x · � 
J xex' dx. 99 J sin31s x cos x dx. 100 J sin2 x cos4 x dx. 

J x sin ( I  - x2) dx. 101 J sec6 x dx. 102 J co� x ·  

f dx 103 J tan3 x sec7 x dx. 104 J cot4 x dx. 
\/4 - 9x2

. 

f sec2 x dx I OS J cots x dx. 106 J sin�3x · 
� 107 J (sec 3x + csc 3x)2 dx. 

J 2e2x dx. 
108 J sec ::an x · 

J 3x2 sin x3 dx. 

SECTION 10.4 

Find each of the following integrals. 

109 f � dx. 1 10 J (a2 +�2)312 · 

J 4x3 dx J x2 dx J \
/4 - 9x2 

I +  x4 . I I  l a2 + x2 . 1 12 dx. 
x 

J x sec2 x2 dx. 1 13 J x3Ya2 - x2 dx. 1 14 J x3 dx 
Vaz + x2

. 
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J Ya2 + xi 
115 2 d.x. x 

f dx 
1 17 x4� · 
1 19 J x2 dx 

(a2 + x2)2 · 

f dx 
121 x2�· 

123 f ( I  -�x2)312 · 

125 f dx 

xY9 + 4x2 . 

127 J x2 dx 
( a2 _ x2)3/2 · 

129 J x2 dx 
(a2 + x2)3/2 · 

131 J x2 dx 
Yx2 - a2 . 

SECTION 1 0.5 

1 16 

1 18 

120 

122 

124 

126 

128 

130 

132 

f dx 
x2Ya2 - x2 . 

J x2 � x4 · 
J x3(a2 - x2)312 dx. 

f W-=-1 dx. 

J xi dx 
Ya2 + x2 . 

f dx 
. V9 - <x - 1 )2 

f dx 
x4Ya2 + x2 

J Ya2 - x2 
4 dx. x 

J x3 dx 
(x2 _ a2)3/2 · 

Calculate each of the following integrals. 

133 

135 

137 

139 

141 

143 

144 

145 

147 

f dx . Y65 - 8x - x2 134 

J 5x2 + �x + 1 5  · 136 

f V2 + � - 3x2 . 138 

J x2 dx 
Y2x - x2 . 140 

J 3x2 -� + 15 ' 142 

f dx . (x - l )Yx2 - 2x - 3  
J (2x - 5) dx . Y4x - x2 
J (3x + 7) dx . Yx2 + 4x + 8 146 

J (2x - 3) dx 
(x2 + 2x - 3)312 · 148 

f dx . YI + 4x - x2 
J (3x - 5) dx 
x2 + 2x + 2 ·  

f ( I  - x) dx 

Vs + 2x - x2 · 

f x dx . Yx2 - 4x + 5 
J (3x + 4) dx 

Y2x + x2 . 

J Y x2 + 2x + 2 dx. 

J Yx2 - 2x dx. 

SECTION 10.6 
Find each of the following integrals. 

149 

151 

153 

154 

155 

156 

157 

158 

159 

160 

J 16x + 69 dx. x2 - x - 1 2  
J -8x - 1 6  

4x2 - 1 
dx. 

J 3x2 - I Ox - 60 
x3 + x2 - l 2x dx. 

J 8x2 + 55x - 25 dx. x3 - 25x 

150 

152 

J -2x2 - 1 8x + 1 8  
3 dx. x - 9x 

J 4x2 - 2x - I 08 
x3 + 5x2 - 36x dx. 

J -3x3 + x2 + 2x + 3 x4 + x3 
J 9x2 - 35x + 28 dx x3 - 4x2 + 4x · 

J x2 - 5x - 8 
x3 + 4x2 + 8x dx. 

J 3x2 - 5x + 4 
x3 - x2 + x - I dx. 

dx. 

SECTION 10.7 

J 3x - 56 
dx x2 + 3x - 28 · 

J 1 2x - 63 dx x2 - 3x · 

Calculate the integrals in Problems 1 6 1-1 76 by the method 
of integration by parts. 

161 J x2 tan- 1 x dx. 162 J x2 cos x dx. 

163 J cos (In x) dx. 164 J x sin2 x dx. 

165 J x3 cos x dx. 166 f � dx. 

167 f In x dx 
(x + 1 )2 · 168 J xex dx 

(x + 1 )2 · 
169 J 

x3 dx 
� -

170 J x(x + 3)10 dx. 

171 J eax sin bx dx. 172 J xn In x dx (n -=f. - 1). 

f x dx 
174 J x2 sin x dx. 173 x . 

e 

175 J x3e-2x dx. 

176 J In (x + Y x2 + a2) dx. 

1 77 Find the area under the curve y = sin Yx from x = 

0 to x = 1T2. 
Calculate the integral J x3 

178 � dx by using the 
identity 2 
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x3 = x( 1 + x2 - 1 )  
= x � _ x 

� � � · 
Make sure your answer agrees with the result of Prob
lem 1 69. 

* 182 Use the idea of Problem 1 8 1  to obtain formula (9) in 
Section 1 0.6, 

x 

179 Calculate the integral J: x2� dx (a) by using the 

substitution u = �; (b) by parts. 

2a2(n - 1) (a2 + x2)n- 1  
2n - 3  I dx + 2a2(n - 1 )  (a2 + x2r- 1  · 

In the next three problems, derive the given reduction formula 
and apply it to the indicated special case. 180 Use integration by parts to show that 

J Y a2 - x2 dx = x Y a2 - x2 + J x2 dx. 
Ya2 - x2 

1 83 (a) J x'"(ln x)n dx = x'"+ 1 (In x)n 
m +  1 

Write x2 = -(-x2) = - (a2 - x2 - a2) in the nu
merator of the second integral and thereby obtain the 
formula (b) f x5(ln x)3 dx. 

- __ 
n_ J x'"(ln x)n- I dx. 

m + l  

184 (a) J xnea.x dx = ± xnea.x - % J xn- lea.x dx. 

(b) J x3e-2x dx. 

181 Use the method of Problem 1 80 to obtain the formula 
1 85 (a) J seen x dx = n � 1 secn-2 x tan x 

x(a2 - x2)n 2a2n J ____ + ___ (a2 _ x2y1- 1 dx. 2n + I  2n + l  

+ n - 2 J secn-2 x dx. n - 1 

(b) f sec3 x dx (see Problem 29 in Section 10.3). 

APPENDIX 1 : THE 
CATENARY, OR CURVE 

OF A HANGI G CHAIN 

As a specific example of the use of the methods of integration discussed in Section 1 0.4, 
we solve the classical problem of determining the exact shape of the curve assumed by a 
flexible chain (or cable, or rope) of uniform density which is suspended between two 
points and hangs under its own weight. This curve is called a catenary, from the Latin 
word for chain, catena. • 

y 

Figure 10.8 

Let the y-axis pass through the lowest point of the chain (Fig. 1 0.8), let s be the arc 
length from this point to a variable point (x, y), and let w0 be the linear density (weight 
per unit length) of the chain. We obtain the differential equation of the catenary from the 
fact that the part of the chain between the lowest point and (x, y) is in static equilibrium 
under the action of three forces : the tension To at the lowest point; the variable tension T 
at (x, y), which acts in the direction of the tangent because of the flexibility of the chain; 
and a downward force w0s equal to the weight of the chain between these two points. 

Equating the horizontal component of T to To and the vertical component of T to the 
weight of the chain gives 

T cos (} = To and T sin (} = wos, 
and by dividing we eliminate T and get tan (} = wos!To or 

dy 
= as dx , where Wo a =  To ' 

'The catenary problem is also solved in the optional Section 9.7 by using methods depending on hy
perbolic functions. The solution given here does not depend on these methods and can therefore be 
understood by students who have omitted that optional section. 
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We next eliminate the variable s by differentiating with respect to x, 

d2y 
= 

ds 
= Ji 

+ 
(dy )2 

dx2 a dx a dx . 

This is the differential equation of the catenary. 

( 1) 

We now solve equation ( I )  by two successive integrations. This process is faci litated 
by introducing the auxiliary variable p = dy/dx, so that ( I )  becomes 

On separating variables and integrating, we get 

I dp 
= I a dx. \ii""+P2 (2) 

To calculate the integral on the left, we make the trigonometric substitution p = tan ¢, so 
that dp = sec2 <P d</J and \ii""+P2 = sec ¢. Then 

so (2) becomes 

I dp 
= J sec2 <P d</J 

= J sec </J d</J \ii""+P2 sec </J 

= In (sec </J + tan ¢) = In (� + p), 

In (\ii""+P2 + p) = ax +  C J .  

Since p = 0 when x = 0 ,  we see that C J  = 0 ,  so 

In (\ii""+P2 + p) = ax. 

It is easy to solve this equation for p, which yields 

dx = P = � (eax - e-ax), 

and by integrating we obtain 

If we now place the origin of the coordinate system in Fig. 1 0.8 at just the right level so 
that y = lla when x = 0, then c2 = 0 and our equation takes its final form, 

(3) 

Equation (3) reveals the precise mathematical nature of the catenary and can be used as 
the basis for further investigations of its properties.* 

The problem of finding the true shape of the catenary was proposed by James Bernoulli 
in 1 690. Galileo had speculated long before that the curve was a parabola, but Huygens 
had shown in 1 646 (at the age of 1 7) ,  largely by physical reasoning, that this is not cor
rect, without, however, shedding any light on what the shape might be. Bernoulli ' s  chal
lenge produced quick results, for in 1 69 1 Leibniz, Huygens (now aged 62), and James's 
brother John all published independent solutions of the problem. John Bernoulli was ex-

•The hyperbolic cosine defined in Section 9.7 enables us to write the function (3) in the form 

I y = - cosh ax. 
a 
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3 80 

2 

AP PENDIX 2 :  
WALLIS'S PRODUCT 
2 2 4 4 6 6 

- · - · - · - · - · - ·  . .  

1 3 3 5 5 7 

METHODS OF INTEGRATION 

ceedingly pleased that he had been successful in solving the problem, while his brother 
James, who proposed it, had failed. The taste of victory was still sweet 27 years later, as 
we see from this passage in a letter John wrote in 1 7 1 8 : 

The efforts of my brother were without success. For my part, I was more fortunate, for 
I found the skill (I say it without boasting; why should I conceal the truth?) to solve it 
in full . . . .  It is true that it cost me study that robbed me of rest for an entire night. It 
was a great achievement for those days and for the slight age and experience I then had. 
The next morning, filled with joy, I ran to my brother, who was struggling miserably 
with this Gordian knot without getting anywhere, always thinking like Galileo that the 
catenary was a parabola. Stop! Stop ! I say to him, don't torture yourself any more try
ing to prove the identity of the catenary with the parabola, since it is entirely false. 

However, James evened the score by proving in the same year of 1 691 that of all possi
ble shapes a chain hanging between two fixed points might have, the catenary has the 
lowest center of gravity, and therefore the smallest potential energy. This was a very sig
nificant discovery, because it was the first hint of the profound idea that in some myste
rious way the actual configurations of nature are those that minimize potential energy. 

As an application of integration by parts in Section l0.7, we obtained the following re
duction formula: 

J . dx 1 .  I n - l J . 2 sm" x = -- sm"- x cos x + -- sm"- x dx. n n ( 1 )  
This formula leads i n  a n  elementary but ingenious way to a very remarkable expression 
for the number 7T/2 as an infinite product, 

7T 2 2 4 4 6 6 2n 2n - = -·-·- ·-·-·- . . . ---·--- . . .  2 1 3 3 5 5 7 2n - I 2n + 1 (2) 
This expression was discovered by the English mathematician John Wallis in 1 656 and is 
called Wallis 's product. Apart from its intrinsic interest, formula (2) underlies other im
portant developments in both pure and applied mathematics, so we prove it here. 

If we define /11 by 

then ( l ) tells us that 

It is clear that 

I7T/2 I = sin" x dx n 0 ' 

n - 1 In = -- 111-2· n 
( 7T/2 7T lo = Jo dx = 2 and 

(7Tl2 
I, = Jo sin x dx = 1 .  

(3) 

We now distinguish the cases of even and odd subscripts, and use (3) to calculate 1211 and 
1211+ 1 , as follows: 

2n - I 2n - I 2n - 3 '2n = 2;- 12,,-2 = 2;-" 2n _ 2 1211-4 

2n - I 2n - 3  2n - 5  1 = 
. . .  

= �- 2n - 2 .  2n - 4 . .
. 
2 10 

1 3 5  2n - 1 7T  
= -·-·- . . . ---·-· 2 4 6 2n 2 '  (4) 
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and 
2n 2n 2n - 2 

fzn+ I = 
2n + I l2n- I = 

2n + I
. 
2n - I l2n- 3  

2n 2n - 2 2n - 4  2 = . . .  = --- ·--- · --- . . .  - 1, 
2n + I 2n - I 2n - 3  3 

(5) 

As the next link in the chain of this reasoning, we need the fact that the ratio of these two 
quantities approaches I as n � =, 

(6) 

To establish this, we begin by noticing that on the interval 0 :s x :s Tr/2 we have 0 :s 
sin x :s 1 ,  and therefore 

0 :S sin2"+2 x :S sin2n+ 1 x :S sin2n x. 

This implies that 

0 < sin2"+2 x dx :S sin2n+ 1 x dx :S sin2" x dx l� l� l� 0 0 0 
' 

or equivalently, 

0 < fzn+2 :S fzn+ I :S fzn · 
If we divide through by fzn and use the fact that by (3) we have 

then (7) yields 

This implies that 

2n + 1 
2n + 2 ' 

2n + 1 
:S fzn+ I :S l . 

2n + 2  fzn 

as n �  oo, 

and this is equivalent to (6). 

so 

The final steps of the argument are as follows. On dividing (5) by (4), we obtain 

f2n+ I  = l.1.±.±.i.i . . .  �.�._.?._ 
l2n 1 3 3 5 5 7 2n - 1 2n + 1 7r' 

!!_ = l.l.±.±.i.i . . .  �.� (__!1!2._) 
2 1 3 3 5 5 7 2n - 1 2n + 1 fzn+ 1 

• 

On forming the limit as n � = and using (6), we obtain 

Tr . 2 2 4 4 6 6  2n 2n. - = hm - · - · - · - · - · - · · · --- · ---

2 n-->� 1 3 3 5 5 7 2n - 1 2n + 1 ' 

and this is what (2) means. 

(7) 

3 8 1  
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APPENDI X  3 : HOW 
LEIBNIZ DISCOVERED 

HIS FORMULA 
'TT 1 1 1 

- =  1 - - + - - - +  
4 3 5 7 

METHODS OF INTEGRATION 

We also remark that Wallis's product (2) is equivalent to the formula 

(8) 

This is easy to see if we write each number in parentheses on the left in factored form. 
This gives 

or 

which is clearly equivalent to (2). Formula (8) will reappear in Appendix 1 at the end of 
Chapter 13 as a special case of another even more wonderful formula: 

The area of the quarter-circle of radius 1 shown in Fig. 1 0.9 is obviously TT/4. We follow 
Liebniz and calculate this area in a different way. The part that we actually calculate is 
the area A of the circular segment cut off by the chord OT, because the remainder of the 
quarter-circle is clearly an isosceles right triangle of area f. 

We obtain the stated area A by integrating the sliverlike elements of area OPQ, where 
the arc PQ is considered to be so small that it is virtually straight. We think of OPQ as a 
triangle whose base is the segment PQ of length ds and whose height is the perpendicu
lar distance OR from the vertex 0 to the base PQ extended. The two similar right trian
gles in the figure tell us that 

so the area dA of OPQ is 

ds OS 
dx OR 

or OR ds = OS dx, 

dA = foR ds = tos dx = ty dx, 

*Wallis was Savilian Professor of Geometry at Oxford for 54 years, from 1649 until his death in 1 703 
at the age of 87, and played an important part in forming the climate of thought in which Newton 
flourished. He introduced negative and fractional exponents as well as the now-standard symbol oo 

for infinity, and was the first to treat conic sections as plane curves of the second degree. His infi
nite product stimulated his friend Lord Brouncker ( first president of the Royal Society) to discover 
the astonishing formula 

..±_ = 1 + 
_____ 1 2

--=-----71" 32 
2 + --------

52 
2 + ----7""""2--

2 + 
92 

2 + ----

2 + . . .  

from which the theory of continued fractions later arose. [No one knows how Brouncker made this 
discovery, but a proof based on the work of Euler in the next century is given in the chapter on 
Brouncker in J. L. Coolidge's The Mathematics of Great Amateurs (Oxford University Press, 1 949).] 
Among the activities of Wallis's later years was a lively quarrel with the famous philosopher Hobbes, 
who was under the impression that he had succeeded in squaring the circle and published his erro
neous proof. Wallis promptly refuted it, but Hobbes was both arrogant and too ignorant to under
stand the refutation, and defended himself with a barrage of additional errors, as if a question about 
the validity of a mathematical proof could be settled by rhetoric and invective. 



APPENDIX 3: HOW LEIBNIZ DISCOVERED HIS FORMULA 

where y denotes the length of the segment OS. The element of area dA sweeps across the 
circular segment in question as x increases from 0 to 1 ,  so 

A = f dA = ± LI y dx; 

and integrating by parts in order to reverse the roles of x and y gives l J I l J,1 1 l J, 1 A = 2 xy o - 2 o x dy = 2 - 2 o x dy, ( 1 )  

where the limits on the two integrals are understood to be y = 0 and y = 1 .  To continue 
the calculation, we observe that since 

y = tan fc/> 
the trigonometric identity 

and x = 1 - cos </> = 2 sin2 fc/>, 

yields 

I sin2 tc/> I I I I tan2 2</> = --2-1 - = sin2 2</> sec2 2</> = sin2 2</>( l + tan2 2</>) 
cos 2</> 

x y2 
2 1 + y2 ' 

The version of the geometric series given in formula ( 13) in Section 9.5 enables us to 
write this as 

x 2 = y2( 1 - y2 + y4 - y6 + . . . ) = y2 - y4 + y6 - y8 + . . . , 
so ( 1 )  becomes 

A = _!_ _ ( 1 (y2 _ y4 + y6 _ y8 + . . .  ) dy 
2 Jo 

= _!_ _ [_!_ y3 _ _!_ y5 + _!_ y7 _ _!_ y9 + , . ·J I 
2 3 5 7 9 0 

= ± - (t - t + + - t + . . · ) 
1 1 l l 1 = - - - + - - - + - - . . .  
2 3 5 7 9 . 

When I is added to this to account for the area of the isosceles right triangle, and the re
sult is equated to the known area 7T/4 of the quarter-circle, we have Leibniz's formula 

7T l 1 1 - =  1 - - + - - - + . . .  
4 3 5 7 . 

Is it any wonder that he took great pleasure and pride in this discovery for the rest of his 
life? 
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FURTHER 
APPLICATIONS OF 

INTEGRATION 

Most of the ideas in this chapter are based on the simple physical concept of cen
ter of gravity. As we shall see, this concept has implications for geometry, and 
it turns out to be possible to use it to arrive at a reasonable notion of what ought 
to be meant by the "center" of a general geometric figure. In this introductory 
section we confine ourselves to describing the concepts, and make no use of in
tegration. 

We begin by considering two children of weights w1 and w2 sitting at distances 
d1 and d2 from the fulcrum of a seesaw (Fig. 1 1 . 1 ) .  As we know, each child can 
increase the tendency of his or her weight to turn one end down by moving far
ther out from the fulcrum, and the seesaw balances when 

( I ) 

This principle was discovered by Archimedes, and is known as the law of the 
lever. If we establish a horizontal x-axis with its origin at the fulcrum and the 
positive direction to the right, then ( 1 )  can be written in the form 

or 

where x1 = d1 and x2 = -d2 . 
We now extend this discussion by considering the x-axis as a weightless hor

izontal rod that pivots at the point p, as shown in Fig. 1 1 .2, and we assume that 
n weights wk are placed at points xk, where k = 1 ,  2, . . .  , n. By Archimedes' 
law, this system of weights will exactly balance, or be in equilibrium about p, if 

L wk(Xk - p) = 0. 

More generally, whether this system is  in equilibrium or not, the sum 2:wk(Xk - p) 
measures the tendency of the system to turn in a clockwise direction about the 
pivot point p. This sum is called the moment of the system about p, and the sys
tem is in equilibrium if this moment is zero. If the weights wk and their positions 
xk are given in some arbitrary manner, and if we are free to move the pivot point 
p, then it is easy to find a point p = x at which the system will balance, that is, 
with the property that the moment of the system about x is zero. The required 
condition i s  

384 



This is equivalent to 

so 

I I . I THE CENTER OF MASS OF A DISCRETE SYSTEM 

or 

(2) 

This balancing point x is called the center of gravity of the given system of 
weights. 

We now recall that the weight of a body at the surface of the earth is simply 
the force exerted on the body by the gravitational attraction of the earth, and is 
therefore given by Newton's formula F = mg, where m is  the mass of the body 
and g is the acceleration due to gravity (approximately 32 feet per second per 
second or 9.80 meters per second per second ) .  In the above discussion this means 
that wk = mkg, where mk is the mass of the kth body. Formula (2) can therefore 
be written as 

- "Zmkgxk "Zmkxk 
x = --- = --

"Zm� "Zmk · (3) 

With the influence of gravity removed from the discussion in this way, and the 
weights wk in (2) replaced by the masses mk in (3), it is customary to call the 
point x the center of mass of the system. 

It is easy to extend these ideas to a two-dimensional system of masses mk lo
cated at points (xk> Yk) in a horizontal xy-plane (Fig. 1 1 .3) .  We define the moment 
of this system about the y-axis by 

(4) 

which is the sum of each of the masses multiplied by its signed distance from 
the y-axis. If we think of the xy-plane as a weightless horizontal tray, as sug
gested by the figure, then in physical language the condition My = 0 means that 
this tray-with the given distribution of masses-will balance if it rests on a 
knife-edge along the y-axis. Similarly, the moment of the system about the x-axis 
is defined by 

(5) 

Students should carefully observe the interchange of x's and y's in formulas (4) 
and (5) ;  to compute My we use the xk's, and to compute Mx we use the Yk's .  If 
we denote the total mass of all the particles in the system by m, so that 

m = I mb 

m 1 
- - x ;-- - -/71 (x i ,  Y i )  

/ 
/ / Y i  

/ 

x 

3 85 

Figure 1 1 .3 
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then the center of mass of the system is defined to be the point (X, )i), where 

X = LmkXk = !:!..:t_ 
2.mk m 

and 

(6) 

(7) 

The center of mass of our system can be interpreted in two ways . First, if equa
tions (6) and (7) are written in the form 

mi =  My and 

then we see that (x, y) is the point at which the entire mass m of the system can 
be concentrated without changing the total moment about either axis. The sec
ond interpretation depends on writing (6) and (7) in the form 

I mk(xk - X) = 0 and I mbk - )/) = 0. 

If we think of our system in the way described, as a distribution of masses on a 
weightless horizontal tray, then these equations tell us that the tray will balance 
if it rests on a knife-edge along the line x = x parallel to the y-axis, and also 
along the line y = y parallel to the x-axis. These conditions imply that the tray 
will balance if it rests on a knife-edge along any line through (x, )i). It will there
fore also balance if supported by a sharp nail precisely at the point (x, )i). 

In the preceding discussion, the xy-coordinate system in Fig. 1 1 .3 provides a 
frame of reference that is useful for developing the ideas. However, it is clear 
from the physical meaning of the center of mass that the location of this point is 
determined by the masses themselves and their individual positions, and does not 
depend on the particular coordinate system that is used to describe these posi
tions. As a practical consequence, this fact tells us that in any specific situation 
we are free to choose any coordinate system that seems convenient under the cir
cumstances. 

Remark The "center of population" of the United States has been described as 
the point at which a life-sized flat map of the whole country would balance on 
a pin if all Americans weighed the same. The location of this point has been cal
culated from the data in each census. In 1790 it was a few miles east of Balti
more. It has been moving westward ever since; in 1 980 it crossed the Mississippi 
River; and in 1 990 it was about 25 mi southwest of St. Louis (see Fig. 1 1 .4). It 
is interesting to speculate on what changes in the position of this point would be 
produced by "weighing" Americans according to age, or wealth, or education, 
instead of treating them as interchangeable units. 

The ideas discussed in Section 1 1 . 1  apply to discrete systems of particles located 
at a finite number of points in a plane. We now consider how integration can be 
used to generalize these ideas to a continuous distribution of mass throughout a 
region R in the xy-plane, as shown in Fig. 1 1 .5 .  

We shall think of R as a thin sheet of homogeneous material-say, a uniform 
metal plate-whose density 8 ( = mass per unit area) is constant. To define the 
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Figure 1 1 .4 Center of population, 1 790 to 1990. (Courtesy U.S. Bureau of the Census.) 

moment of this plate about the y-axis, we consider a thin vertical strip of height 
f(x) and width dx, whose position in the region is specified by the variable x (Fig. 
1 1 .5 , left). The area of this strip is f(x) dx and its mass is of(x) dx; and since all 
of its mass is essentially at the same distance x from the y-axis, its moment about 
this axis is xof(x) dx. The total moment of the plate about the y-axis is therefore 
obtained by allowing the strip to sweep across the region, and by integrating
or adding together-all these small contributions to the moment as x increases 
from a to b, 

My = r x8f(x) dx. ( 1 ) 

This formula can be derived by laboriously constructing approximating sums and 
then forming the limit of these sums, which leads to ( 1 )  by means of the defin
ition of the integral. However, we prefer to continue in the spirit of Chapter 7, 

y y 
dA = f(x) dx 

R 

x x 
x Figure 1 1 .5 
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and the preceding discussion provides yet another illustration of the power of the 
Leibnizian approach to integration as we described it in Section 7 . 1 .  

Similarly, the moment o f  the plate about the x-axis i s  obtained by considering 
a thin horizontal strip of length g(y) and width dy (Fig. 1 1 .5 ,  right), and is given 
by the formula 

Mx = r yog(y) dy. 

The total mass of the plate can evidently be expressed in two ways, 

m = I: of(x) dx = r og(y) dy. 

The center of mass (x, y) of the plate is now defined by 

and 

r xof(x) dx M X = a = -y I: of(x) dx m 

- r yog(y) dy 
y = 

r og(y) dy 

Mx 
m 

The reader should observe particularly that these formulas generalize (6) and (7) 
in the preceding section from the discrete case to the continuous case. Also, from 
the point of view of geometry they have the following remarkable feature. Since 
the density 8 is assumed to be constant, it can be factored out of the integrals 
and removed by cancellation, and the formulas for x and y become 

- r xf(x) dx 
x =  

r f(x) dx 
and 

- r yg(y) dy 
y = r g(y) dy 

(2) 

Each denominator here is  clearly the total area of the region, and the numerators 
can be thought of as the moments of this area about the y-axis and x-axis, re
spectively. The center of mass is therefore determined solely by the geometric 
configuration of the region R and does not depend on the density of any mass 
that this region may contain, as long as this density is constant. For this reason 
the point (x, )I) is called the centroid of the region, meaning "point like a cen
ter." The examples and problems that follow will make it clear that this termi
nology is well suited to the geometric concept it is meant to describe. 

It will be convenient for our work in the next section if we simplify formulas 
(2) even further. In the case of x, the area of the thin vertical strip is an element 
of area in the sense of Sections 7. 1 and 7 .2, so we write it as dA = f(x) dx; and 
in the case of y, we similarly have dA = g(y) dy for the area of the thin hori
zontal strip. Formulas (2) can therefore be written in the streamlined form 

- fx dA x = f dA and - fy dA y = f dA . (3) 
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We emphasize that each dA in these formulas is understood to be the area of a 
thin strip parallel to the appropriate axis, in order to guarantee that all points in 
the strip will be essentially at the same distance from this axis. It is also under
stood here that the process of integration expressed by these symbols is extended 
over the region under discussion. The limits of integration are omitted deliber
ately, and don 't really need to be written down unless we are performing actual 
calculations in a specific case. 

Example 1 Find the centroid of a rectangle. 

y 
h 

dA = h dx 

p • (t b. t h) 

x 

Solution If the rectangle has height h and base b, then we can place the coor
dinate system so that the origin is at the lower left corner and the point (b, h) is 
at the upper right corner, as shown in Fig. 1 1 .6 .  Since the area of this rectangle 
is hb, we have I---+ 

x =  
(" )0 x · h dx = ___!__[_!_ hx2Jb Figure I 1 .6 

hb hb 2 0 

= 
hlb [+ hb2 J 

= + b. 

In just the same way we find that y = th, so the centroid is the point (tb, th), 
which is clearly the center of the rectangle. 

In general, it appears that the centroid of a region must lie on a line of sym
metry of the region, if such a line exists. This is easily seen to be true, as fol
lows. If l is a line of symmetry of a region R, then we can choose this line to 
be the y-axis (Fig. 1 1 .7), and we wish to convince ourselves that x = 0. If dA is 
an arbitrary thin vertical element of area at position x, then by symmetry there 
is a corresponding element of area at position - x; and since x dA + (-x) dA = 
0, we have Figure I 1.7 

f x dA = 0, and therefore _ _ Jx dA _ O x - f dA - . 

Further, if a region has two distinct lines of symmetry, then the conclusion we 
have just reached tells us that the centroid must lie on both lines and is therefore y 
the point of intersection of these lines. Accordingly, in every case where a geo- 4 

metric figure has a "center" in the usual sense of the word, this center is the cen-
troid. However, as our next example shows, centroids are easily calculated for 
many regions that are not ordinarily considered to have centers at all. From this 
point of view, the centroid of a region is a far-reaching generalization of the con-
cept of the center of a geometric figure. 

Example 2 Find the centroid of the region in the first quadrant bounded by the 
axes and the curve y = 4 -x2 (Fig. 1 1 .8). 

Solution By using the vertical strip in the figure, we see that the area of the re
gion is 

x 

J (2 [ I ]2 16  A = dA = Jo (4 - x2) dx = 4x - 3 x3 0 = 3' 
Figure 1 1 .8 

dx 

l 

dx 2 
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so 

Ix dA 3 (2 3 [ 1 ]2 3 x = -
A
- = 16 Jo x(4 - x2) dx = 16 2x2 - 4 x4 o = 4· 

Similarly, using a horizontal strip not shown in the figure, we have 

- fy dA 3 (4 - r;---y = -A- = 16 Jo yv4 - y dy. 

To evaluate this integral we make the substitution u = 4 - y, so that y = 4 - u 

and dy = -du, and we also change the limits of integration from y = 0, 4 to 
u = 4, 0 :  3 14 3 10 y = - Yv'4=Y dy = - u112(4 - u)(-du) 16 0 1 6  4 

= � (4 (4u 112 _ u312) du = � [! u312 _ 1_  us12]4 1 6  Jo 16 3 5 o 

= � ( 64 - 64 ) = ! 
1 6  3 5 5 ·  

The integration here is  a bit complicated because it uses a horizontal strip, and 
this forces us to solve the equation of the curve for x in terms of y. We therefore 
describe an alternative method for computing y that uses the vertical strip shown 
in the figure and the result of Example 1 .  Since the centroid of this rectangular 
strip is located at its center, the moment of the strip about the x-axis is ty dA = 

iY2 dx, and therefore 

f!..y2 dx 3 12 3 12 y = -2-- = - (4 - x2)2 dx = - ( 16 - 8x2 + x4) dx A 32 o 32 o 

= � [ I  6x - ! x3 + _!_ x5]2 = _l_ [32 - 64 
+ E..J = ! 32 3 5 0 32 3 5 5 , 

as before. 

One more word about centroids. We have discussed centroids of plane regions. 
We can just as easily speak of the centroid of an arc in the .xy-plane or of a re
gion in three-dimensional space. The definitions and formulas are so similar to 
what we have already done that we won' t  burden students with detailed expla
nations. However, we do remark that in finding the centroid of an arc (Fig. 1 1 .9) 
it may be helpful to think of the arc as a piece of curved wire of constant den
sity 1 ( = mass per unit length), so that the mass of a portion of the wire is sim
ply its length. With ds understood to be the element of arc length in the sense of 
Section 7.5, we therefore have 

_ Jx ds x = I ds and - fy ds y =  f ds '  (4) 

x Each denominator here is the total length of the arc, and the numerators are the 
moments of the arc about the y-axis and x-axis, respectively. 
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PROBLEMS 

Find the centroid of the plane region R that is bounded by: 
1 y = x2, y = 0, x = 2. 
2 y = 4x - x2 and y = x. 
3 y = v' a2 - x2 and y = 0. 
4 y = sin x and y = 0 (0 :s x :s 7T). 
5 x2 = ay and y = a. 
6 x2 = ay and y2 = ax. 

7 y = Vx, y = 0, x = 8 .  
8 x2 + y2 = a2 and x + y = a ( first quadrant). 
9 x2 + y2 = a2, x = a, y = a. 

10 y = l lx, y = 0, x = l ,  and x = 2. 
1 1  Find the centroid of the first-quadrant part of the curve 

x213 + y213 = a213 . 
12 Find the centroid of the semicircular arc y = v' a2 - x2. 
1 3  The semicircle under y = v' b2 - x2 is removed from the 

semicircle under y = v' a2 - x2, where b < a. Find the 
centroid of the remaining region. Find the limit of y as 
b --'>  a, and compare with the result of Problem 1 2 .  

14 Let y = f(x) be a nonnegative function defined on the in
terval a :s x :s b. If the region bounded by this curve, the 
x-axis, and the lines x = a, x = b is revolved about the 

x-axis, show that the resulting solid of revolution has its 
centroid on the x-axis with 

_ J: xf(x)2 dx 
x =  J: f(x)2 dx 

1 5  Use the result of Problem 14 to find the centroid of (a) 
a cone with height h and radius of base r; and (b) a hemi
sphere of radius a. 

16 It is known from elementary geometry that the three me
dians of a triangle intersect at a point that is two-thirds 
of the way from each vertex to the midpoint of the op
posite side.* Show that this point is the centroid of the 
triangle. Hint: Place the axes so that the vertices are 
(0, 0), (a, 0), and (b, c). It suffices to find the centroid 
(x, )i) and show that this point lies on the median from 
(b, c). Why is this so? Why does physical intuition tell 
us to expect this result? 

*See Problem 35 in Section 1 .2 .  

Two beautiful geometric theorems connecting centroids with solids and surfaces 
of revolution were discovered in the fourth century A.D. by Pappus of Alexan
dria, the last of the great Greek mathematicians. 

1 1 . 3 
THE THEOREMS 
OF PAPPUS 

First Theorem of Pappus Consider a plane region that lies completely on one side 
of a line in its plane. If this region is revolved about the line as an axis, then the vol
ume of the solid generated in this way equals the product of the area of the region and 
the distance traveled around the axis by its centroid. 

This is easily proved by the following argument. Let the axis of revolution be 
the x-axis, as shown in Fig. 1 1 . 10. Then the distance y of the centroid from this 
axis is defined by 

which is equivalent to 

or 

- - f y dA - f y dA y - f dA - A ' 

Ay = f y dA 

A · 27Ty = f 2 7Ty dA. 

y - d)A 
T A I I 

y 
l -1 Y  I I 

Figure 11 . 10  

x 
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FURTHER APPLICATIONS OF INTEGRATION 

All that is needed now is to observe that this equation is precisely the assertion 
of the theorem, because 277}1 is the distance traveled by the centroid and the in
tegral on the right is the volume of the solid as calculated by the shell method. 

Example 1 Find the volume of the torus (doughnut) generated by revolving a 
circle of radius a about a line in its plane at a distance b from its center, where 
b > a  (Fig. 1 1 . 1 1 ) .  

Solution The centroid of  the circle i s  its center, and this travels a distance 27Tb 
around the axis. The area of the circle is 7Ta2, so by the first theorem of Pappus 
the volume of the torus is 

V = 7Ta2 · 27Tb = 2n2a2b. 

(See Problem 3 1  in Section 10.4.) 

Second Theorem of Pappus Consider an arc of a plane curve that lies completely 
on one side of a line in its plane. If this arc is revolved about the line as an axis, then 
the area of the surface generated in this way equals the product of the length of the arc 
and the distance traveled around the axis by its centroid. 

The proof is similar to that given above. Again we take the axis to be the 
x-axis (Fig. 1 1 . 1 2),  and we start with the definition of the distance y from this 
axis to the centroid of the arc, 

which is equivalent to 

sy = J y ds 

or 

s · 27T)i = J 27Ty ds. 

And again this is exactly the assertion of the theorem, because the integral on 
the right is  the area of the surface of revolution. 

Example 2 With the aid of this theorem it is easy to see that the surface area of 
the torus described iP- Example 1 is 

A = 27Ta · 27Tb = 4n2ab. 

Apart from their aesthetic appeal, the theorems of Pappus are useful in two 
ways. When centroids are known from symmetry considerations-as in the ex
amples - we can use these theorems to find volumes and areas. And also, when 
volumes and areas are known, we can often use these theorems in reverse to de
termine the locations of centroids. Both types of applications are illustrated in 
the following problems. 
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PROBLEMS 

Use the known formulas V = f7ra3 and A = 47Ta2 for the 
volume and surface area of a sphere of radius a to locate 
the centroid of (a) the semicircular region under y = 
Y a2 - x2; (b) the arc y = Y a2 - x2. Compare with Prob
lems 3 and 1 2  in Section 1 1 .2. 

tion? What is this largest volume? What is the corre
sponding surface area? 

5 A regular hexagon with side a is revolved about one of its 
sides. What is the volume of the resulting solid of revo
lution? What is the area of the surface of this solid? 

2 Use the centroids found in Problem 1 to find the volume 
and surface area generated when the semicircular region 
and the arc are revolved about the line y = a. 

3 By Problem 1 0  in Section 7.5, the total length of the curve 
x213 + y213 = a213 is 6a. Use this fact and the result of Prob
lem 1 1  in Section 1 1 .2 to find the area of the surface gen
erated by revolving this curve about (a) the x-axis; (b) the 
line x + y = a. 

6 The regular hexagon in Problem 5 is revolved about an 
axis through a vertex which is perpendicular to the line 
from the center to that vertex. Find the volume and sur
face area of the resulting solid of revolution. 

7 Use Pappus' first theorem to find (a) the volume of a cylin
der with height h and radius of base r; (b) the volume of 
a cone with height h and radius of base r. 

4 A square with side a is revolved about an axis lying in its 
plane which intersects it at one of its vertices but at no 
other points. What should be the position of the axis to 
yield the largest volume for the resulting solid of revolu-

8 It is known from elementary geometry that 7TrL is the lat
eral area of a cone of base radius r and slant height L. Ob
tain this formula as a consequence of Papp us '  second the
orem. 

Consider a rigid body rotating about a fixed axis. For example, the body might 
be a solid sphere spinning about a diameter, or a solid cube swinging back and 
forth like a pendulum about a horizontal axis along one of its edges. In order to 
study motions of this kind, it is necessary to introduce the concept of the mo
ment of inertia of the body about the axis. Our purpose in the next few para
graphs is not only to define this concept, but also to explain its intuitive mean
ing so that students can understand why it matters. 

When a rigid body moves in a straight line, all its constituent particles move 
in the same direction with the same velocity. On the other hand, when a rigid 
body rotates about an axis, its constituent particles move around circles of dif
ferent sizes and have different velocities, and for this reason we expect the prob
lem of describing the body's motion to be more difficult. Fortunately, however, 
this situation is simpler than it seems, and it turns out to be possible to study ro
tating bodies by using ideas and formulas that are completely analogous to those 
already familiar for the case of linear motion. 

We begin with a brief review of the linear formulas. Consider a particle of 
mass m moving in a straight line (Fig. 1 1 . 1 3). If its position is given by the vari
able s, then v = ds/dt and a = dvldt are its velocity and acceleration. A force F 
acting on the particle is related to the acceleration by Newton's second law of 
motion. 

F =  ma or 
I a = - F. m ( 1 )  

The second form of  this equation is useful for its clear expression of  the idea that 
the acceleration of the particle is caused by the force and is proportional to this 
force. This form also helps us think of the mass m of the particle as a measure 
of its capacity to resist acceleration, because if the force F is the same and m in
creases, then a decreases. 

Now consider a particle of mass m rotating around a fixed axis in a circle of 
radius r (Fig. 1 1 . 1 4  ). If its angular position is given by the angle (J as measured 
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from some fixed direction, then w = dO/dt and a =  dw/dt are its angular veloc
ity and angular acceleration. These rotational quantities are related to the corre
sponding linear quantities s, v, and a, as measured along the circular path, by 
means of the equations s = rO, v = rw, and a = m. The twisting effect of the 
tangential force F i s  measured by its torque T = Fr, which is the product of the 
force and the distance from its line of action to the axis. We have seen that force 
produces linear acceleration in accordance with equation ( 1 ) . In just the same 
way, torque produces angular acceleration in accordance with the corresponding 
equation 

T =  la, (2) 

where the constant of proportionality I is called the moment of inertia. I can be 
thought of as a measure of the capacity of the system to resist angular accelera
tion, and in this sense it is the rotational analog of mass. 

These remarks describe the conceptual role of the moment of inertia. To dis
cover what its definition must be in order to fit it for this role, we transform (2) 
by replacing T by Fr and a by air, and then we replace F by ma: 

mar = I !:. r 

The last equation tells us that I must be defined by the formula 

I =  mr2. (3) 

In this section we are mainly concerned with learning how to use integration to 
calculate the moment of inertia, about a given axis, of a uniform thin sheet of 
material of constant density 8 ( = mass per unit area). It may be helpful to think 
of such a sheet as a thin plate of homogeneous metal. Our method is to imagine 
the plate divided into a large number of small pieces in such a way that each 
piece can be treated as a particle to which formula (3) can be applied. We then 
find the total moment of inertia by integrating-or adding together-the indi
vidual moments of inertia of all these pieces. 

Example 1 A uniform thin rectangular plate has sides a and b and density 8. 
Find its moment of inertia about an axis that bisects the two sides of length a 
(Fig. 1 1 . 15). 

Solution Introduce coordinate axes as indicated in the figure, with the y-axis as 
the axis of rotation. We concentrate our attention on the thin vertical strip shown 
in the figure because all of its points are essentially at the same distance x from 
the axis of rotation. The moment of inertia of the strip about the axis is x2 • 8b dx, 
so the total moment of inertia of the plate is 

I = x2 · Bb dx = Bb - x3 fa/2 [ 1 ]a/2 
-a/2 3 -a/2 

= Bb [_!_ a3 - (--1 a3)] = _!_ 8a3b 24 24 1 2 . (4) 

It is customary to write the moment of inertia in a form that displays the total 
mass M. In this case M = Bab, so 
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Two thin vertical strips that are symmetrically placed with respect to the axis of 
rotation have the same moment of inertia. In equation ( 4) we could therefore have 
written the integral in the form 

/ = 2 x2 · 8b cbc = · · ·  la/2 
0 , 

which makes possible a slightly simpler calculation. 

Example 2 A uniform thin circular plate has radius a and mass M. Find its mo
ment of inertia about a diameter. 

Solution Introduce coordinate axes as shown in Fig. 1 1 . 16. If the density of the 
plate is denoted by 8, then the moment of inertia of the indicated strip about the 
y-axis is x2 • Oly dx = x2 • 02Y a2 - x2 dx, so the total moment of inertia is 

I = 2 La x2 • 82Y a2 -x2 cbc = 48 r x2v' a2 - x2 cbc. 

To evaluate this integral we make the trigonometric substitution x = a sin (), so 
that dx = a cos () d() and 

17r/2 I I I =  48a4 0 sin2 8 cos2 8 d(J = 487Ta4 = 4Ma2. 

(As always, students should verify the omitted details of this calculation for them
selves.) 

Example 3 Find the moment of inertia of the circular plate in Example 2 about 
an axis through the center and perpendicular to the plate. 

Solution This time the axis is to be imagined as protruding out of the page from 
the center of the circle (Fig. 1 1 . 17), and we divide the area into thin rings with 
centers at the center of the circle, as shown. The total moment of inertia is there
fore 

I = J: r2 · 827TT dr = 27T8 [ ± r4J: 
= ta7Ta4 = iMa2. 

Remark I We recall that a particle of mass m moving with velocity v has ki
netic energy given by the formula 

K.E. = imv2, 

and also that this energy is the amount of work that must be done on the parti
cle to bring it to a stop. On the other hand, if the particle rotates in a circle of 
radius r, then v = rw and we have 

K.E. = imr2w2 = t1w2, 

and again this is the work required to stop the rotating particle. By comparing 
these formulas we reinforce the idea that the moment of inertia I plays the same 
role in rotational motion as is played by the mass m in linear motion. 
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Remark 2 In addition to its importance in connection with the physics of ro
tating bodies, the moment of inertia also has significant applications in structural 
engineering, where it is found that the stiffness of a beam is proportional to the 
moment of inertia of a cross section of the beam about a horizontal axis through 
its centroid. This fact is exploited in the design of the familiar steel girders called 
"I-beams," where flanges at the top and bottom of the beam- as in the letter I 
-increase the moment of inertia and hence the stiffness of the beam. 

PROBLEMS 

1 A uniform thin rectangular plate of mass M has sides a 
and b. Find its moment of inertia about one of the sides 
of length b. 

2 A uniform thin plate of mass M is bounded by the curve 
y = cos x and the x-axis between x = - 7T/2 and x = 7T/2. 
Find its moment of inertia about the y-axis. 

3 Find the moment of inertia of a uniform thin triangular 
plate of mass M, height h, and base b about its base. 

4 Find the moment of inertia of the triangular plate in Prob
lem 3 about an axis parallel to its base and passing 
through the opposite vertex. 

5 A uniform thin circular plate has radius a and mass M. 
Find its moment of inertia about an axis tangent to the 
plate . 

6 Find the moment of inertia of a uniform straight wire of 
mass M and length a about an axis perpendicular to the 
wire at one end. 

7 A uniform wire of mass M is bent into a circle of radius 
a. Find its moment of inertia about a diameter. 

8 Find the moment of inertia of a uniform solid cylinder 
of mass M, height h, and radius a about its axis. Hint: 
Use the shell method. 

9 Find the moment of inertia of a uniform solid cone of 
mass M, height h, and radius of base a about its axis. 

IO  Find the moment of  inertia of  a uniform solid sphere of 
mass M and radius a about a diameter. 

11  If the moment of  inertia of  a body of mass M about a 
given axis is I = Mr2, then the number r is called the ra
dius of gyration of the body about that axis. This is the 
distance from the axis at which all the mass of the body 
could be concentrated at a single point without changing 
its moment of inertia. Referring to Problems 8-10, find 
the radius of gyration about the indicated axis of (a) the 
cylinder; (b) the cone; (c) the sphere. 

CHAPTER 1 1  REVIEW: DEFINITIONS, CONCEPTS 

Think through the following. 

1 Moment about an axis. 
2 Center of mass. 
3 Centroid. 

ADDITIONAL PROBLEMS FOR CHAPTER 1 1  

SECTION I I .  I 
l Consider the plane distribution of particles whose cen

ter of mass (x, y) is defined by equations (6) and (7) in 
Section 1 1 . 1 . If Ax + By + C = 0 is any line in the 
plane, then we may suppose (introducing a factor if nec
essary) that A2 + 82 = I ;  and by Additional Problem 
2 1  in Chapter I we see that the signed distance from 
this line to (xk. Yk) is 

dk = Axk + Byk + C, 

this being positive on one side of the line and negative 
on the other. 
(a) Show that the entire mass m = "Lmk of the system 

4 Pappus' theorems. 
5 Moment of inertia. 

can be concentrated at the center of mass (x, y) with
out changing the total moment "Lmkdk about the ar
bitrary line. 

(b) Use part (a) to show that the total moment is zero 
about every line through (x, y). 

2 Consider again the plane distribution of particles dis
cussed in Problem I . 
(a) If the axes are translated as shown in Fig. 1 l . 1 8, 

then the old coordinates and the new coordinates of 
a fixed point P are connected by the transformation 
equations 

x = X + a, y = y + b. 
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P =  (x, y) =  (X, Y) 
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Calculate the center of mass in the new coordinate 
system, and show that it is the same point as before. 

(b) If the axes are rotated through an angle () as shown 
in Fig. 1 1 . 1 9, then the old coordinates and the new 

y y P = (x, y) = (X, Y) 

Figure 1 1 . 19  

} 
10' 
I \ 

x 

coordinates of a fixed point P are connected by the 
transformation equations 

x = x cos () - y sin e, y = x sin () + y cos e. 

Show that the center of mass as calculated in the 
new coordinate system is the same point as before. 

(c) Deduce that the location of the center of mass is in
dependent of the coordinate system that is used to 
calculate it. 

SECTION I 1 .2 
3 Find the centroid of the plane region R that is bounded 

by 
(a) y = x2 and y = x; 
(b) y = 2x2 and y = x2 + 1 ;  
(c) y = 2 x  - x 2  and y = O; 
(d) y = x - x4 and y = O; 
(e) y3 = x2 and y = 2; 
(f) y = x3 and y = 4x (x 2:: O); 
(g) y = eX, y = -ex, x = 0, x = 1 .  

*4 Find the centroid of the part of the curve y = x2 that 
lies between x = 0 and x = b. 

SECTION I 1 .3 
S Consider a rectangle with height 2a and base 2b placed 

in the xy-plane with its sides parallel to the axes and its 

center at the point (0, c), where c 2:: Y a2 + b2. If this 
rectangle is rotated counterclockwise through an angle 
() about the point (0, c) and then revolved about the 
x-axis, show that the volume and surface area of the re
sulting solid of revolution are the same for all values of 
8. What are they? 

6 A regular hexagon inscribed in the circle x2 + y2 = 1 
has one of its vertices at the point ( I ,  0). If this hexa
gon is revolved about the line 3x + 4y = 25, find the 
volume and surface area of the resulting solid of revo
lution. 

SECTION 1 1 .4 
7 Show that the moment of inertia of a uniform thin plate 

in the xy-plane about an axis perpendicular to this plane 
at the origin is equal to the sum of its moments of in
ertia about the two coordinate axes. Use this fact to find 
the moment of inertia of a uniform thin square plate of 
mass M and side a about an axis through its center and 
perpendicular to its plane. 

8 A uniform thin plate of mass M has the curve 

x2 y2 
a2 + fl = I 

as its boundary. Use the method of Problem 7 to find 
its moment of inertia about an axis through the origin 
and perpendicular to its plane. 

9 Consider a uniform thin plate of mass M in the xy-plane. 
Let l be its moment of inertia about a line L in this 
plane, and let 10 be its moment of inertia about a par
allel line Lo through the centroid. Show that 

l = lo +  Md2, 

where d is the distance between L and Lo (this is called 
the parallel axis theorem). Hint: Place the coordinate 
system so that Lo is the y-axis and L is the line x = d. 

*10 Consider a uniform solid body of mass M in three-di
mensional space. Let l be its moment of inertia about 
a line L, and let 10 be its moment of inertia about a par
allel line Lo through the centroid. Then the parallel axis 
theorem stated in Problem 9 holds in exactly the same 
form: 

l = lo +  Md2, 

where d is the distance between L and Lo. Establish this 
fact, and apply it to find the moment of inertia of (a) a 
uniform solid sphere of mass M and radius a about a 
tangent; (b) a uniform solid cube of mass M and edge 
a about an edge. Hint: See Problem 7 .  



1 2 . 1  
INTRODUCTION. THE 

MEAN VALUE 
THEOREM REVISITED 

INDETERMINATE 
FORMS AND 

IMPROPER 
INTEGRALS 

In the next few chapters we will need better methods for computing limits than 
any we have available now. Accordingly, our main purposes in the first part of 
this chapter are to understand the types of limit problems that lie ahead and 
to acquire the tools that will enable us to solve these problems with maximum 
efficiency. 

In Section 2.5 we saw that the limit of a quotient is the quotient of the limits, 
in the following sense: If 

then 

lim f(x) = L 
x-+a 

and Jim g(x) = M, 
x-+a 

Jim 
j(x) = .!::.._ 

x-+a g(x) M' ( 1 )  

provided that M * 0. Unfortunately, however, i t  i s  a fact of  life that many of the 
most important limits are of the form ( 1 )  in which both L = 0 and M = 0. When 
this happens, formula ( 1 )  is useless for calculating the value of the limit and this 
limit is said to have the indeterminate form 010 at x = a. The expression "inde
terminate form" is used because in this case the limit on the left of ( 1 )  may very 
well exist, but nothing can be concluded about its value without further investi
gation. This is shown by the four examples 

x 
x' 

x
2 

x 
x 

0· 
x sin l lx 

x 

each of which is a quotient of two functions that both approach zero as x � 0. 
We see from these examples-by canceling x's from the numerators and de
nominators-that such a quotient may have the limit 1 ,  or 0, or oo, or it may 
have no limit at all, finite or infinite. 

Indeterminate forms can sometimes be evaluated by using simple algebraic de
vices. For example, 

. 3x2 - 7x + 2 hm ----
x-+2 x

2 
+ 5x - 14 (2) 

has the indeterminate form 010, and this limit is easy to calculate by factoring 
and canceling, 

398 



1 2 . 1 INTRODUCTION. THE MEAN VALUE THEOREM REVISITED 

lim 
3x2 - 7x + 2 

= lim 
(x - 2)(3x - 1) 

= lim 
3x - I 

= l. 
x->2 x2 + Sx - 14 x->2 (x - 2)(x + 7) x->2 x + 7 9 

In other cases, more complicated methods are required. Thus, the limit 

I . sin x 
1m --x->O X 

(3) 

is another indeterminate form of the type 0/0, and in Secions 2.5 and 9.2 geo
metric arguments were used to show that the value of this important limit is 1 .  
In this connection we point out the suggestive fact that the limit (3) can also be 
evaluated by noticing that it is the derivative of the function sin x at x = 0: 

r sin x r sin x - sin 0 
x� -X- = x� X - 0 

Indeed, every derivative 

= dxd sin x] = cos x]x=O = cos 0 = 1 .  
x=O 

f' (a) = lim f(x) - f(a) 
x-+a x - a (4) 

is an indeterminate form of the type 0/0, since both numerator and denominator 
of the fraction on the right approach zero as x approaches a.

• 

These remarks suggest that there is a close but hidden connection between 
indeterminate forms and derivatives. And so there is. But to understand this con
nection, it is first necessary to recall the Mean Value Theorem. 

As we learned in Section 2.6, this theorem states that if a function y = f(x) is 
defined and continuous on a closed interval a :5 x :5 b, and differentiable at each 
point of the interior a < x < b, then there exists at least one number c between 
a and b for which 

or equivalently, 

f'(c) = f(b) - f(a) , 
b - a  

f(b) - f(a) = f' (c)(b - a). 
This assertion is best understood in geometric language (see Fig. 12. 1 ) ;  it says 
that at some point on the graph between the endpoints, the tangent line is paral
lel to the chord joining these endpoints. From this point of view the theorem 
seems obviously true and is difficult to doubt; but in fact, as we saw in Section 
2.6, it is a rather deep theorem whose validity depends in a crucial way on the 
stated hypotheses. 

In most of our work we try to avoid dwelling on the theoretical parts of cal
culus. Here, however, we must make an exception, because the central fact of 
this chapter (L'Hospital's rule, in the next sectiont) cannot be understood unless 
we know what the Mean Value Theorem says. 

•students should examine formula (4) together with a suitable sketch, in order to convince them
selves that this formula can be taken as the definition of the derivative of an arbitrary function f(x) 
at a point x = a. We have not had occasion to use this version of the definition before, but it will be 
particularly convenient for our work in the present chapter. 
tL'Hospital is pronounced "LOW-pee-ta!." 

y 

Slope = f(b) - f(a) 
b - a  

a c 
Figure 1 2. l  
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1 2 . 2  
THE INDETERMINATE 

FORM 0/0 . 
L'HOSPITAL'S 

RULE 

INDETERMINATE FORMS AND IMPROPER INTEGRALS 

We remarked earlier that there is a close connection between indeterminate forms 
and derivatives. We begin to explore this connection with the following simple 
theorem: If f(x) and g(x) are both equal to zero at x = a  and have derivatives 
there, then 

Jim 
f(x) = f'(a) = f' (x) ] 

x->a g(x) g'(a) g'(x) x=a' ( 1 )  

provided that g' (a) * 0 .  To prove this, it suffices to use f(a) = 0 and g(a) = 0 
to write 

as stated. 

f(x) f(x) - f(a) [f(x) - f(a)]l(x - a) f'(a) - =  = � --
g(x) g(x) - g(a) [g(x) - g(a)]l(x - a) g' (a) ' 

As examples of the use of ( 1 ), we easily find the limits (2) and (3) in Section 
1 2. 1 ,  

and 

. 3x2 - 7x + 2 6x - 7 ] 5 l� x2 + Sx - 14 
= 

2x + 5 x=2  
= 9 

I . sin x cos x ] 0 1 Im -- = -- = COS = . 
x->0 X I x=O 

As another example, we have 

I " tan 6x = 
6 sec2 6x ] = f = 3 x� e 2x - I 2e 2x x=O 2 ' 

a result that would have been hard to find in any other way. 

(2) 

(3) 

(4) 

Formula ( 1 )  requires the existence of the derivatives of the functions f(x) and 
g(x) at the single point x = a. At other points these functions need not have 
derivatives, nor indeed even be continuous. However, if the derivatives exist in 
an interval about a and are continuous at a, then we can obtain formula ( 1 )  in 
another way, by applying the Mean Value Theorem separately to the numerator 
and denominator, 

f(x) f(x) - f(a) f'(ci)(x - a) f'(c1 ) f'(a) -- = = = -- __, --
g(x) g(x) - g(a) g'(c2)(x - a) g' (c2) g ' (a) ' 

as x ---? a. Here c1 and c2 lie between x and a, so both approach a as x ---? a. 

(5) 

What purpose is served by giving a second alternative proof of formula ( 1 )  
when the first proof i s  perfectly satisfactory? The point is this: Formula ( I )  i s  a 
good tool to have, but is still only of limited value, because it often happens in 
the problems we consider that f' (a) = g' (a) = 0, and in this case the right side 
of ( 1 )  is meaningless. However, we can use our second proof to get around this 
difficulty as follows. Suppose that c1 and c2 in (5) can be taken equal to one an
other so that the first part of (5) can be written as 

f(x) f(x) - f(a) f'(c)(x - a) f'(c) 
g(x) 

= 
g(x) - g(a) 

= 
g' (c)(x - a) 

= 
g' (c) ' (6) 

where c is between x and a. Then in forming the limit as x ---? a, (6) permits us 
to replace the quotient 
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f(x) 
g(x) 

by the quotient 
J'(x) 
g ' (x) " 

L 'Hospital 's rule states that under certain easily satisfied conditions this re
placement is legitimate, that is, 

lim 
f(x) 

= lim 
J'(x) 

x->a g(x) x->a g' (x) ' 
(7) 

provided the limit on the right exists. Students should remember that f(a) = 

g(a) = 0 is assumed here, and we also mention that even though ordinary two
sided limits are usually intended in (7), one-sided limits are allowed. 

It may be helpful to students if we now give a formal statement of our main 
result. 

Theorem (L'Hospital's Rule) Let a be a real number and letf(x) and g(x) be func
tions that are differentiable on some open interval containing a. Assume also that 
g ' (x) i' 0 on this interval, except perhaps at the point a itself. If f(a) = 0 and g(a) = 

0, then 

lim 
f(x) 

= Jim 
J'(x) 

x->a g(x) x->a g' (x) ' 

provided the limit on the right exists.* 

(7) 

L' Hospital's rule is named after the French mathematician- a  pupil of John 
Bernoulli -who published it in his book Analyse des infiniment petits ( 1 82 pp., 
Paris, 1 696), which was the first calculus textbook and enjoyed wide popularity 
and influence. 

Example 1 At the beginning of this section we evaluated the limits (2), (3), and 
(4) by using formula ( 1 ) . These limits can also be found by using L'Hospital 's 
rule (7): 

. 3x2 - 7x + 2 . 6x - 7 5 
hm = hm --- = -x->2 x2 + 5x - 1 4 x->2 2x + 5  9 '  

1 . sin x 1 .  cos x 1 1m -- =  1m -- = x->0 X x->0 l ' 

r tan 6x r 6 sec2 6x 
= 3 x� e 2x - l = x� 2e 2x · 

The reason (7) works so smoothly in these problems is that in each case the 
second limit exists and is easy to find by inspection, since the functions involved 

*For those students who are interested in the proof of L'Hospital's rule, we here explain as briefly 
as possible the details of the reasoning that underlies (7). We assume-as stated-thatf(a) = g(a) = 
0, that x approaches a from one side or the other, and that on that side the functions f(x) and g(x) 
satisfy the following three conditions: (i) Both are continuous on some closed interval I having a as 
an endpoint; (ii) both are differentiable in the interior of /; and (iii) g'(x) * 0 in the interior of /. With 
these hypotheses, (6) is an immediate consequence of a technical extension of the Mean Value The
orem known as the Generalized Mean Value Theorem; and if x is now allowed to approach a from 
the side under consideration, then (7) follows from (6) as indicated above. Those tenacious students 
who like to nail everything down will find a proof of the Generalized Mean Value Theorem in Ap
pendix A.4. 

40 1 
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are continuous. The point we wish to make here is that whatever ( 1 )  can do, (7) 
can do just as easily; and as the next example shows, (7) is much more power
ful and often works easily when ( 1 )  doesn't work at all. 

Example 2 L'Hospital's rule (7) proves its value in limit problems like 

I' 1 - cos x 
x� x2 

Here formula ( 1 )  is useless, as we see from the failure of the attempted calcula
tion 

lim 
1 - cos x = sin x] = .2.. 

x-->0 x 2  2x x=O 0 
The reason for this failure is that ( 1 )  assumes that g ' (a) * 0, and this condition 
is not satisfied here. However, by (7) we have 

r 
1 - cos x I' sin x 

x� x 2  
= x� �, 

if the second limit exists. But this second limit is again of the form 0/0, so 
L'Hospital's rule applies a second time and permits us to continue and reach the 
correct answer, 

I . 1 - cos x 1. sin x 1. cos x 1 1m = 1m -- = im -- = -. 
x-->0 x2 x-->0 2x x->0 2 2 

Another limit that behaves in this way is 

Yx+l - ( 1  + ix) i<x + 1 )- 112 - t 
Jim ------- = lim ------
x-->O x2 x-->0 2x 

-t(x + 1 )-312 I = Jim 
s ·  x->0 2 

The limits in Example 2 illustrate the great advantage L'Hospital's rule (7) has 
over formula ( 1 ) : It is valid whenever the limit on the right exists, regardless of 
whether g' (a) is zero or not. Thus, as these problems show, ifj' (a) = g' (a) = 0, 
then we have another indeterminate form 010 and we can apply L'Hospital' s  rule 
a second time, 

I . f(x) _ 1 . f' (x) _ 1. f"(x) 1m ) - 1m '( ) - 1m "( ) , 
x-->a g(x x-->a g X x->a g X 

provided the last-written limit exists. As a practical matter, the functions we en
counter in this book satisfy the conditions needed for L'Hospital's rule. We there
fore apply the rule almost routinely, by continuing to differentiate the numerator 
and denominator separately as long as we still get the form 0/0 at x = a. As soon 
as one or the other (or both) of these derivatives is different from zero at x = a, 
we must stop differentiating and hope to evaluate the last limit by some direct 
method. 

Example 3 A careless attempt to apply L'Hospital's rule may yield an incorrect 
result, as in the calculation 
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The correct answer is 

Jim 
sin 4x 

= Jim 
4 cos 4x = ± = 2. 

x-+0 2x + 3 x-+0 2 2 

Jim 
sin 4x 

= Q = O. 
x-+0 2x + 3 3 

In this problem the numerator and denominator of the given quotient are not both 
equal to zero at x = 0, so L'Hospital's rule is not applicable. 

Our methods work in just the same way for limits in which x � oo; that is, if 
f(x) � 0 and g(x) � 0 as x � oo, then 

Jim f(x) = Jim f'(x) 
x-+� g(x) x-+� g' (x) '  (8) 

if the limit on the right exists. To see this, we put x = lit and observe that 
t � O+ (recall that this notation means that t approaches zero from the right). 
Briefly, L'Hospital's rule (7) now gives 

lim f(x) = Jim f(llt) = Jim f'(x) dxldt 
x-+� g(x) 1-+0+ g( l lt) 1-+0+ g'(x) dx/dt ' 

which yields (8) after dx/dt is canceled. 
Finally, in both forms of L'Hospital's rule, as expressed in formulas (7) and 

(8), it is easy to see that the procedure remains valid if the value of the limit on 
the right is oo or -oo. 

PROBLEMS 

Find the following limits. 

1 

3 

5 

r sin 3x 
1m -. -. 

x-+0 sm x 
r x - 2 
x� 6x2 - I Ox - 4 · 

Jim 
Yx+9 - 3 

2 

4 

6 

I
' In x 
1m --. 

x-+l X - l 

21 

Jim 
ex - e-x 

x-+0 sin 5x 

23 

Jim 
4x 3 - 5x + l 25 

tan 2x - 2x 
lim 
x-+0 x - sin x 

sin 2x - 2 sin x 
lim . 3 3 . 
x-+O sm x - sm x 

' (eX - J)3 
hm 

2 . 
x-+0 (x - )e x + x + 2 

22 

24 

. 3 r sm x 
x� sin3 x '  

"Vx - l 
Jim Vx - 1 · x-+1 
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x-+0 x 

7 Jim 
� - (I + !x) 

x-+0 x2 

9 lim 
ex - 1 - x 

x2 x-+0 

8 

10 

x-+1 ln x 

Jim 
sin- 1 3x 

x-+0 x 
. ex - l - x 

hm . 
x-+0 1 - COS ?TX 

26 In Fig. 12.2, P is a point on a circle with center 0 and 
radius a. The segment AQ equals the arc AP, and the line 

PQ intersects the line OA at B. Show that OB approaches 

2a as P approaches A along the circle. Hint: .:iQAB is 
similar to .:iPRB. 

1 1  lim 
x 3 

12 . e 2x - l 

sin x - x hm -. -
5
-. 

x-+0 x-+O sm x 
13 r 3x 

1 4  Jim 
ln (tan x) 

1m --. 
x-+0 tan x x-+,,,./4 sin x - cos x 

15 lim 
sin2 x + 8x 16 lim 

� - 2 
x-+0 e 2x - l x-+6 x2 - 36 

17 lim 
x - sin x 18 I

' In (cos 2x) 
Im 

x-+0 x - tan x X-+'Tr (X - 7T°)2 
19 r 1/x 20 r ir - 1r 

x�"! sin 'Trix · 1m ---. 
x-+0 x Figure 12.2 
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27 In Problem 26, let /( 19) be the area of the triangle ARP 
and let g( 19) be the area of the region that remains after 
the triangle ORP is removed from the sector OAP. Find 
formulas for the functions /(19) and g(19) and evaluate 
lime_,of( 19)/g( 19). 

29 The formula 

( I + x) l lx - e J im �-�--
x-->O X 

f'(x) = Jim f(x + h) - f(x) 
h-->0 h 28 L'Hospital 's rule (7) works in just the same way if the 

conditions/(a) = g(a) = 0 are replaced by the conditions 
limx-->af(x) = limx-->ag(x) = 0. Explain. Use this idea to 
evaluate 

is one version of the definition of the derivative. By treat
ing the right side as an indeterminate form, derive this 
formula from L'Hospital's rule. 

1 2 . 3 
OTHER INDETERMINATE 

FORMS 

For certain applications it is important to know that L'Hospital 's rule remains 
valid for indeterminate forms of the type oo/oo. That is, if the numerator and de
nominator of the quotient f(x)/g(x) both become infinite as x � a, then 

J im f(x) = Jim f' (x) 
x-->a g(x) x-->a g '  (x) ' ( 1 )  

provided the limit on the right exists. The argument i s  a bit tricky, and i s  sketched 
in Remark 2 so that those who wish to skip it can conveniently do so. Just as in 
Section 1 2.2,  one-sided limits are allowed and ( 1 )  extends immediately to the 
case in which x � oo; also, it remains valid if the limit on the right is oo or -oo.  

Example I Show that 

for every constant p. 

xP lim - = O  
x�oo e x 

(2) 

Solution We begin by observing that if p :5 0,  then this limit is not an indeter
minate form and its value is easily seen to be zero. On the other hand, when 
p > 0, the limit is clearly an indeterminate form of the type oo/oo. L'Hospital 's 
rule ( 1 )  for the case in which x � oo therefore gives 

if the limit on the right exists; and if this process is continued step by step, we 
can reduce the exponent for x to zero or a negative number, and the desired con
clusion (2) now follows from the above remark about this case. This example 
gives us important insight into the nature of the exponential function: as x � oo, 
ex increases faster than any positive power of x, however large, and therefore 
faster than any polynomial. 

Example 2 Show that 

lim � = O  
x�oo xP (3)  

for every constant p > 0. 

Solution This limit is clearly an indeterminate form of the type oo/oo, so by 
L'Hospital 's rule we have 
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Jim 
In x = Jim � = lim -1- = 0. x--->� xP x-->� pxp- l x-->� pxP 

Expressed in words, (3) tells us that as x � oo, ln x increases more slowly than 
any positive power of x, however small. 

We have discussed the limits (2) and (3) before, by clumsier special methods, 
in Sections 8 . 3  and 8.4. But our present treatment of these important facts is 
clearly preferable, because the powerful method of analysis based on L'Hospi
tal 's rule extends easily to many similar limits. 

The expressions 

0 . 00 00 - oo, 1� 

symbolize other types of indeterminate forms that sometimes arise. The product 
f(x)g(x) where one factor approaches zero and the other becomes infinite (0 · oo) 
can be reduced to 010 or oo/oo by putting the reciprocal of one factor in the 
denominator. The difference between two functions which are both becoming 
infinite (oo - oo) can often be manipulated into a more convenient form. A power 
y = f(x)8Cx) that produces an indeterminate form of one of the other types is best 
handled by taking logarithms, 

In y = In f(x)g(x) = g(x) In f(x). (4) 

This reduces the problem to the more familiar form 0 · oo; and since y = e 10Y, 
we then use the continuity of the exponential function to infer that Jim y = 

lim e lny 
= e Jim 10 Y. These generalities are illustrated in the following examples .  

Example 3 Evaluate 

Jim x In x. x�O+ (5) 

Solution Here x is required to approach zero from the positive side because ln x 
is defined only for positive x's .  Since In x � -oo as x � O+ ,  it is clear that (5) 
is an indeterminate form of the type 0 · oo. The value of this limit is not obvious, 
because as x � O+,  we cannot tell whether the product x ln x is influenced more 
by the smallness of x or by the largeness (in absolute value) of ln x. However, 
we can easily convert the limit into an indeterminate form of the type oo/oo and 
apply L'Hospital's rule ( 1 ), as follows: 

l ' I J' In x I' 1 /x l' ( ) O x�W+ x n x =x�W+ l lx =x_!.W+ - 1 /x2 =x_!.W+ -x = · 

Thus, the smallness of x turns out to dominate the behavior of the product 
x In x near x = 0. 

Example 4 Evaluate 

J im (sec x - tan x) . X�7T/2 
(6) 

Solution This is of the type oo - oo. We convert it into an indeterminate form 
of the type 0/0 and apply L'Hospital's rule, 
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lim (sec x - tan x) = Jim ( 1 sin x ) 
X-Hr/2 X-Hr/2 cos x cos x 

Example 5 Find limx->O+ xx. 

= Jim 1 - sin x = Jim -c?s x = O. 
x-Hr/2 COS X x->Tr/2 - Sill X 

Solution This limit is of the type o0, and we reduce it to the simpler type 0 · oo 
by talcing the logarithm. To do this most conveniently, we write y = xx and 
observe that 

In y = In xx = x In x - 0 as x - o+ ,  

by Example 3. This tells us that 

xx = y = e lny - e o = 1 ,  

by  the continuity of the exponential function. Therefore we  have 

Jim xx = 1 .  

Example 6 Find limx->� x l lx. 

x-+0+ 

Solution This limit is of the type 00°. We write y = x i tx and observe that 

In x 
In y = In x llx = -- 0 

x as 

by Example 2. This tells us that 

or equivalently, 

Example 7 Show that 

for every constant a. 

x l!x = y = e lny - e O = 1 , 

Jim x l lx = 1 .  x-+� 

lim ( 1  + ax) 11x = ea 
x-+0 

x ---+ oo, 

(7) 

(8)  

(9) 

Solution If a = 0 this limit is not an indeterminate form, and the statement is 
clearly true because each side has the value 1 .  If a * 0, the limit is an indeter
minate form of the type 1 �. In this case we write y = ( 1 + ax) ltx and observe 
that 

I. I r In ( 1  + ax) = 11·m  a/( l + ax) 
x� n Y = x� x x->0 1 

This implies that 

( 1  + ax)llx = y = e lny - ea, 

which is (9). 

= a. 
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Remark 1 The L'Hospital habit. Like any mathematical procedure, L'Hospi
tal's rule should be used intelligently, and not purely mechanically. We should 
try to control the bad habit of automatically applying L'Hospital's rule to every 
limit problem that comes up. Often there is an easier way, for instance, the use 
of familiar limits or simple algebraic transformations. 

(a) The limit 

. 6x 5 - 2 hm --=---�x->� 2x 5 + 3x2 + 4 
is of the type oo/oo, and can be found by repeated use of L'Hospital's rule. But it 
is much simpler to divide both numerator and denominator by x5 and write 

6x 5 - 2 6 - 2/x 5 6 - 0  ----- = - = 3 2x 5 + 3x2 + 4  2 + 3!x 3 + 4!x 5 2 + 0 + 0 · 

(b) The limit 
. 3 I . sm x 1m -x->O x 3  

i s  of the type 0/0. L'Hospital's rule can be applied, and works, but it i s  much 
easier to notice that 

sin3 x 
= ( sin x)3 � 1 3 = I ,  x 3  x 

because we already know that (sin x)lx � 1 as x � 0. 
(c) The limit 

I . v?+1 Im x-.oo x 

is of the type oo/oo, and L'Hospital's rule gives 

Jim w+'1 = Jim x!w+'l = Jim 
x 

x->� x x->� 1 x->� w+'1 Jim (w+'l!x) 
. 

x->� 
This brings us back to the limit we started with, and gets us nowhere. However, 
it is very easy to insert the denominator into the radical and write 

w+1 H-2 + 1 R --- = --2- = 1 + 1- Vl+o = 1 . x x x 

Remark 2 The argument for L'Hospital's rule ( 1 )  in the case oo/oo can be briefly 
sketched as follows. Let f(x) and g(x) both become infinite as x � a from one 
side or the other, and suppose that f' (x)lg' (x) � L. We want to show that also 
f(x)/g(x) � L. For x near enough to a on the side under consideration (see Fig. 
1 2.3), f'(x)lg ' (x) can be made as close as we please to L between x and a. If x 
is between x and a, and if f(x) and g(x) are assumed to satisfy the simple condi
tions (i) to (iii) stated in the footnote in Section 12.2, then 

f(x) - f(X) f'(c) 
g(x) - g(X) = g'(c) 

for some c between x and :X. Since c is also between x and a, we know that 

407 
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f'(c)lg' (c) is close to L. Now hold x fixed and let x - a. Thenf(x) and g(x) grow 
very large, j(:X)/f(x) and g(x)lg(x) become very small, and 

f(x) - JCx) = f(x) [ I - f(x)/f(x) J g(x) - g(x) g(x) 1 - g(x)lg(x) 

is close tof(x)lg(x) . It follows thatf(x)/g(x) is close to f'(c)lg ' (c), which in turn 
is close to L, so f(x)lg(x) is itself close to L when x is close to a, and this is what 
we wanted to establish. 

PROBLEMS 

Evaluate the following limits by any method. 
r 1 8x 3 

2 r ln (ln x) 
L'1l. 3 + 2x2 - 6x 3 " x�II! ln x · 

3 r tan x 
x�1!}2 1 + sec x 

5 

7 

Jim tan x 
x-Hr/2 tan 3x 

I . In x 1m --
x-->O+ CSC X 

9 r In (sin2 x) 
x!.1J1+ In x 

1 1  I . . 1 1m x sm -. 
X-?00 x 

13 Jim (x 2 - l )e-x'. 
x-->= 

1 5  Jim e-x I n  x. 
x-->= 

1 7  Jim sin x In x. 
x-+0+ 

4 Jim In x 2 . 
x-->= Vx 

x2  6 Jim -. 
x--+oo e 3x 

8 

IO 

. (In x) 10 hm ---. 
x-?oo X 

lim x cot x. 
x-->0 

12 Jim (7T - 2x) tan x. 
X-?7T/2 

1 6  lim x ( 7T - tan- 1 x) . 
x-->= 2 

18 J im x2  csc (5 sin2 x). 
x-->0 

1 9  ( x2  x2 ) Jim -- - -- . 20 
x-->= x - 1 x + I 

Jim (_!_ - -. I ) · 

2 1  hm - - ---. ( I I ) 
x-->O x ex - I · 

23 Jim (sin xY. 
x-->0+ 

25 Jim xtanx. 
x-->0+ 

27 Jim (ex - l)X. 
x-->0+ 

29 Jim (sin x)sinx. 
x-->0+ 

31  Jim (In x) llx. 
x-->= 

x-->0 x sm X 

22 Jim (-1 - - -1-) . x--> I x - I In x 

24 Jim (tan x)sinx. 
x-->0+ 

28 Jim x ln( I +x>, 
x-->0+ 

30 Jim ( 1  - cos x) l-cosx. 
x-->0 

32 Jim (tan x)cosx. 
X-?7TJ2-

33 Jim (1 + eax) l lx, a >  0.34 lim (x + ex)2h 
x-->= x-->= 

35 Jim ( I + ax) 11x, a >  0.36 Jim ( 1  + x "JO) llx. 
x--+oo x--+oo 

37 Jim (cos x) 1h 
x-->0 

38 Jim (sin x)tanx. 
X---77r/2 

39 Jim x 11( l -x'>, 40 Jim (cos Yx) 1 1x. 
x--+I x--+0+ 

41 In spite of the evidence piled up in Problems 23-30, 
indeterminate forms of the type o0 do not always have 
the value 1 .  Show this by calculating 

Jim xpllnx 
x-+0+ ' 

where p is a nonzero constant. 
42 (a) Sketch the graph of the function y = f(x) defined 

by 
- l/x2 

f(x) = {� if x * 0, 

if x = 0. 
(b) Show that Jim x-ne- 1 1x' = 0 for every positive in

x-->O teger n. 
(c) Show thatf(x) as defined in (a) has an nth deriva

tive fn>(x) for every positive integer n and every x 
* 0. [We do not ask for a general formula for fnl(x), 
but students should carry the calculations far 
enough to show thatfnl(x) is always given by a for
mula of a certain form, involving certain constant 
coefficients.] 

(d ) Use parts (b) and (c) to show that fnl(O) = 0 for 
every positive integer n. 

*43 As x � 0 + ,  show that 

I cot x - - �  0 x 

but that 

and I cot x + - �  oo, x 

(cot x - �)(cot x + �) � -�. 

44 Use (4) in the text to explain why 1°, 0 1 ,  and o= are not 
indeterminate forms. 



12.4 IMPROPER INTEGRALS 

When we write down an ordinary definite integral as defined in Chapter 6, 

rf(x) dx, ( 1 )  

w e  assume that the limits of integration are finite numbers and that the integrand 
f(x) is continuous on the bounded interval a :s x :s b. If f(x) 2:: 0, we are thor
oughly familiar with the idea that the integral ( 1 )  represents the area of the 
region shown on the left in Fig. 1 2.4. 

In the next section and in Chapter 13 it will be necessary to consider so-called 
improper integrals of the form 

rf(x) dx, (2) 

in which the upper limit is infinite and the integrand f(x) is assumed to be con
tinuous on the unbounded interval a ::; x < oo. * We define the integral (2) in the 
natural way suggested on the right in Fig. 1 2.4; that is, we integrate from a to a 
finite but variable upper limit t, and then we allow t to approach oo and define 
(2) by 

L=f(x) dx = lim L' f(x) dx. a t--too a 

If this limit exists and has a finite value, then the improper integral is said to con
verge or to be convergent, and this value is assigned to it. Otherwise, the inte
gral is called divergent. If f(x) 2:: 0, then (2) can be thought of as the area of the 
unbounded region on the right in Fig. 12.4. In this case the area of the region is 
finite or infinite according as the improper integral (2) converges or diverges. 

Example 1 

r= e-x dx = Jim ('e -x dx = Jim [-e-x]b  = Jim (-__!__ + i ) = 1 .  Jo f-"oo Jo f--tOQ f---too et 

This improper integral converges, because the limit exists and is finite. 

*The word "improper" is used because of the "impropriety" at the upper limit of integration. If we 
wish, we can speak of ( 1 )  as a proper integral because it has no improprieties, but this is neither nec
essary nor customary. 

� I I I I I I f I I I 
a b 

-- 00  

a I -+  oo 
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Students often tend to abbreviate this calculation by writing 

instead of writing out the limits as we have done in Example 1 .  This shorthand 
rarely causes any real difficulties. However, in our work in this section we will 
always write out the limits for the sake of emphasizing that improper integrals 
are defined as limits. 

Example 2 

1- dx l' dx 
[ ) J1 ( l ) 2 = J im 2 = Jim -- = Jim -- + 1 = 1 .  

I X I-'>- I X t-'>- X I I->- t 

This improper integral also converges. 

Example 3 
(
- dx = Iim 

(' dx 
= l im [In x]\ = lim In t = 00• J I X t--+oo JI X t--+oo f--+oo 

This integral diverges, because the limit is infinite. 

Example 4 

r- cos x dx = lim 
(' 

cos x dx = lim sin t, Jo t--+oo Jo t--+oo 

which does not exist. This integral diverges, because the limit does not exist. 

Our next example generalizes Examples 2 and 3 and contains specific infor
mation that will be needed in Chapter 1 3 .  

Example 5 If p is a positive constant, show that the improper integral 

r-
dx 

J1 xP 
converges if p > 1 and diverges if p :s 1 .  

Solution The case p = 1 is settled in Example 3, so we assume that p * 1 .  In 
this case we have 

- = hm - = hm --
1- dx . ll dx . [ X l -p JI 

1 xP I-'>- I xP ,_,_ 1 - p I 

= lim = [ t1 -P - 1 J t-'>- 1 -p 

and this completes the proof. 
Fl 

if p >  1 
if p < 1 ,  

We consider the geometric meaning of  Example 5 by examining Fig. 1 2.5 .  The 
fundamental facts are these. The integral 



1 
y =

xP ' p > O  

Ii� I - dx  1 x 2  

1 2.4 IMPROPER INTEGRALS 

converges because the curve approaches the x-axis "rapidly enough" as x � oo. 

And integrals such as 

Ii� I - dx  I X 
and Ii� I - dx I X l/2 

diverge because the curves do not approach the x-axis "rapidly enough" as 
x � oo. When the exponent p is allowed to decrease through values greater than 
1 ( for instance, p = 4, 3 ,  2, 1 .5, etc.) , then it is easy to see that the correspond
ing graph of y = l/xP to the right of x = 1 rises; also, the calculation shows that 
the area of the unbounded region under this graph increases but remains finite. 
When p reaches 1 this area suddenly becomes infinite, and it remains infinite for 
all values of p < 1 .  It is indeed remarkable that a region of infinite extent can 
have a finite area, as happens here when p > 1 .  We will comment further on this 
phenomenon in Remark 1 below. 

Another type of improper integral arises when the integrand f(x) is continu
ous on a bounded interval of the form a ::5 x < b but becomes infinite as x 
approaches b, as shown in Fig. 1 2.6. In this case we can integrate from a to a 
variable upper limit t which is less than b. This integral is a function of t, and 
we can now ask whether this function approaches a limit as t � b. If so, we use 
this limit as the definition of the improper integral of f(x) from a to b, 

(b 
f(x) dx = Jim (' f(x) dx. Ja t�b Ja 

As before, this integral is called convergent if the limit exists and is finite, and 
divergent otherwise. 

Example 6 

f 1 dx = Jim J' dx = Jim [ -2�Jb Jo � t->1 0 � Hl 

= Jim [ - 2v'l-=t + 2) = 2. 
1-->l 

This improper integral clearly converges. 

There are several other types of improper integrals which we mention only 
briefly because the ideas are essentially the same as those already described. 

4 1 1 

Figure 12.S 

a b 

Figure 12.6 
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Figure 1 2.7 
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If the impropriety of an integral occurs at the lower limit, we use t as the lower 
limit and then let t � -oo or t � a, as the case may be. If the integrand misbe
haves at several points, then the improper integral - if it exists-is obtained by 
dividing the original interval into subintervals. 

Finally, if f(x) is continuous on the entire real line, then we write, by defini
tion, 

r=f(x) dx = f JCx) dx + r f(x) dx, 

where convergence for the improper integral on the left means that both integrals 
on the right converge. An integral from - oo to oo can be split at any convenient 
finite point just as well as at the point x = 0. 

Example 7 

J= dx Jo dx (= dx 
- =  I + x2 = - = I + x2  + 

Jo � 

. Jo c1x . L' c1x 
= hm --- + hm ---

1->-= r 1 + x2 1->= o I + x2  

= Jim [tan- 1 xJ? + Jim [tan- 1 x]b (�-oo [�oo 

= lim ( - tan- 1  t) + lim tan- 1 t = - (-!!_) + !!. = 'TT. t->-= I->= 2 2 

Remark I Students may still be skeptical that a region of infinite extent can 
have a finite area. If so, then the following example may help. Consider the re
gion under the curve y = l /2x for 0 s x < oo. This region is shaded in Fig. 1 2.7, 
and clearly has a smaller area than the combined area of all the rectangles shown 
in the figure. But these rectangles have base I and heights 1 ,  �' {-, t, . . .  , so their 
combined area is exactly 2, as indicated: 

l + + + t + t + . . . = 2.* 

It follows that the shaded region - of infinite extent ! - has finite area less than 
2. The area of this region can even be computed exactly; since 2x = (e 102Y = 
exln2, it is 

*This is an infinite geometric series of a kind often studied in high school algebra courses. We dis
cuss these series in much more detail in Chapter 1 3 .  

2 3 4 
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l
= dx l' dx l' - = Jim - = lim e-xln2 dx 0 2x t-->= 0 2x t-->= 0 

= J im [ --1- e-x1n2]
' 

r-->= In 2 o 

= 1 .4427. 

Remark 2 Generally speaking, improper integrals play a more substantial role 
in higher mathematics than they do in calculus. We mention two important ex
amples-which we do not pursue any further in this book- to give students 
some idea of what we're talking about. 

(a) The improper integral 

f( p) = r xP- 1 e-x dx 

(the symbol on the left is capital gamma in the Greek alphabet) is called the 
gamma function. This is a very interesting function which is studied in advanced 
calculus and elsewhere. It has innumerable applications to physics as well as to 
geometry, number theory, and other parts of pure mathematics. 

(b) The improper integral 

F(p) = r e-px f(x) dx 
has many significant applications to electric circuits, vibrating membranes, and 
heat conduction, and to the solution of certain types of differential equations. It 
is a function of p associated with the given functionf(x), and is called the Laplace 
transform of f(x). * 

'See Chapter 9 in the author's book Differential Equations with Applications and Historical Notes, 
2nd ed. (McGraw-Hill, 199 1 ). 

PROBLEMS 

In each of the following problems, determine whether or not 
the improper integral converges, and find its value if it does. 

I r e-2x dx. 2 r 
( I  �x)3 · 

3 

s 
r 

dx 
s x4/3 . 

r 
I 1 - sin - dx. I x2 X 

4 

6 

fo= 
sin x dx. 

r 
dx 

e x In x ·  

1 1  r dx 
x(x + 2) " 

13 
r In  x dx  
0 Yx . 

I S  r
= 

lxle-x' dx. 

4 1 3  

12 r 
dx 

3 xv'16+? 

14 r dx 
o 4 - x2 · 

16 J := 
e-x cos x dx. 

7 r 
dx 

e x(ln x)2 · 
8 L= 

e-x cos x dx. 
17 Let p be a positive constant. Determine the values of  p 

for which the improper integral 

9 r (x - l )e-x dx. 
10  r (� - �) dx. 

f l dx 
Jo xP 

is convergent, and those for which it is divergent. 
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1 8  Consider the region under the graph of y = l lx for x 2:: 1 .  87T r- dx surface area > 3 J i x 314 = oo. Even though this region has infinite area, show that the 
solid of revolution obtained by revolving this region about 
the x-axis has finite volume, and compute this volume. 

22 If a > 0 and the graph of y = ax2 + bx + c lies entirely 
above the x-axis, show that 

19 Consider the region in the first quadrant under the curve 
y = 1 /(x + 1 )3. Find the volume of the solid of revolu
tion generated by revolving this region about (a) the 
x-axis; (b) the y-axis. 

f
-

dx 21T 
-- ax2 + bx + c = y' 4ac - bz 

23 (A comparison test) Let f(x) and g(x) be continuous 
functions with the property that 0 ::S f(x) ::S g(x) for a ::S 
x < oo. Show that 

20 The region under the curve y = 4/(3x 314) for x =::: I is re
volved about the x-axis. Find the volume of the solid of 
revolution generated in this way. (a) if f';;' g(x) dx converges, then f';;' f(x) dx also con

verges ;  
21  Show that the surface area of the solid of  revolution de

scribed in Problem 20 i s  infinite. As a result of these 
calculations, we see that a container in the shape of this 
surface can be filled with paint (it has finite volume), but 
nevertheless its inner surface cannot be painted (it has 
infinite surface area). Hint: Use the obvious inequality 

(b) if f';;'f(x) dx diverges, then f';;' g(x) dx also diverges. 
24 Use the comparison test in Problem 23 to determine 

whether each of the following integrals converges or di
verges : 

(a) r vf:+--s; (b) r (X6 - 1 )- In dx; 

to show that 

I R I 
374 1 + 772 > 374 x x x 

1 2 . 5 

x + 5 
(c) r co:4

3 
5x dx; *(d) J.- � dx. 

e x2 

THE NORMAL 
DISTRIBUTION. GAUSS 

Suppose a measurement or experiment is performed many times, and that its re
sult is a number. We can think, for example, of weighing the babies born in a 
certain hospital during a given year, or of measuring the annual rainfall in a cer
tain city over a number of years. Suppose the possible results of our measure
ment or experiment are numbers x that lie in an interval a :5 x :5 b. To record 
our results we can divide the interval [a, b] into n subintervals of equal length, 
say a =  x0 < x1 < x2 < · · · < Xn = b, and then count the number of times mk 
that our result is a number between Xk- I and xk. When this way of arranging the 
data is represented by a step function whose height is mk over the kth subinter
val, the resulting graph is called a histogram. 

In Fig. 1 2.8 the birth weight data in the table on the left-taken from genuine 
vital statistics-is displayed in the histogram on the right. The total number of 
babies born in this hospital in this year was 2555. To find the average birth weight 
directly, we would have to calculate the number 

sum of all birth weights 
total number of babies · 

But our table doesn't provide individual birth weights, so without access to the 
original data this calculation is beyond our power. However, by using the mid
point of each weight interval, we find that the sum of all the birth weights is 
approximately 

( 1 .5)( 1 2) + (2.5)( 18) + (3.5)(46) + (4.5)( 1 58) 
+ (5.5)(422) + (6.5)(828) + (7 .5)(49 1 ) + (8.5)(429) 

+ (9.5)( 1 33) + ( 10.5) ( 1 8) = 1 7,419.5 lb. ( I )  

The average birth weight, also called the mean, is therefore approximately 
17,4 19.5/2555 = 6.82 lb. In the histogram each term of the sum ( 1 )  is the prod
uct of the x-coordinate of the midpoint of a subinterval and the area of the cor
responding rectangle. 



Birth 

1reig/11s. N11111ber 

lb or babies 

1 -2 12 
2 - 3  1 8  
3 - 4  46 
4 - 5  158 
5 - 6  422 
6 -7 828 
7- 8 491 
8 - 9  429 
9- 10  1 33  

1 0 -1 1 1 8  

c;, of 
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0.7 
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If we reconstruct our histogram by using a larger and larger number of smaller 
and smaller subintervals, we expect the graph to approach the graph of a smooth 
functionf(x). We can now adjust the unit of length along the vertical axis so that 
the total area under the curve is 1 .  This gives a function y = f(x) called the fre
quency density. This function has two characteristic properties: 

f(x) � 0 and r f(x) dx = 1 .  

Also, if a s c < d s b ,  then the integral 

r f(x) dx 

(2) 

(3) 
gives the ratio of the number of times the measurement produces a value between 
c and d to the total number of measurements, that is, the relative frequency of 
the result c s x s d. In the same way, f(x) dx can be thought of as the propor
tion of results that lie between x and x + dx. From this point of view, the inte
gral (3) can be interpreted as the probability that a randomly chosen measure
ment will have a result between c and d, and f(x) is then called a probability 
density function. 

In order to gain further insight into these concepts, let us for a moment think 
of f(x) as the mass density function of a rod of total mass 1 that lies along the 
x-axis between x = a  and x = b. Then f(x) dx is the element of mass, xf(x) dx is 
the moment of this element of mass about the origin, and the integral 

x = r xf(x) dx (4) 

is the center of mass of the rod, since r f(x) dx = 1 .  Also, the integral 

I = r (x - x)2/(x) dx (5) 

4 1 5  



4 1 6  

y 
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Figure 12.9 
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is the moment of inertia of the rod about the line x = x as axis. We know from 
our experience in Chapter 1 1  that this quantity is small if most elements of mass 
are nestled close to the axis, and larger otherwise. 

In the case of a general probability density f(x) with properties (2), the inte
gral corresponding to (4), 

m = r xf(x) dx, 

is called the mean. As we know, the mean m is the point on the x-axis where the 
region under the probability density graph, if it were made out of cardboard and 
placed in a horizontal position, would balance on the line x = m. The square root 
of the integral corresponding to (5), 

a =  Jr (x - m)2f(x) dx, 

is called the standard deviation. If a i s  small, the results of  our measurements 
cluster around the mean m; and if CT is large, then a significant portion of these 
results are farther away from m. 

In the general mathematical theory of probability of which these ideas are only 
a hint, it is customary to consider probability densities that are defined for all x, 
so that no limitations are placed on the possible results of the measurement or 
experiment under consideration. A probability density is then defined to be any 
function that satisfies the conditions 

f(x) 2: 0 and (6) 

and the mean m and standard deviation CT are defined by 

m = r� xf(x) dx and (7) 

Of course ,  these integrals are improper integrals in the sense discussed in Sec
tion 12 .4. 

SEVERAL IMPORTANT IMPROPER INTEGRALS 

To reach our goal of understanding the normal distribution we must first con
sider several properties of the function y = f(x) = e-x', whose bell-shaped graph 
is sketched in Fig. 12.9. We begin by pointing out that this function is even, which 
means that f(-x) = f(x), so the graph is symmetric about the y-axis. Also, the 
values of the function are all positive, it has a maximum y = 1 at x = 0, and the 
graph has two points of inflection at x = ±tY2 (check this by calculating y") .  
It is  cl ear that 

lim e-x ' = 0, x�±oo 

because e-x' = 1/ex' and ex' � oo as x � :too. Also 

(8) 

(9) 

because for lxl > 1 we have lxe-x'I = lxle-x '  < x2e-x', and we know that 
limx"":t� x2e-x' 

= limz_,� ze-z = 0 by Example l in Section 1 2.3 . 
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It is a remarkable fact that the area under the curve y = e-x' has the finite 
value 

( 1 0) 

because 

( 1 1 ) 

This astonishing formula connecting e and 'TT is best established by using double 
integration in polar coordinates. The details of the proof are given in Example 3 
of Section 20.4, but for the present we simply accept it. 

Next, we use the definition of an improper integral to write 

r� xe-x' dx = Jim ( ' xe-x' dx = lim [ -t e-x'] b  Jo r-700 Jo 1-700 

Here we used (8). Similarly f � xe-x' dx = -t, so by putting these two integrals 
together we obtain 

so 

Finally, an integration by parts with u = x, dv = xe -x ' dx gives 

Lt 2 2 I 2 I L' 2 x e-x dx = --te-1 + - e-x dx. 0 2 2 0 

By (9) and ( 1 1 )  we now have 

I (� 1 , I = 0 + 2 Jo e-x ' dx = 4 V 7T. 

Since the integrand x2e-x' is  an even function, we conclude that 

THE NORMAL CURVE 

Let m be any number and a any positive number. Then the function 

( 1 2) 

( 1 3) 

*This result also follows without calculation by observing that the integrand is an odd function, that 
is, it has the property /(-x) = -f(x). 

4 1 7  
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f(x) = _1_ e-<x-m)'l2rr' ( 14) 
CT\!2; 

is called the normal (or Gaussian) probability density function with mean m and 
standard deviation u. Since clearly f(x) > 0 for all x, to verify what is implicitly 
stated here we must show that 

r_ f(x) dx = 1 ,  ( 1 5) 

r_ xf(x) dx = m, ( 16) 

and 

r_ (x - m)2f(x) dx = a2. ( 17) 

To prove these facts we use the change of variable t = (x - m)JuYl, so that 
t varies from -oo to oo as x varies from -oo to oo and 

x = m + CTV2 t, dx = CTV2 dt, f(x) = _l_ e-1' . 
CT\!2; 

By using ( 10), ( 1 2), and ( 1 3) we establish ( 1 5) ,  ( 16), and ( 17)  as follows: 

and 

J
- 1 J- . r,: 1 

J
-f (x) dx = -- e-1'CTV 2 dt = -- e-1' dt = 1 ,  

-- u\!2; -- \/; --

J
- I J-xf (x) dx = -- (m + CTv'2t)e-12CTv'2 dt 
-- CT'\12; --

= � J- e-1' dt + CT [2 J- te-1' dt = m, 
y;;;: --

y -;; --

The graph of ( 14) is called the normal (or Gaussian) curve with mean m and 
standard deviation u. It is symmetric about the line x = m, because the function 
( 14) has the same values for x1 = m + a and x2 = m - a. Also, the curve is bell
shaped, and the function assumes its maximum value of 1/u\12; = 0.399/u at 
x = m. Further, the curve has two points of inflection at the points x = m + u 
and x = m - u. To see this we calculate 

and 

J"(x) = _ __ 
1_ e-<x-m)'l2rr' + (x -m)2 e-<x-m)'l2rr' 

u3\!2; CTs'\12; 
1 [(x - m )2 

- 1 ] e-<x-m)'l2rr'. 
CT3y'2; CT 
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f(x) 

u = � 
f(x) 

m = -2 m = 0 m = 2 

- 2  0 2 
x 

u fixed (u = I )  m fixed (m = 0) 

This formula tells us that the second derivative is positive for Ix - ml > a and 
negative for Ix - ml < a, which proves the statement about points of inflection. 

Normal curves with a =  1 and m = 0, 2, -2  are shown on the left in Fig. 
1 2. 1 0, and with m = 0 and a =  i, 1 ,  2 on the right. We observe that these curves 
are wide and flat for large a, and narrow and peaked for small a. For the spe
cial case in which m = 0 and a =  1 ,  we obtain the important standard normal 
probability density 

c/J(x) = _I_ e-x 'l2. 
Vh 

( 1 8) 

The graph of this function is shown in Fig. 12. 1 1 . We notice that for - 1  :s x :s 1 
(within one standard deviation of the mean) we obtain 68.2 percent of the area un
der the curve, and for -2 :s x :s 2 (within two standard deviations of the mean) 
we obtain 95.4 percent of the area under the curve. It is an interesting fact that 
these percentages hold for the areas under all normal curves within one or two stan
dard deviations of the mean. 

When f(x) is any probability density, the function of t defined by 

F(t) = t� f(x) dx 

is called its distribution function. According to our previous interpretation, F(t) 
is the probability that x lies in the interval (-oo, t]. In particular, the normal dis-

- 3 -2 - I  0 

�(x) = ....L e-x'/2 J ' \(2,; 

2 3 
x 

4 1 9  

Figure 12.10 Changes in f(x) as m 
varies and as u varies. 

Figure 12.11 The standard normal 
curve (m = 0, u = I )  
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tribution function (or simply the normal distribution) with mean m and standard 
deviation <T is the function 

F(t) = _l_ f' e-Cx-m)'l2u' dx. 
u"\/2; -- ( 1 9) 

In the s implest special case, in which m = 0 and a =  1 ,  it is customary to denote 
this by 

<l>(t) = _l_ f' e-x'l2 dx, yq; -- (20) 

and to refer to it as the standard normal distribution. Tables have been constructed 
for the function <l>(t) by the methods of numerical integration, and these tables 
can be used to solve many problems in science and mathematics involving prob
ability and statistics. Students who wish to explore these important ideas are urged 
to take an advanced course on mathematical probability. 

We have hinted at a procedure here, and it might be helpful to give a brief ex
planation of how this procedure works. To say that the quantity x is normally dis
tributed means that its density function is well approximated by ( 14) for suitable 
choices of m and <T. The probability that x lies in the interval a :s x :s b is de
noted by P(a :s x :s b) and is given by 

P(a :S X :S b) = __ 
l_ Lb e-<x-m)'l2u' dx. 

uv'2; a 

If we make the substitution t = (x - m)l<T, then a and b become 

a
' = a - m 

u 
and b' = b - m 

u , 

and the integral just written is transformed into 

I Lb' P(a :s x :s b) = P(a' :s t  :s b ' )  = -- e-1'12 dt 
y'2; a ' 

= <l>(b') - <l>(a' ) .  

(2 1 )  

This quantity can now b e  calculated by using tables to look up the numerical val
ues of <l>(b' )  and <l>(a') .  

Many phenomena in science and society are normally distributed, and can 
therefore be modeled and calculated by using this machinery-for instance the 
heights of men of the same age in a large population, the speeds of molecules in 
a gas, the results of measuring a physical quantity many times, and so on. 

Example I The mean annual rainfall in New York City i s  42 in. The annual rain
fall over many years is closely approximated by the normal density function with 
m = 42 and standard deviation a = 2, 

f(x) = _l_ e- <x-42)'18. 

2v'2; 

A sketch of this normal curve is shown in Fig. 12. 12 .  Use this information to 
compute the proportion of years with rainfall between (a) 40 and 44 in; (b) 38  
and 46  in . 
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S
o
l
ution (a) The proportion of years with rainfall between 40 and 44 in is 

_l_ r4 
e-<x-42)'18 d.x. 

2\12; 40 

With the change of variable t = (x - 42)/2 - and access to a table of values of 
¢(t)-this becomes 

_l - J i e-1212 dt = <l>( l )  - <l>(- 1 ) vz.;;: - I  

= 0.84 1 3 - 0. 1587 = 0.6826. 

(b) Similarly, the proportion of years with rainfall between 38 and 46 in is  
(with the same change of variable) 

_l_ (46 
e-<x-42)'18 d.x = _1 _ J2 e-1'!2 dt 

2 vz.;;: )3 8 vz.;;: -2 

= <1>(2) - <l>(-2) 
= 0.9772 - 0.0228 = 0.9544. 

Example 2 An examination is sometimes considered to have done its job of 
spreading student grades fairly if the frequency histogram of grades can be ap
proximated by a normal density function. Some teachers who go to this trouble 
then use this histogram and approximating curve to estimate m and a, and as
sign the letter grade A to grades greater than m + a, B to grades between m and 
m + a, C to grades between m - a and m, D to grades between m - 2a and 
m - a, and F to grades below m - 2a. This is what is meant (or used to be 
meant) by grading on the curve. This approach to calculating grades is probably 
almost extinct in the modern era of grade inflation. 

Remark 1 How does it happen that these probability discussions are saturated 
with various forms of the function e-x'? We attempt to answer this question by 
showing how the normal probability density function ( 1 4) can be derived from 
simple and reasonable assumptions. 

Consider the experiment of a marksman repeatedly shooting at a target whose 
bull 's-eye is the origin of the .xy-plane ( Fig. 12 . 1 3), and suppose that we are only 
interested in the x-coordinates of the points of impact. These x-coordinates pro
vide an ideally simple example of quantities distributed in the pattern we wish 
to examine, being bunched together around x = 0 and tapering off symmetrically 
to the sides. 

If f(x) is the probability density function of these x-coordinates, then f(x) dx 
is the probability for any particular shot that its x-coordinate lies in the interval 
from x to x + dx. Similarly the probability of the y-coordinate lying in the in
terval from y to y + dy is g(y) dy, where g(y) is the probability density in the 
y-direction. Now, assuming that the x- and y-deviations from the bull's-eye are 
independent of each other, then the product of the two probabilities, 

[f(x) dx] [g(y) dy] = f(x)g(y) d.x dy = f(x)g(y) d.A, 
is the probability that the bullet hits the element of area dA shown in the figure. 
Assuming further that the experiment possesses circular symmetry, this proba-

42 1 

y 

Figure 12. 13  
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bility will be the same for any equal element of area at the same distance r in 
any direction from the bull's-eye. This amounts to assuming that f(x)g(y) is a 
function only of r2, 

where r2 = x 2 + y2. 

f(x)g(y) = h(r2), (22) 

Differentiating both sides of (22) first with respect to x and then with respect 
to y gives 

f'(x)g(y) = h ' (r2) • 2x and f(x)g'(y) = h ' (r2) • 2y. 

By eliminating h'(r2) from these equations we obtain 

or 

f' (x)g(y) _ f(x)g' (y) 
2x - 2y 

f'(x) g ' (y) 
2xf(x) = 2yg(y) · (23) 

Since the left side is a function of x alone, and the right side is a function of y 
alone, (23) implies that both sides are constant, in particular 

Integration now gives 

or 

f' (x) -- = c 2xf(x) or 
f'(x) 
f(x) = 2cx. 

ln f(x) = cx2 + d 

where D = ed. But f(x) is a probability density function, so we must have 

r_ f(x) dx = 1 ,  

(24) 

(25) 

and this implies that c must be negative. We are free to write c in the form c = - 1/2cr2 for a positive constant er, and (24) now becomes 

f(x) = De-x'l2a', 

By integrating this from - oo  to oo, changing the variable of integration from x to 
t = x/crVl, and using ( 1 0) and (25), we obtain 

D r_ e-x'12a' dx = Da Y2 r_ e-r' dt = Du Y2 -y'; = 1 .  

Therefore D = l/cr \12; and our function takes its final form, 

f(x) = _1_ e-x'l2a", 
(J '\/2; 

which is the normal probability density ( 1 4) with mean m = 0. 

Remark 2 Formula ( 1 1 ) can be thought of as a special case (let a � oo) of a 
little-known formula called Laplace 's continued fraction: 
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(a 1 e-a2 Jc e-x2 dx = _y; - -----------
0 2 2a + ----�----

a + ---�2 __ _ 

2a + --=3-
a + --4�-

2a + · . . . 

We mention this not because it has any practical importance for us in our pre
sent work, but rather because it would be unconscionable-almost immoral-to 
deprive the student of the opportunity of seeing one of the most wonderful and 
beautiful individual facts in the whole of mathematics .* 

*See p. 357 of  H.  S. Wall, Analytic Theory of Continued Fractions (Van Nostrand, 1948; reprinted 
by Dover, I 967). In this reference Laplace's formula is given among the special cases of the contin
ued fraction of Gauss for the quotient of two hypergeometric functions. Hypergeometric functions 
are discussed on p. 200 and in Problem 1 on p. 203 of the present writer's book, Differential Equa
tions with Applications and Historical Notes (McGraw-Hill, 2nd ed., 1991). 

NOTE ON GAUSS 
The German Carl Friedrich Gauss ( 1777-

1 855) was the greatest of all mathematicians and perhaps 

the most richly gifted genius of whom there is any record. 

The profound creative activity of this awe-inspiring figure 

embraced all of mathematics- geometry, number theory, 

algebra, and analysis-as well as physics and astronomy. 

The fame of the town of Gottingen in Germany as the lead

ing center of mathematics in the world until the 1 930s dates 
from the time of Gauss, who was professor there and di

rector of the Gottingen astronomical observatory. His fun

damental contribution to the concept of normal distributions 

PROBLEMS 

1 Find the value of the constant k for which each of the fol

lowing is a probability density function on (-oo, oo): k l + x 2 '  kx -x' e . 

2 Several functions f(x) are defined by the following ex

pressions for 0 ::S x ::S 1 and are identically zero for all 

other values of x: 1 ,  3x2, 5x4, e - ex, -rr/2 sin =· Verify 
that each is a probability density function. 

arose from his work on the theory of errors in making phys

ical measurements.
* 

It is strange and ironic that this colos

sal figure in the intellectual history of western civilization 

should be almost entirely unknown among most educated 

people .  

*For more information on this, see pp. 78-83 of  Carl Friedrich 
Gauss by Tord Hall (MIT Press, 1 970); or pp. 1 3 8-140 of Gauss: 
A Biographical Study by W. K. Btihler (Springer-Verlag, 1981). A 
brief general account of Gauss's life and work can be found in Sec
tion A.25 of the present writer's book, Calculus Gems (McGraw
Hill, 1 992). 

3 Verify that each of the following is a probability density 

function and find its mean m: 
(a) f(x) = i<x + 1 )  for 0 ::S x ::S 2 and 0 elsewhere; 

(b) f(x) = t( l - ix2) for -2 ::S x ::S 2 and 0 elsewhere. 

4 Verify that the function defined by f(x) = h for 0 ::S 
x ::S 2 and 0 elsewhere is a probability density function 

and find its mean m and standard deviation u. 
S In Example 2, use Fig. 1 2 . 1 2  to estimate the percentages 

of students who receive the grades A, B, C, D, F. 
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CHAPTER 12 REVIEW: DEFINITIONS, CONCEPTS 

Think through the following. 
1 Mean Value Theorem. 
2 L'Hospital 's rule for 0/0. 
3 L'Hospital's rule for other indeterminate forms. 
4 Improper integrals. 

ADDITIONAL PROBLEMS FOR CHAPTER 12 

SECTION 1 2.2 
Find the following limits. 

1 

3 

5 

7 

9 

IO 

1 1  

1 3  

1 5  

1 7  

1 9  

20 

2 1  

23 

25 

26 

27 

r sin 5x 
x� sin 2x" 

x2 + x - 30 lim x-+5 v;-=J - 2 
J im x - 4  
x->4 -Vx+4 - 2 
r tan (2x -4) 
x� x 3  - 8 

� - ( 1 + tx) 
lim 3x2 x-+0 

2 

4 

6 

8 

'V'x + 16 - (2 + fix) 
lim x2 x-+0 
Jim 

In (x - 2) 
x-+3+ (x - 3)2 

sin x3 
lim x-+0 x - sin x 

e 31x _ I 
lim x-+� sin l/x 

l - cos x 
lim x sin x x-+0 

sin- 1 x 
lim �. x-+0+ sm x 

Jim 
2 cos x - 2 + x2 

x-+0 3x4 
Jim 

1 - sin x 
X�TT/2 cos x 

3� - x - 1 
lim 3(x - 2)2 x-+2 

1 2  

1 4  

1 6  

1 8  

22 

24 

sin2 x + 2 cos x - 2 
l im 2 . . x-+O cos x - x sm x - 1 

Jim 
sin x - tan x 

x 3  x-+0 
cos x - I + tx2 

Jim x4 28 x-+0 

r In (x - 1 )  
x� x - 2  · 

r sin '1TX 
1m ---x->I I - x 2  · 

x2 + 2x - 3 
lim 2 . x->-3 2x + 3x - 9 

Jim 
x3 + x2 - 2  

x->I In x 

r 
x sin (sin x) 

Im . . x->O I - cos (sm x) 
. e' - 1 
hm --. -. x->0 x sm x 

- ! r tan x 
x_!.161+ 1 - cos 2x 

lim 
'V'x - 1 6 

x->16+ � - 2  

r 
2x 

1m ---. x->0 tan- 1 x 
r 

In x 
1m ---. x->1 x2 - x 

sin x2  - sin2 x 
Jim x->0 x4 

5 Probability density function. 
6 Mean and standard deviation. 
7 Normal probability density. 
8 Standard normal probability density. 

29 

3 1  

33 

35 

37 

39 

4 1  

42 

43 

Jim 
ex + e-x - 2 

I - cos 4x x->0 
hm 

x3 + 3e 1 -x - 4  
x - In x - l x->1 

lim 
x2 tan x 

x->0 tan x - x 
I" 

In (x + l )  
x� e3x - 1 
. x lO - 1 

hm ---. x->1 x9 - 1 

x - tan- 1 x 
lim x 3  x->0 
r 

tan2 ( l /x) 
1m 2 . 

x-+� ln ( I  + 4/x) 

30 

32 

34 

36 

38 

40 

I + cos x 
lim 2 . X-+1T (X - 7T) 
J im 

x - sin x 
x-+0 x tan x 
lim 

I - cos2 x 
x2 x-+0 

J im 
I - cos 2Va x 

2x2 x-+0 
r x - sin x 
x� I - COS x · 

sin2 x 
Jim X-+1T [ + COS 5X 

Consider the circular sector of radius I shown in Fig. 
12. 14. The point C is the intersection of the tangent 
lines at A and B. If/( 6) is the area of the triangle ABC 
and g(6) is the area of the region that remains when 
the triangle OAB is removed from the sector, evaluate 
Ii m 9_,of ( 6)/ g( 6). 

B 

c 

0 

Figure 12.14 

Show that 

r 
x2 sin ( 1/x) 

1m x->0 x 
is an indeterminate form of the type 0/0 that exists but 
cannot be evaluated by L'Hospital 's rule. What is the 
value of this limit? Does this example show that L'Hos-
pital 's rule is false? 
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pita! 's rule is false? 
44 Use L'Hospital's rule to establish the following formu

las for the direct calculation of the second derivative: 

( ) /"( ) = I' f(x + 2h) - 2/(x + h) + f(x) . a x "� h2 , 

(b) J"(x) = lim f(x + h) - 2��) + f(x - h) 
h-->0 

4S If n is a positive integer, show that 

. nx n+ 1 - (n + l)x " + l  n(n + l )  
hm = �--� 
x-->1 (x - 1 )2 2 

(For the meaning of this rather strange-appearing result, 
see Problem 46.) 

46 If n is a positive integer and x -=F I ,  the formula 

I - x n + I  + x + x2 + x 3  + · · · + x "  = ----
1 - x 

x n+ I  - 1 
x - 1 

is familiar from high school algebra. Differentiate it to 
obtain 

+ 2x + 3x 2 + . . .  + nx n- 1 

nx 11+ 1 - (n + l )x " + 1 
(x - ! )2 (*) 

and then take limits as x � and use Problem 45 to 
derive the formula 

l + 2 + 3 + · · · + n = 
_n(�n_+_l�) 

2 . 

*47 Multiply equation (*) in Problem 46 by x, differentiate, 
etc., and thereby derive the formula 

1 2  + 22 + 32 + . . . + n2 = n(n + 1 )(2n + I )  
6 . 

SECTION 1 2.3 

Evaluate the following limits by any method. 

48 Jim 
3x2 + 9 49 Jim 

In (I - 2x) 
x-->= X + ex I tan 7TX 

so 2 + sec x 
tan x 

S2 I' 
x + In x 

L� x ln x  

S4 1. I n  (sin x) 
tm 

I . 2 x-->0+ n (sm x) 

S6 Jim In ( In x) . x-too Vx 
S8 Jim x 2 In x. x-->0+ 
60 lim x 2e llx. x-->0+ 

x-; 2-

sl  . I n  x 100 hm --x---?oo Vx 

S3 I . 
In x 

1m --. x-->0+ cot x 

SS 1 ·  In x 
x.:.� -;zx· 

S7 

S9 Jim xP In x, p > 0. x-->0+ 
61  lim x sin !!..., p -=F 0. x---?oo X 

62 lim tan x In x. x-->0+ 

63 lim (x - 7r
2
) tan 3x. x-->-rr/2 

64 Jim (2x - -rr) sec x. x-->-rr/2 
66 lim x(e l !x - 1 ). x-->= 

68 Jim (...!.._ - -1
-) x-->0 x2 x sin x · 

69 lim ( I _ _l_) x-->0 l - COS X X 2 · 

70 Jim [ I + x - _!_] x-->0 ln ( I  + x) x · 

6S Jim tan x In (sin x). x-trr/2 
67 Jim sin x In (sin x). x-->0+ 

71 Jim [ I - -
1
-] . x-->0 In ( I  + x) ex - I 

72 lim (x -Vx2 + x). 73 lim xsinx. x->0+ x-->= 

74 lim (sin x)1•nx. X---?0+ 

76 Jim (x2 - 1y- 1 •  X---? I +  

7S lim (ex - l )sinx. 
x->0+ 

77 lim (cos x)cosx. 
x-->-rr/2-

78 lim ( I  - tan x) l -tanx. X-?TT/4-

79 lim (x + sin x)t•nx. x-->0+ 

80 lim (In x)sin(x - 1 ). X---? I +  

82 lim xa.x", b > 0. x-->0+ 

84 Jim (x + e=)btx. x-->= 

86 lim ( I  + x)'-� x-->= 

88 lim ( 1 + _!_)x· x-->0 X 

90 

92 

94 

96 

98 

99 

lim (cot xY. x-->0+ 

Jim (1 -2x)31x. x-->0 

Jim 1 + - . ( J )Sx 
x-?oo X 

Jim ( I  + 2x}°°u. x-->0 

lim (cos 2x)1ix'. x-->0 
Show that 

81 Jim [In ( I  + x)Y. x-->0+ 

8S Jim ( I  + xP) llx, P > 0. x->= 

87 Jim ( I  + CSC x)sin'x. x-->0+ 

89 Jim (csc xY. x-->0+ 

91 lim x ln( l + llx) _ 

93 Jim ( 1 + l)x· X---?00 x 

9S lim (ex + 3x) 11x. x->0 

97 lim ( I  + 3x)cscx. x-->0 

I . 
x + sin x 

1m x---?oo X 

is an indeterminate form of the type oo/oo that exists but 
cannot be found by L'Hospital 's rule. What is the value 
of this limit? 
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100 Find the value a must have if 

SECTION 1 2 .4 

r (x + ay 4 Im -- = x�oo x - a 

Determine whether or not each of the following integrals con-
verges, and find its value if it does. 

1 0 1  

103 

105 

107 

109 

1 1 1  

1 1 3  

L� e-3x dx. 

r �-
4 xVx 

L� e-x sin x dx. 

J� x dx 
o x4 + 1 · 

1� dx 
2 4 + x2 · 

r x2 r�x . o e 

r dx . 
e x ln x� 

102 

1 04 

106 

108 

1 1 0  

1 12 

1 14 

r
dx 

s x 3 · 

J� x2 d.x 
o x3 + I . 

L� xe-x dx. 

r , 1 xe-x- dx. 

r 
dx 

2 x2 - I
. 

J,� In x dx. 
e X 
r 

dx 
0 "\1eX . 

e · 

1 15 

1 17 

1 19 

1 20 

1 2 1  

1 22 

fT/2 o I 
d.x 

- sm x 1 1 6  r/2 _!f!___ o sm x 

r In x dx. 0 x 1 1 8  r 8d.x 
o �· 

I: x dx 
� -

Let p be a positive constant. Determine the values of 
p for which the improper integral 

( 1 dx 
Jo ( I  - x)" 

is convergent, and those for which it is divergent. 
Show that the region in the first quadrant under the 
curve y = I /(x + I )2 has a finite area but does not have 
a centroid. 
If x is a positive constant, show that 

l� ' '  l 1� ' e-a-x- dx = - e-x- dx. o a o 
Without performing any actual integrations, use this fact 
to show that the centroid of the region between the curve 

' ' '-;;:: y = e-a-x- and the x-axis is (0, v 2/4) . 



INFINITE SERIES 
OF C ONSTANTS 

We have touched briefly on this subject several times before, but now the time 
has come to confront it directly. 

An in.finite series, or simply a series, is an expression of the form 

( 1 )  

where the three dots at the end indicate that the terms continue indefinitely. In 
other words, there are infinitely many numbers a11 (one for each positive integer 
n) and ( 1 )  is the indicated sum of this infinite collection of terms. The number 
a11 is called the nth term of the series, and is usually some simple function of n. 
We include it in ( 1 )  if we wish to make an explicit statement of the law of for
mation of the terms. However, if  this law of formation is clear from the context, 
we can write ( 1 )  more informally as 

or a1 + a2 + · · · . 

We will often use the sigma notation of Section 6.3 to write the series ( 1 )  in the 
compact form 

The is read "the sum from n = 1 to infinity of a11." 

Needless to say, it is quite impossible to perform the operation of addition an 
infinite number of times- life isn't long enough-so ( 1 )  cannot be interpreted 
literally and its meaning must be approached in a subtler way. It was one of the 
great achievements of nineteenth-century mathematics to discover that a perfectly 
reasonable and satisfactory meaning can be given to ( 1 )  by using the concept of 
the limit of a sequence. If we exercise suitable caution, this meaning allows us 
to work with infinite series just as easily as if they involved only a finite num
ber of terms. In many cases we will actually be able to find the number that is 
the exact sum of the series, and these sums often tum out to be very surprising 
indeed. 

We will get to all this in the following sections, but fust we briefly consider 
a few of the many natural ways in which infinite series arise in mathematics. 

427 

1 3 . 1 
WHAT IS AN 
INFINITE SERIES? 
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A We usually assume that we understand the real number system, in particu
lar, what is meant by an infinite decimal. However, it is often overlooked that an 
infinite decimal is defined as an infinite series, 

where each of the a 's is understood to be one of the ten digits 0, 1 ,  2, . . .  , 9 .  
Everyone knows that 

+ = 0.333 . . .  ' (3) 

but not everyone is sure why, or even what this means. This is not at all sur
prising, because (3) cannot be fully understood without some acquaintance with 
infinite series, enough to use (2) to evaluate the right side of (3) .  We will discuss 
this and other related issues in Section 13 .3 .  

B The elementary long division of 1 - x into 1 ,  i.e., -1-
1
- , 
- x  

tells us that 

I +  x + x2 + · · · 
I - x  I 

1 - x 
x 
x - x2 

x2 
x2 - x3 

x3 . . .  ' 

I .i' 
-- = 1 + x + x2 + · · · + xn- I + --
1 - x  I -x (4) 

This process can be carried out to as many steps as we wish, and it is natural to 
wonder how the function on the left of ( 4) is related to the infinite series that 
seems to be forming on the right. That is, is it true that 

I 
-- = 1 + x + x2 + · · · ? 
1 - x 

(5) 

Many readers have seen this series before, in connection with geometric pro
gressions in elementary algebra. The series on the right of (5) is usually called 
the power series expansion of the function on the left, because it contains steadily 
increasing powers of x. 

C Other important power series expansions are now readily available to us, even 
though full verifications are not. For example, if we replace x by - x in (5) we 
obtain 

1 
-- = I - x + x2 - x3 + · · · · 1 + x ' 

and if we now replace x by x2 in (6), the result is 

1 
--- = 1 - x2 + x4 - x6 + · · · l + x2 

(6) 

(7) 
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The left sides of (6) and (7) remind us of the familiar formulas 

J � = In ( 1  + x) 
1 + x and J d.x - - I  

1 + x2 - tan x. 

By integrating the right sides of (6) and (7) as if they were polynomials (but re
member: they are not polynomials !) , we obtain the power series expansions 

and 

x2 x3 x4 
In ( 1  + x) = x - - + - - - + · · · 

2 3 4 

x3 x5 x1 
tan- 1 x = x - - + - - - + · · · 

3 5 7 

(8) 

(9) 

If these formulas are valid for x = 1-and this is a very big "if" -then by putting 
x = 1 and reversing the resulting equations we get 

and 

I I I 1 - - + - - - + · · · = In 2 
2 3 4 

I 1 1 w 1 - - + - - - + · · · = -
3 5 7 4 .  

( 1 0) 

( 1 1 ) 

Equation ( 1 1 ) , connecting 7T with the positive odd numbers, was discovered by 
Leibniz in 1673 (Appendix 3 at the end of Chapter 10), and was one of the most 
beautiful mathematical discoveries of the seventeenth century. It made a deep im
pression on the minds of the earliest workers in the field of calculus, as it does 
on us. 

We emphasize that these derivations of (8), (9), ( 10) and ( 1 1 )  do not consti
tute acceptable mathematical proofs, because the validity of the procedures used 
in obtaining them has not been established. At this stage and with only these sup
porting arguments, they have only the status of conjectures. It must be remem
bered that there is a very wide chasm in mathematics between conjecture and ac
tual knowledge, and we wish to know. 

D Finally, infinite series arise in a very insistent way in the study of differen
tial equations. To see how this happens, let us consider the simple equation 

dy = y 
d.x 

. ( 1 2) 

This equation asks for a function which is unchanged by differentiation, and we 
know that y = cex is such a function for every constant c; in fact, we know that 
these are the only functions with this property (Section 8.3) . But to emphasize 
the point we wish to make, let us pretend that we don't know any solutions and 
try to guess one. Since polynomials are the simplest functions of all, we might 
try one of these first. But we have no idea what degree to choose for this hoped
for polynomial solution. This suggests the use of a bit of creative vagueness, so 
we leave the degree unspecified and try to find coefficients a0, a 1 ,  a2, a3, a4, . . .  so 
that 

( 1 3) 

429 
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will be a solution of ( 1 2) .  By differentiating ( 1 3) term by term we obtain 

� , 3 - = a 1 + 2a2x + 3a]X- + 4a+x + · · · ; dx 

and substituting ( 1 3) and ( 1 4) in ( 1 2) gives 

( 1 4) 

a 1 + 2a2x + 3a]X2 + 4a+x3 + · · · = ao + a 1x + a2x2 + a]X3 + · · · .  ( 1 5) 

If we now equate coefficients of equal powers of x in ( l  5), we get 

so 

( 16) 

At this point we remind students of the factorial notation introduced in Sec
tion 3.6. If n is a positive integer, we write 

n !  = I · 2 · 3 · · · n ( 1 7) 

and call this n factorial. Thus, l ! = 1 ,  2 !  = 1 · 2 = 2, 3 !  = I ·  2 · 3 = 6, 4 !  = 
I · 2 · 3 · 4 = 24, 5 ! = I · 2 · 3 · 4 · 5 = 1 20, and so on. The definition ( 1 7) is 
meaningless in the case n = 0, but for many reasons it is customary to define O !  
by O !  = l .  We shall be using factorials often in the next few chapters, so there 
will be ample opportunity for students to become thoroughly familiar with this 
notation. 

Returning to our problem, we can use the factorial notation to write equations 
( 1 6) as 

a 1  = ao, 

Our tentative solution ( 1 3) of the differential equation ( l  2) therefore becomes 

ao 2 ao 3 ao 4 y = ao + aoX + - x + - x + - x + · · · 2 1  3 !  4 !  ( x2 x3 x4 ) 
= ao I + x + - + - + - +  · · · 2! 3 !  4! . 

where a0 is an arbitrary constant. On comparing this with the known solutions 
ce ·<, we are led to the natural conjecture that the exponential function e x equals 
the infinite series shown in parentheses: 

x2 x3 x4 
ex = l + x + - + - + - +  · · · 2! 3 !  4! ( 1 8) 

It turns out that this formula-the power series expansion of e x- is indeed true. 
In fact, for all values of x we can calculate e x as accurately as we please from 
the series by taking enough terms, and this is how numerical tables for ex are 
constructed. However, students should clearly understand that this discussion is 
merely suggestive, and is by no means a valid proof. Proofs will come later. 

In attempting to solve other differential equations in this way, we are led to 
other series, some representing known familiar functions but many representing 
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previously unknown functions. As an example of the former, we know from Sec
tion 9.6 that the important differential equation 

has the general solution 

d2y 
- + y = O  dx2 

y = c 1 sin x + c2 cos x. 

( 1 9) 

But if we try to solve ( 1 9) by means of power series, in the manner suggested 
by the above discussion, then we obtain the power series expansions of the sine 
and cosine, 

and 

. X3 XS Sm X = X - - + - - · · · 
3! 5! 

x2 x4 
cos x = I - - + - - · · · 

2! 4! 
. 

(20) 

(2 1 )  

The validity of these two expansions will be proved in Section 1 3 .4, and this ap
proach to solving differential equations will be explored further in Chapter 14. 

In working with infinite series, as in almost any part of calculus, there are 
many things that we want to be able to do freely with the tools we are studying. 
The role of the theory is mostly to justify the various procedures that are neces
sary for carrying out our purposes-such procedures, for example, as the term
by-term differentiation and integration used above. This situation was well ex
pressed by the famous financier J . P. Morgan in describing the role of lawyers in 
his business operations. "I don' t  hire lawyers to tell me what I can ' t  do," he said. 
"I hire them to find legal ways for me to do what I want to do." 

Our overall aim in this chapter and the next is to establish power series as fa
miliar and reliable tools. The main reason for this is that we want to be able to 
accept the power series that arise from differential equations as legitimate and 
fully satisfactory solutions of these equations. 

Of course, every power series is an infinite series of functions. But when x is 
given a specific numerical value, as in obtaining ( 1 0) and ( 1 1 )  above, then the 
power series becomes an infinite series of constants. We therefore undertake a 
careful study of series of constants in this chapter to provide a solid foundation 
for our work with power series in the next chapter. 

Nevertheless, our interest in series is not confined to their practical value for 
applications, and in the course of our work we will touch on many fascinating 
topics in pure mathematics that are well worth studying for their own sake. Thus, 
we will see that series are linked to some of the most interesting parts of the the
ory of numbers, concerning prime numbers, irrational numbers, the nature of the 
constants e and 7T, and similar matters. We wish to keep the structure of this chap
ter as simple as possible and still put the full richness of the subj ect within easy 
reach of the interested reader. For this reason we place most of this optional ma
terial in the appendices at the end of the chapter, where it can be examined or 
not according to the wishes of the individual student. 
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1 3 . 2  
CONVERGENT 

SEQUENCES 

INFIN ITE SERIES OF CONSTANTS 

Any reasonably satisfactory study of series must be based on a careful definition 
of convergence for sequences. However, the behavior of most sequences is easy 
to understand without elaborate explanations, and a genuine theory of conver
gent sequences would be an unwelcome obstacle blocking our way to the main 
concepts of this chapter. We will therefore discuss sequences rather briefly, and 
try to steer a middle course between excessive informality and tedious detail. 

If to each positive integer n there corresponds a definite number Xn, then the 
xn 's are said to form a sequence. We think of the x11's as arranged in the order of 
their subscripts, 

X1 , Xz, . . .  ' Xn, . . .  ' 
and we often abbreviate this array to { x11 } .  It is clear that a sequence is nothing 
but a function defined for all positive integers n, with the emphasis placed on the 
subscript notation x,, instead of the function notation x(n) .  The numbers consti
tuting a sequence are called its terms. Thus, x1 and x2 are the first and second 
terms of the given sequence, and x11 is the nth term.* 

Example 1 In each of the following we define a sequence { x11 } by giving a for
mula for its nth term: 

(a) x11 = I ,  that is, 1 ,  1 ,  1 ,  . . . ; 
(b) x11 = [ 1 - ( - 1 )11 ]/2, that is, 1 ,  0, 1 ,  0, . . .  ; 

(c) x11 = J in, that is 1 ,  }, }, ±, . . .  ; 
(d ) x11 = (n - l )/n, that is 0, }, t, i, . . .  ; 
(e) x11 = ( - 1 )"+ 1/n, that is, 1, - }, }, - ±, . . .  ; 

l I l 
(f) x = 1 + - + - + . . . + --· II 2 4 2/1- ) '  

l I 1 
(g) X11 = 1 + l + } + · · · + -;; ; 

(h) x11 = ( 1 + � )" . 

A sequence like (a), in which all the terms are equal, is called a constant se
quence. Not every sequence has a simple formula, or even any formula at all. 
This is shown by the sequence { d11 } ,  where dn is the nth digit after the decimal 
point in the decimal expansion of 'TT. 

It is sometimes convenient to relax the definition and allow a sequence to start 
with the zeroth term x0, or even with the second or third term x2 or X3, instead 
of requiring it to begin with the first term x 1 •  One reason for this is that we want 
to include sequences like that defined by x11 = l/ln n, where x1 is meaningless. 
In any case, we continue to call the term with subscript n the nth term. 

A sequence {x11 } is said to be bounded if there are two numbers A and B such 
that A :5 x11 :5 B for every n, and in this case A is called a lower bound and B an 

*The words "sequence" and "series" have essentially the same meaning in ordinary speech, but in 
mathematics their meanings are quite distinct. A sequence is merely an infinite list of numbers 
arranged in order, with a first, a second, and so on, whereas a series is an infinite sum of numbers. 
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upper bound for the sequence. A sequence that is not bounded is said to be un
bounded. In Example 1 ,  it is easy to see that sequences (a) to (f) are bounded, 
but it is less obvious that (g) is not (hint: t + t > t + i' = f, t + t + + + i > i + i + i + i = -f, and so on). The sequence (h) is also bounded, but this is not 
evident on inspection and will be established below. 

Our main interest is in the concept of the limit of a sequence. Roughly speak
ing, this refers to the fact that certain sequences (x11 } have the property that the 
numbers x,, get closer and closer to some real number L as n increases. Another 
way of stating this is to say that lx11 - LI gets smaller as n gets larger. As an il
lustration, consider the sequence (x11 } whose nth term is x11 = (n - l )/n: 

1 2 3 
0' 2' 3' 4' ' ' ' '  

These numbers seem to "approach" the number 1 as we move farther and farther 
out in the sequence. As a matter of fact, for each n we have 

lxn - I I = I n � 1 - 1 1 = 1-�I = �; 
and the number l !n, and therefore lx11 - I I , can be made as small as we please 
by taking n sufficiently large. We express this behavior by saying that the se
quence has the limit 1 ,  and we write 

lim � = l . 11---too n 
It is helpful to visualize this behavior in the manner suggested by Fig. 1 3 . 1 .  

The general definition i s  as follows. A sequence (x11 } i s  said to have a num
ber L as limit if for each positive number E there exists a positive integer n0 with 
the property that 

lxn - LI < E for all n 2: no. ( 1 )  

When L is related to {x11 } in this way, w e  write 

Jim X11 = L, 
n-too 

or more briefly, lim X11 = L, 

and we say that x11 converges to L. This is also expressed by saying that x11 ap
proaches L as n becomes infinite, which we can write as 

as n � oo. 

This notation is often abbreviated even further, to x11 � L. 
This definition requires that each E, no matter how small, must have at least 

one corresponding n0 that "works" for it in the sense expressed by ( 1 ) .  In gen
eral, we expect that for smaller E's, larger n0's will be needed; that is, when the 
required measure of closeness is made smaller, we must go farther out in the se
quence to satisfy it. 

A sequence is said to converge or to be convergent if it has a limit. A con
vergent sequence cannot have two different limits, because it is not possible for 
x11 to be as close as we please to both of two different numbers for all sufficiently 
large n 's . 

A convergent sequence is bounded, but not all bounded sequences are con
vergent. The sequence 1 ,  0, 1 ,  0, . . . of Example l (b) is a bounded sequence that 
is not convergent. 

0 

X 1  
Figure 13. 1 
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It is not always easy to decide whether a given sequence converges, and if it 
does, what its limit is. The following facts are often useful in problems of this 
kind: If Xn � L and Yn � M, then 

Jim (x,, + Yn) = L + M, lim (x,, - y,,) = L - M, lim x,,y,, = LM, 

and, with the additional assumption that M * 0, 

l . x,, L 
1m - = -. Yn M 

These facts can be rigorously proved by carefully using the definition and the 
properties of inequalities. We omit the details. By using these rules, we can eas
ily perform such feats as calculating 

2n3 + n - 5 2 + l !n2 - 5/n3 2 + 0 - 0 2 Jim = lim ------
7n3 - 2n2 + 4 7 - 2/n + 4/n3 7 - 0 + 0 7 '  

where the essential first step is to divide both numerator and denominator by the 
highest power of n occurring in the denominator. 

The usual intuitive idea of convergence- that x11 � L means that x,, can 
be made "as close as we please" to L by taking n "sufficiently large" -is 
natural and necessary, and is the way most mathematicians really think about 
this concept. Accordingly, in most of our work with sequences we shall rely 
on common sense to tell us how much detail is needed to make an argument 
convincing. 

Example 2 If lxl < 1 ,  then lim x" = 0. Most people are willing to accept this 
on the grounds that "a number numerically less than 1 which is raised to higher 
and higher powers gets smaller and smaller." But if a more detailed argument is 
desired, it can be given as follows. The assertion is clear if x = 0, so assume that 
0 < lxl < 1 .  Then lxl = 1 /( 1  + a) for some a > 0, so by the binomial theorem 
we have 

I I . .  � = W = ( I + a)" = I + na + positive terms > na. 

We see from this that lx n l < llna; and since l lna � 0, we clearly have xn � 0. 

Example 3 For every x, Jim x "/n ! = 0. This is not at all obvious, because even 
though n !  increases rapidly as n grows, for large values of x it is quite conceiv
able that x "  might grow even more rapidly. To demonstrate that x n/n ! � 0 as 
n � =, we may assume that x > 0 (why is this permissible?). To start the argu
ment we choose a fixed positive integer m so large that x/m < ±. and then we put a = xm/m! .  For any integer n > m we write n = m + k and observe that 

x" x x x ( I  )k 
O < -;i- = a · m +  I . m + 2  

. . . 
m + k < a  2 · 

As n � =, k also � =, so a(I)k � 0, and we conclude that x"/n ! � 0. 

Example 4 The fact that lim (v;+l - Vn) = 0 will probably seem reason
able after a little thought (it only says that Vn is nearly equal to v;+l for 
large n), but a definitive argument may not be so easy to find. Such an argument 
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can be constructed by writing the quantity � - Vn as a fraction with de
nominator 1 and rationalizing the numerator, as follows: 

Vn+I - Vn Vn+I - Vn Vn+I + Vn 
l Vn+I + Vn  

------ -7 0. 
Vn+I + Vn  

In working with sequences in connection with infinite series, we will often 
need to be able to recognize that a sequence is convergent even though we know 
nothing about the numerical value of the limit. In such a case we cannot make 
any direct use of the definition of a limit. We now discuss a very important method 
for handling such situations. 

A sequence { x11 } is said to be increasing if 

that is, if each term is greater than or equal to the one that precedes it.* Among 
the sequences li sted in Example 1 ,  (a), (d ) ,  (f), and (g) are clearly increasing; 
(h) is also increasing, but this is not obvious on inspection. 

Increasing sequences are pleasant to work with because their convergence be
havior is particularly easy to determine. We have the following simple criterion: 
An increasing sequence converges if and only if it is bounded. This criterion is 
not only simple, but also extremely important, because the theory of convergent 
series given in the rest of this chapter stems directly from it. 

This criterion is quite easy to establish. Imagine the terms of the sequence plot
ted on the real line, as shown in Fig. 1 3.2, with each term to the right of (or on) its 
predecessor. If the sequence is unbounded, then its terms simply march off the 
page, and the sequence clearly cannot converge. This proves half of the criterion, 
the "only if" part. To establish the other half, we assume that the sequence is 
bounded with an upper bound B, as shown in the figure, and we must produce a 
limit for the sequence. Very briefly, we see geometrically that the x11 's, which move 
steadily to the right and yet cannot penetrate the barrier at B, must "pile up" at some 
point L ::s 8, so L is the limit of the sequence and the sequence converges to L. t 

This convergence criterion has many important applications, one of which is 
given in the following example. For this we will need the formula for the sum 
of a geometric progression, 

I - x" I +  x + x2 + · · · + xn- I = ---, l - x (2) 

This formula is merely a rearrangement of equation (4) in Section 1 3 . 1 .  It can 
also be established in another way, by dividing x - 1 into x " 

- 1 . 

L B 

*Some writers require the terms of an increasing sequence to satisfy the strict inequality x,, < x,,+ 1 
for all n. However, our definition allows an increasing sequence to be stationary, in the sense that 
adjacent terms may be equal. 
t A much more detailed argument can be given here, but we have no wish to strain the patience of 
reasonable people. See Appendix A. l for some of the details. 
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Figure 13.2 A bounded increasing 
sequence. 
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Example 5 Our purpose here is to prove that 

1m 1 + - + - + · · · + - = e. I. ( 1 1 1 ) n--+� 1 ! 2 !  n !  (3) 

We accomplish this by discussing together the two closely related sequences {x,, } 
and IYn } defined by 

and 
1 1 1 

Y = I + - + - + · · · + n 1 ! 2 !  n! · 
We will demonstrate that both of these sequences are increasing and bounded, 
and therefore convergent, and furthermore that they converge to the same limit. 
Our first step is to show that {x,, }  is increasing and bounded. By the binomial 
theorem, Xn can be expressed as the following sum of n + 1 terms: 

x = ( I  + l_)n = 1 + n . l_ + n(n - 1 ) . J_ + n(n - I )(n - 2) . J_ + . . .  
n n n 2 ! n2 3 ! n3 

n(n - I ) · · · [n - (n - l )] 
+ n! 

= I +  I + J_ ( 1 - l) + J_ ( 1 - l)( 1 _ .3:_) +  . . .  2 !  n 3 !  n n 

As we pass from x,, to x,,+ 1 by replacing n by n + 1 ,  it is easy to see from this 
sum that each term after 1 + 1 increases, and also that another term is added, so 
x,, < Xn+ 1 • Further, a term-by-term comparison of ( 4) with y,, shows that x,, :S y,,. 
By applying formula (2), we see that the y,,'s have 3 as an upper bound, 

I I Yn = l + I + 2 + N + . . . + 2 · 3 · · · n 

� 1 + I + l_ + __!__ + · · · + -1- = I  + 2 ( 1  - __!__) < 3 2 22 2n- I 2n ' 
and therefore the x,,'s also have 3 as an upper bound. Since {x,,} is an increas
ing sequence with 3 as an upper bound, we know that it converges. Its limit is 
of course the number e, which was introduced in a somewhat different way in 
Section 8.3, 

Jim (1 + l_)n = e .  n�oo n (5) 

Since x,, :S Yn < Yn+ 1 < 3 ,  we see that { y,, } is also a bounded increasing sequence 
which approaches a limit y � e. All that remains is to show that y :s e, because 
this will yield our main conclusion that y = e. The argument is as follows. If m < 
n and we consider only the first m + 1 terms of (4), then we have 

I +  I + _!_ (1 - l) + J_ ( 1 - l)( 1 _ .3:_) +  . . .  2 !  n 3 !  n n 

+ �! ( I  - � )( 1 - �) · · · ( 1 - m � 1 ) < Xn < e. 

If m is held fixed and n is allowed to increase, then we obtain 
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1 I 1 Y = l + l + - + - + · · · + - :S e 
111 2! 3 !  m! ' 

so y :::::: e. We conclude from this that y = e, or 

Jim ( 1 + I + __!__ + · · · + __!__) = e n->� 2 ! n ! ' 
which is (3) . We observe that 

lim ( I  - _!_)" = _!_, n--+00 n e 

because this limit can be written as 

hm I - -- = hm -- = hm = -. 
. ( I )"+ I . ( n )n+ I  . n/(n + l ) I ,,_,� n + I ,,_,� n + I n->� ( 1 + l ln)" e 

The additional fact that ( I )-11 
Jim 1 - - = e n--too n 

is an immediate consequence of (6). 

(6) 

(7) 

Example 6 Most students will recall that a prime number, or simply a prime, 
can be defined as an integer p > 1 that has no positive factors (or divisors) ex
cept 1 and p. These numbers form one of the most interesting of all sequences, 

2, 3, 5, 7, 1 1 , 13, 1 7, 1 9 , 23, 29, 3 1 ,  . . . .  (8) 

Indeed, the fact that there are infinitely many of them, so that they actually do 
constitute a sequence, is itself a famous theorem of number theory proved by Eu
clid. The sequence (8) is clearly not convergent, and it may appear that the con
cept of a convergent sequence has little or no relevance to the primes. However, 
this impression is quite wrong, for students who wish to pursue the subject will 
find that the convergence behavior of certain sequences is very close to the heart 
of the modern theory of prime numbers. We support this remark by stating with
out proof the following very profound theorem about the approximate size of the 
nth prime: If p,, denotes the nth prime number, then p,, is "asymptotically equal" 
to n In n, in the sense that 

Ii m ---1!.!J_ = I .  11->� n In n 
(9) 

Readers who are interested in these matters are urged to take a course in num
ber theory. More information about (9) can be found in Section B. 1 6  of the au
thor's book, Calculus Gems (McGraw-Hill, 1 992). 

PROBLEMS 

1 State whether each of the indicated sequences converges 
or diverges, and if it converges, find its limit: 

(a) �; (b) 1 + (- ! )" ; n 
) . 7T 

(c sin s;; ;  
JQ I O'OVn 

(d ) n + 1 ' 

(e) 
3n 211 + 1 0 10 , 

(g) In (n + 1 ) - In n; 
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(f) Vn+2 
2Vn 

, 
(h) n2 

v'4n4 + s '  
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(i) -;; -
_
n
_
+
_

I 
; 

(2n + 1 )27T 
(k) cos 2 

(m) n< - l l"; 

(o) n sin !!_ ; n 

U) cos n'TT ; 

5n3 - 2n ( I )  n4 + 3n2 - 1 0  ' 
Vn sin (n !e") 

(n) n + I 
( I  - Vn)(3 + Vn) 

(p) 4n + 5 
2 Show that n !/n" � 0. Hint: Write it out, and look. 
3 The limits of many sequences can be found by replac

ing the discrete variable n by a continuous variable x 
and applying L' Hospital 's rule for the case x -7 oo. Use 
this method to show that 

(a) 
ln n

-7 0· (b) � � I ;  n , 

(c) if la l < I ;  then na" -7 0; 
(d) if k is any positive integer, then 1Ne11 -7 O; 
(e) if a is any real number, then (I + a/n)11 -7 ea. 

4 State whether each of the indicated sequences converges 
or diverges, and if it converges, find its limit: 

5 

(a) 33111 ; (b) e - 1 0111; 

(c) 11/2"; 

(e) n2!311 ; 
(g) (l1 + I 0) 1 1(11+ 1oi; 
(i) n2 cos n'TT. 
Find lim x11 if 

(d ) 
In (11 + I ) ; 11 

(f) n l/(11+ I ) ; 
(h) n2 sin 117r; 

(a) X11 = Vn(� - Vn); 

6 If 0 < a <  b, show that Jim � a11 + b11 = b. 
7 lff(x) = l im11__,� (2/7T) tan- 1 nx, show thatf(x) = x!lxl 

if x =F 0 andf(O) = 0. Sketch the graph of this function. 
8 If the terms of a sequence { x11 } are positive numbers, 

show that: 
(a) the sequence is increasing if x11+ 1/x,, � I for all n; 
(b) the sequence is decreasing if x11+ 1/xn :'.'::: I for all n. t 

9 Use Problem 8 to show that l im Xn exists if 

I · 3 · 5 · · · (211 - I )  
(a) x11 = 2 · 4 · 6 · · · (2n) ; 

I [ 2 · 4 · 6 · · · (2n) ] 
(b) x11 = -;;_z [ · 3 · 5 · · · (2n - I )  ; 

(c) X11 = - . I [ 2 · 4 · 6 · · · (2n) ]2 
n 1 · 3 · 5 · · · (2n - I ) 

t
Naturally, a sequence (x11) is said to be decreasing if 

Xt 2':: X2 � X3 � '  · · 2':: X11 ;;::::: Xn+ I  � · · ' ,  

i.e., if each term is less than or equal to the one that precedes it. 

10 Find the value of 

1 1  

1 2  

* 1 3  

. ( 11  + 1 )11 
(a) hm + I ; 11" 

(b I . (n + l )ln n - n In (11 + I )  
) 1m I n n 

Show that 

-- + + · · · + -? e - 1  [ /1 + 1 (n + I )2 (n + I )" ] 
112 n3 11"+ I • 

Show that 

( I )211+ 3 
(a) I + 2n + 3 

-7 e; 

( I )"' (b) I + -;;_z -7 e; 

( I )" (d ) l + -;;_z -7 1 ;  ( I )" (e) I + 2n -7 Ve. 
Consider a suitable number of circles of equal size 
packed in n rows inside an equilateral triangle, as shown 
in Fig. 1 3 .3 .  If c11 denotes the number of these circles, 
then it is clear from the geometry of the situation that 
c1 = I , c2 = 1 + 2, c3 = I + 2 + 3, and so on. If A is 
the area of the triangle and A11 is the combined area of 
the c11 circles, show that 

I . A" 'TT 1m - = --. 
11-->� A 2\/3 

Figure 1 3.3 

14 The sequence 

I 1 1 , I + 2, I + --1 , . . . 
2 + 2 

can be defined recursively by x1 = 1 , X11+ 1 = I + 
l 

f . h 1· . 
-1-- or n � l .  Assuming t at 1m x11 = L exists, 

+ Xn 
show that L = V2. This gives the continued fraction 
expansion 

Yl = l + ----
2 + 1 

2 + . . . 



1 3 .3 CONVERGENT AND DIVERGENT SERIES 

Most people are familiar with the fact that 

I + } + t + f + · · · = 2. ( I )  
However, since w e  cannot add infinitely many numbers in the same way that we 
can add finitely many, the meaning of ( 1 )  is evidently quite different from the 
meaning of a statement like 

1 + 2 + 3 + 4 = 1 0. 

What ( 1 )  really means is that the sequence of partial sums on the left, that is, the 
sequence of numbers 

l ,  

1 + + = 1 t 

l + } + t = I �, 
1 + + + ± + t =  l f, 

converges to the number 2 on the right. This suggests the approach we adopt for 
the general case. 

If a1 , a2, . . .  , a,,, . . .  is a sequence of numbers, then the expression 
� 

L an = a 1 + a1 + · · · + an + · · · (2) 
n= I  

is called an infinite series, or simply a series, and the a11's are called its terms. 
We emphasize that until a meaning is assigned to it by a suitable definition, the 
expression (2) is merely a formal collection of symbols arranged in a certain way, 
because the indicated operation of adding infinitely many numbers has no mean
ing in itself. To attach a numerical value to (2) in a natural and useful way, as 
suggested in the preceding paragraph ,  we form the sequence of partial sums 

The series (2) is said to converge, or to be convergent, i f  the sequence { sn l  con
verges; and if Jim Sn = s, then we say that the series converges to s or that s is 
the sum of the series, and we express this by writing 

� 

a 1 + a1 + · · · + a11 + · · · = s or L an = s. 
n= I 

If the series does not converge, then we say that it diverges or is divergent, and 
no sum is assigned to it. 

At this point a few remarks about notation and u sage are in order. As we in
dicated, the statement that the series L;= 1a11 converges to the sum s is usually 
written L;:;'= 1an = s. Thus, the notation L;:;'= 1a11 is used with a dual meaning: to 
specify a series regardless of convergence or divergence, and also (if the series 
converges) to denote its sum. Students will find that this ambiguity causes no 
difficulty in practice. 

1 3 . 3 
CONVERGENT AND 
DIVERGE T SERIES 
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Another matter concerns the indexing (or numbering) of the terms. It is often 
more natural to number the terms of a series beginning with n = O; that is, we 
write some series in the form 

� 

L an = ao + a 1 + · · · + a11 + · · · 
n=O 

(and in this case we also write s11 = ao + a1 + · · · + an) · For example, the se
ries on the left of ( l )  can be written as 

� 
I I 211- I n= I or 

but the latter form is somewhat neater. It is a triviality that any general statement 
about series written as L;;'= 1an has an exact analog for series written as L;;'=oan· 
For this reason, when no ambiguity is likely or when the distinction is immate
rial, we often omit the limits of summation and for the sake of simplicity write 
Lan instead of L;;'= 1 an or L;;'=oa11• These remarks also apply to series of the form 
L;;'=klln for any integer k 2: 2. 

We now briefly consider several fundamental examples. 

Example I Probably the simplest and most important of all infinite series is the 
familiar geometric series 

L x11 = 1 + x + x2 + · · · . (3) n=O 
By a slight alteration of equation (2) in Section 1 3.2 (replace n by n + 1 ), the 
nth partial sum of this series is given by the closed formula 

1 - Xn+ I 
s = 1 + x + x2 + · · · + x" = ----11 1 - x (4) 

if x * 1 .  If lxl < 1, we see from this that s11 � 1/( 1 - x), so for these x 's we have 

1 + x + x2 + · · · + x11 + · · · = --. 
1 - x (5) 

The series (3) therefore converges to the sum 1 /( 1  - x) for lx l < 1 ,  and is read
ily seen to diverge for all other values of x. This answers the question raised in 
part B of Section 1 3  . 1 .  

It is now easy to understand the full meaning of formula ( 1 ) :  the series on the 
left is a geometric series with x = t so by (5) we have 

Similarly, 

and 

I I 1 I l + - + - + · · · + - + · · · = -- = 2 2 4 211 I - f 
. 

1 + 2 + � + . . .  + (2)11 + . . .  = _I - = � 5 25 5 I - -}  3 

J - 2 + i _ . . .  + (-2)" + . . .  = 
I 

= l 
3 9 3 1 - ( -t) 5 . 

Further, if we write the repeating decimal 0.333 . . .  as an infinite series and ap
ply (5) at the right stage, then we get the result mentioned in Section 1 3 . 1 ,  
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3 3 3 0.333 . . .  = 10 + 102 + 103 + . . . 

= .l_ [ 1  + __!__ + (__!_)2 + . . . J 
1 0 IO  10 

Example 2 Another series whose behavior is particularly simple is 

� I 1 I l 
n�I n(n + 1 ) = N + M + N + . . .  = I .  

To establish convergence and verify that the sum i s  1 ,  we use an ingenious trick 
due to Leibniz and observe that 

n(n + I )  n n + 1 · 

This enables us to write the nth partial sum as 

s = (_l__ _ _l__) + (l _ _l__) + · · · + (l - -' ) n I 2 2 3 n n + I 

I = 1 - -
n + I '  

which makes it obvious that Sn � 1 .  Any series whose nth partial sum collapses 
in this way into a closed formula is called a telescopic series. 

As these examples suggest, the most direct method for studying the conver
gence behavior of a series is to find a closed formula for its nth partial sum. The 
main disadvantage of this approach is that it rarely works (first the good news, 
then the bad news !) ,  because it is usually impossible to find such a formula. It 
is this situation that forces us to rely mostly on various indirect methods for es
tablishing the convergence or divergence of series. 

The main indirect method rests on the convergence criterion for sequences dis
cussed in Section 1 3 .2, that is, on the fact that an increasing sequence converges 
if and only if it is bounded. Thus, if the terms of our series are all nonnegative 
numbers, then we clearly have Sn ::5 Sn + an+ 1 = Sn+ 1 for every n, and therefore 
the sn's form an increasing sequence. It follows in this case that the sequence 
{ sn } of partial sums-and with it the series-converges if and only if the sn 's 
have an upper bound. Our next example furnishes a good illustration of the use 
of this simple but important idea. 

Example 3 The harmonic series 

� I 1 I I - = 1 + - + - + · · · 
n= I n 2 3 (6) 

diverges because its partial sums are unbounded, as we saw in Example l (g) at 
the beginning of Section 1 3 .2 . To establish this in a bit more detail, let m be a 
positive integer and choose n > 2m+ 1 • Then 

44 1 
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I I I I s > I + - + - + - + · · · + --n 2 3 4 2111+ I 

= ( 1 + _!_) + (_!_ + _!_) + (_!_ + . . . + _!_) + . . . + (--1- + . . .  + _I_) 2 3 4 5 8 2111 + I 2111+ I 
1 I l I I > - + 2 · - + 4 · - + · · · + 2111 • -- = (m + 1 ) -
2 4 8 2111+ 1  2 .  

This proves that s11 can be made larger than the sum of any number of 1' s  and 
therefore as large as we please, by taking n large enough, so the sn's are un
bounded and (6) diverges. A series that behaves in this way is often said to 
diverge to infinity, and we express this behavior by writing 

� I I I I - = 1 + - + - + · · · = = 
n= I n 2 3 · 

A great many interesting series-some convergent and others divergent
can be obtained from the harmonic series by thinning it out, that is, by delet
ing terms according to a systematic pattern. For instance, if we remove all 
terms except reciprocals of powers of 2, what remains is the convergent 
geometric series 

and if we remove all terms except reciprocals of primes, then-as we shall see 
in a later section-the resulting series diverges, 

I 1 l I I I I - = - + - + - + - + - + · · · = = p,, 2 3 5 7 1 1  . 

The simplest general principle that is useful in deciding whether a series con
verges or not is the nth term test: 

If the series 
� 

"'°' a = a, + az + · · · + a + · · · � n n n= I  
con.verges, then an � 0 as  n -7 =; or  equivalently, if an does not approach zero as 
n � =, then the series must necessarily diverge. 

To prove this, we merely observe that an = s,, - s,, _ 1  -7 s - s = 0. This result 
shows that a11 -7 0 is a necessary condition for convergence, in the sense that it 
follows from the convergence of the series "La11• Unfortunately, however, it is not 
a sufficient condition; that is, it does not imply the convergence of the series. 
This is easy to see by considering the harmonic series 2: 1 /n, which diverges even 
though l ln � 0. The nth term test is essentially a divergence test. As examples 
of its use, we mention the series 

� 
L (- l )n+ 1 = I - I + 1 - I + · · · 
n = J  
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� n I 2 3 I -- = - + - + - + . . .  
n� I n + I 2 3 4 · 

The first diverges because the sequence ( - 1 )" + 1 does not converge at all, and so 
cannot converge to zero, and the second diverges because n/(n + 1 )  ---7 1 * 0. 

Remark Repeating decimals. The procedure for converting any rational num
ber alb (in lowest terms) into its decimal expansion is well known: Divide b into 
a. Let us carry out this procedure in the case of the rational number 1f-, which is 
often used as the simplest rational approximation to 7r, correct to two decimal 
places: 

3 . 1 42857 142857 . .  . 7 J22.0000000 . . . . . . .  . 2 1  1 0  7 30 28 20 14 60 56 40 35 50 49 
10 . . . . 

The successive remainders here are 1 ,  3, 2, 6, 4, 5, 1 ;  as soon as 1 appears a sec
ond time, the cycle begins all over again and generates the repeating block of 
digits 142857. This example illustrates-and almost proves-the fact that the 
decimal expansion of any rational number is repeating. * The proof of this gen
eral statement consists of little more than noticing the phenomena displayed in 
the example. When b is divided into a, the remainder at each stage is one of the 
numbers 0, 1 ,  2, . . .  , b - 1 .  Since there are only a finite number of possible val
ues for these remainders, some remainder necessarily appears a second time, 
and the division process repeats from that point on to give a repeating decimal. 
We also note that if the remainder 0 appears, then the decimal terminates, but 
a terminating decimal can always be thought of as repeating, as in 0.25 = 

0.25000 . . . .  
The converse of this statement is also true: Any repeating decimal is the ex

pansion of a rational number. To see why this is so, let us examine a typical re
peating decimal, say 3 .7222 . . . .  If we split off the nonrepeating part, write the 
repeating part using powers of 10, and use formula (5) at the proper stage, then 
we obtain 

*Certain rational numbers have two distinct decimal expansions, e.g., i = 0.25000 . . .  = 0.24999 . . . . 
This situation is analyzed in Problems 1 4  and 1 5  following. 
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37 37 2 2 2 3.n22 . . .  = IO + 0.0222 . . . = IO + J02 + J03 + 104 + · · · 
2 3 7 2 [ I ( 1 )2 J 3 7 TOO 3 7 2 I 0 = IO + J OO 

I + IO + IO + . . .  = IO + 
I - -to = IO + J OO

. 
9 

37 2 335 67 = IO + 90 = 90 = 18' 
which is a rational number expressed as a fraction in lowest terms. It is evident 
that a similar procedure works equally well for any repeating decimal, so the 
statement at the beginning of this paragraph is clearly true. 

We can summarize our results by saying that the rational numbers are exactly 
those real numbers whose decimal expansions are repeating. Equivalently, the 
irrational numbers are exactly those real numbers whose decimal expansions are 
nonrepeating. 

PROBLEMS 

1 There is nothing to prevent us from forming the geo
metric series 1 + x + x 2 + · · · for any real number x. 
Show that this series diverges whenever lxl 2: I .  

2 Determine whether each of the following geometric series 
is convergent or divergent, and if convergent find its sum: 

(a) I + t + -k + · · · ; 
(c) 2 + t + · · · ;  

(e) + - fci + · · · ;  

� 
( 4 )" (g) .�o -5 ; 

(i) f (-8 )'' ; 
n =O 5V3 � 

( 4 )" (k) .�o 7 -7 ; 

(b) 9 + 3 + l + . . .  ; 

(d ) t + t + . . .  ; 

(f) ,�o (fr 
(h) .�o (5�t 
(j) f l ; 

n=O (3 - Vs)" 
� 2" 

ci ) I snn · n=O 
3 Show that formula (4) is essentially equivalent to the fol

lowing factorization formula of elementary algebra: 

x" - 1 = (x - J )(x"- 1 + x"-2 + · · · + x + 1 ). 

Give an independent verification of this factorization for
mula. 

4 A certain rubber ball is dropped from a height of H ft. 
Each time it bounces it rises to a height rh, where h is 
the height of the previous bounce. Find the total distance 
the ball travels. 

S Which of the following series are convergent and which 
are divergent? 
(a) sin 7T + sin 27T + · · · + sin n7T + · · · . 

7T 27T . n7T 
(b) sin - + sin - + · · · + sm - + · · . . 2 2 2 

(c) cos 7T + cos 27T + · · · + cos n7T + · · · . 
7T 37T (2n - 1 )7T 

(d ) cos - + cos - + . . .  + cos + . . . . 2 2 2 
(e) In v3 + Jn V3 + In � + · · · + In '\V3 + · · · . 

,2";;:;-(f) In v3 + Jn � + In 'V3 + · · · + In v 3 + · · · . 

I 2 3 
(g) 1 0 + 3 + 1 0 + 6 + 10 + 9 + . . . 

(h) t + + + i + . . . . 

n 
+ + . . . .  1 0  + 3n 

6 Convert each of the following repeating decimals into a 
fraction (in lowest terms) : 
(a) 0.777 . . . ; (b) 0. 1 5 1 5 1 5  . . .  ; 
(c) 0.639639639 . . .  ; (d ) 2.3070707 . . . . 

7 If a and b are digits, show that 
a LOa + b 

(a) O.aaa . . .  = 9; (b) O .ababab . . .  = 99 
8 The decimal 0. 10100 1000 1 0000 1 . . . , in which the l 's 

are followed by successively longer chains of O's, looks 
as if it is nonrepeating, and therefore defines an irrational 
number. Construct an argument that converts this im
pression into a certainty. Hint: Assume that the decimal 
is repeating. 

9 (The fly problem) Two bicyclists start 20 mi apart and 
head toward each other, each pedaling at a steady L O  
mi/h. A t  the same time a fly traveling 40 mi/h starts from 
the front wheel of one bicycle and flies to the front wheel 
of the other, then turns around and flies back to the front 
wheel of the first, and continues back and forth in this 
manner until the bicycles collide and he is crushed be
tween the wheels. How far has the fly flown? The hard 
way to solve this problem is to express the total distance 
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as an infinite series and find its sum. There is also an 
easy way. Do it both ways.* 

IO Find the sum of each of the following series: 

l + 4 l + 8 1 + 1 6  
(a) 

-9- + 27 +
-8-l- + · · · ; 

(b) 1 8 - 6 + 2 - t + . . .  ; 
sin e sin2 e sin3 e 

(c) -2- + 
-4-

+ -8- + · . . ; 
1 1 I 

(d ) 2 + x2 + + + . . .  (2 + x2)2 (2 + x2)3 . 

1 1  Describe all convergent series of integers . 
1 2  In the series t - f + t - * + · · · , the numerators are 

the successive positive integers, the denominators are the 
successive odd numbers starting with 3, and the signs 
alternate. 
(a) Write the series using the sigma notation. 
(b) Show that the series diverges. 

13 Express each of the following numbers as a repeating 
decimal : 
(a) t; (b) t; (c) fs-; (d) ¥; (e ) it. 

1 4  Show that a positive rational number alb (in lowest terms) 
has a terminating decimal expansion if and only if the 
positive integer b has the form b = 2m5n, where the ex
ponents m and n are nonnegative integers. Check this 
statement against the results of Problem 1 3 . 

*There is a famous anecdote about the first time one of the most bril
liant scientists of the twentieth century heard this problem, and how 
he reacted to it. See P. R. Halmos, "The Legend of John von Neu
mann," Amer. Math. Monthly, 80 ( 1 973), pp. 386-387. 

It is interesting to observe that both the harmonic series 

I + t + t + t + · · · 
and the geometric series 

1 + t + t + i + . . .  

1 5  A terminating decimal such as t = 0.375 = 0.375000 . . . can also be written as a repeating decimal 
ending in an infinite chain of 9's if the last nonzero digit 
is decreased by one unit, as in 0.375000 . . .  = 

0.374999 . . . .  Prove this by using formula (5). 
1 6  Show that the number 

0. 1 23456789 10 1 1 12 1 3 14 1 5 1 6 1 7 . . . , 
in which all the positive integers are written down in or
der after the decimal point, is irrational . 

1 7  Unrestrained deficit spending by the federal government 
inflates the nation's money supply and leads in directions 
that politicians prefer not to think about. However, much 
of the money spent by the government is spent in turn 
by those receiving it, those receiving this twice-spent 
money spend some of it in their turn, and so on indefi
nitely. This produces a chain reaction that economists call 
the multiplier effect, and results in much greater total 
spending (and therefore total income) than the govern
ment's original expenditure. Suppose the original ex
penditure is E dollars, and that each recipient of spent or 
respent money spends IOOc percent of it and saves I OOs 
percent. The numbers c and s are called the propensity 
to consume and the propensity to save; both numbers are 
between 0 and 1 ,  and c + s = 1 ,  since all money is ei
ther spent or saved. In this way the income of the entire 
country is increased by kE dollars, where the factor k is 
called the multiplier. These basic concepts of macroeco
nomics were introduced by the English economist John 
Maynard Keynes ( 1 883-1946). Show that k = I fs > l .  
For example, if  c = 0.9 and s = 0. 1 ,  then k = I 0, and 
for every $ 1  spent by the government, the national in
come is increased by $10. 

1 3 . 4  
GENERAL P ROPERTIES 
OF CONVERGENT 
SERIES 

have positive terms that decrease toward zero, and yet the first diverges while the 
second converges. This suggests the subtlety we will encounter as we penetrate 
further into the study of infinite series. 

One of the attractions of our subject is that it offers so many results that stir 
the imagination and stimulate curiosity. For instance, it seems reasonably clear 
from the preceding observation that a series of positive terms will converge if its 
terms decrease "rapidly enough." This is true. For example, we next see that the 
divergent harmonic series can be made to converge by squaring the positive in
tegers in the denominators, which makes the terms themselves smaller. 

Example 1 The series of the reciprocals of the squares, 
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I I I l = I + - + - + - + - + . . . 4 9 1 6  25 , 

converges with sum s 2. This follows at once from the fact that the partial sums 
form an increasing sequence with 2 as an upper bound: 

I I I 
s = I + -- + -- +  . .  · + --" 2 · 2  3 · 3  n · n  

I I < ! + -- + -- +  . . · + ---] · 2 2 · 3 (n - I )n 

= I + (_!_ - _!_) + (_!_ - _!_) + . . . + (-
1 

- _!_) 
l 2 2 3 n - 1 n 

1 = 2 - - <  2.  n 
Further, it is known that the sum of this series is 7?-/6: 

I I I I n2 I + - + - + - + - +  . . .  = -4 9 1 6  25 6 . 

This very remarkable fact was discovered by Euler in 1 736. His method of dis
covery (which uses the power series expansion of sin x-also discovered by him) 
is described in Appendix 1 at the end of this chapter. 

Another way to change the harmonic series into a convergent series is to change 
the signs of alternate terms. This produces a series whose sum (another aston
ishing fact ! )  is In 2: 

I - I + t - � + · · · = In 2. 

In Section 1 3 . 1  we obtained this formula from the power series expansion of the 
function In ( 1  + x), which will not be solidly established until Chapter 1 4. How
ever, in Section 1 3.6 it will be possible to give an easy rigorous proof by an en
tirely different method. 

Example 2 If we recall that O !  = 1 and I !  = 1 ,  then it is clear that the series 

� I I I I - = l + l + - + - + 0 0 •  
n�O n! 2! 3 !  

has partial sums so = 1 ,  s 1  = 2 ,  and, for n :::: 2, 

I I 
s,, = I + 1 + -

2 
+ 

-2 . 3 
+ 

. . .  
+ . 

2 · 3 . . · n 

If each factor in the denominators is replaced by 2, then we see that 

I 1 I 
s :s J + l + - + - + 0 0 · + --11 

2 22 211- I  

= I + 2 ( 1 - __!___) = 3 - -1- < 3 
2" 2n - l  ' 
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so the series converges with sum :5 3. By Example 5 in Section 1 3 .2 we know 
that the sum of this series is actually e: 

� I I 1 
"°' - = l + l + - + - + · · · = e 
n�O n l  21 3 1 . 

We will use this fact below to prove that e is an irrational number. 

( I )  

These examples and those i n  the previous section provide a small supply of 
specific series of known convergence behavior, where this behavior is decidable 
by rather elementary means .  The value of these familiar series for determining 
the behavior of new series by various methods of comparison will begin to ap
pear in Section 1 3 .5 . First, however, there are several simple properties of con
vergent series in general that need to be mentioned explicitly. 

The effective use of infinite series rests on our freedom to manipulate them by 
the various processes of algebra. However, we will soon see that carelessness can 
easily lead to confusion and disaster. It is therefore of prime importance to know 
exactly which operations are permissible and which are traps for the unwary. 

If 2:�= 1an converges to s, we write 

a 1 + a2 + · · · + an + · · · = s (2) 
and call s the "sum" of the series. This well-established terminology is perhaps 
unfortunate, for it tends to foster the belief that an infinite series can be treated 
as if it were an ordinary finite sum. In reality, of course, s is not obtained sim
ply by addition, but is the limit of a sequence of finite sums, and the properties 
of series must be based on this definition and not on any tempting but mislead
ing analogy. As we shall see, many properties of finite sums do carry over to se
ries, but we must always be careful not to assume this without proof, because 
some do not. 

As an example of the pitfalls that lie around us, consider the familiar fact that 
rearranging the order of the terms of a finite sum has no effect on the numerical 
value of that sum. In contrast to this, in Problem 10  we ask students to see for 
themselves that the sum of a convergent infinite series can be altered by writing 
its terms-exactly the same terms ! -in a different order. This astounding (and 
fascinating) behavior illustrates the need for caution. It also emphasizes the del
icacy of the concepts we are working with, and gives us fair warning that we 
cannot hope to study infinite series successfully without giving a reasonable 
amount of attention to the underlying theory. 

We begin by pointing out that in dealing with finite sums we can freely insert 
or remove parentheses, as in the expressions 

1 - l + I = ( l  - l) + I = 1 - (l - I )  = 1 ,  

but this is not true for infinite series. For instance, the series 1 - l + 1 - 1 + 
· · · clearly diverges, but 

( I  - I )  + ( l  - I )  + · · · = 0 + 0 + · · · 

converges to 0, and 

1 - ( I  - 1 )  - ( 1 - I )  - · · · = I - 0 - 0 - · · · 

447 
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converges to I . * These examples show that the insertion or removal of paren
theses can change the nature of an infinite series. However, in the case of a con
vergent series like (2), any series obtained from it by inserting parentheses, such 
as 

a 1  + (a2 + a3) + (a4 + as + a6) + · · · , 

still converges and has the same sum. The reason for this is that the partial sums 
of the new series form a subsequence of the original sequence of partial sums, 
and therefore necessarily converge to the same limit. In the same way, we see 
that parentheses can be removed if the resulting series converges. 

We next remark that if a J + a2 + · · · converges to s, then a J + 0 + a2 + 0 + 
· · · also converges and has the same sum, because the two sequences of partial 
sums are S J ,  s2, . . .  and S J ,  s 1 , s2, s2, . . .  , and the repetitions in the latter do not 
interfere with its convergence to s. Similarly, any finite number of O's can be in
serted or removed anywhere in a series without affecting its convergence behav
ior or (if it converges) its sum. 

It is important to observe that when two convergent series are added term by 
term, the resulting series converges to the expected sum; that is, if 2:;;'= 1a11 = s 
and 2:';= J bn = t, then 2:';= J (a11 + b11) = s + t. This is easy to prove, for if s11 and 
t11 are the partial sums, then 

(a 1 + b 1 ) + (a2 + b2) + · · · + (a,, + b,,) 
= (a 1 + a2 + · · · + a,,) + (b 1 + b2 + · · · + b,,) 
= S11 + t11 � S + t. 

Similarly, 2:;;'= 1 (a11 - b11) = s - t and 2:;;'= Jca11 = cs for any constant c. It is also 
convenient to know that if 

then 

ao + a1 + a2 + · · · = ao + s and 

The first statement is clear from the fact that 

and the second follows in the same way. Thus, any finite number of terms can 
be added or subtracted at the beginning of a convergent series without disturb
ing its convergence, and the sums of the various series are related in the expected 
ways .  

We now use several of the properties of series discussed above to prove the 
following theorem of Euler: e is irrational. 

'Let us rearrange these numbers into the bizarre calculation 
0 = 0 + 0 + 0 + · · · = ( I - I ) + (1 - I ) + ( I  - I ) + · · · 

= I - l + I - I + I - 1 + . . . 
= I  - ( I  - I )  - ( 1  - I }  - · · · 
= 1 - 0 - 0 - . . .  
= I .  

Guidobaldo de! Monte ( 1 545-1607), patron and friend o f Galileo, thought that this result proves the 
existence of God, because "something has been created out of nothing." 
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Our starting point is equation ( I ), 
I I e = l + I + - + · · · + - + · · ·  2 1 I ' . n . 

from which i t  follows that the number 

e - 1 - 1 - _!_ - · · · - _!_ = I + I + · · ·  2 ! n ! (n + l ) ! (n + 2) ! (3) 

is positive for every positive integer n. We assume that e is rational, so that e = 
p/q for certain positive integers p and q, and we deduce a contradiction from this 
assumption. Let n in (3) be chosen so large that n > q, and define a number a 
by 

a = n' [e - I - I - _!__ - · · • - _!_] · 2 ! n ! · 

Since q divides n ! ,  a is a positive integer. However, (3) implies that 

a =  n ' [ I + I + . . .  ] · (n + I ) !  (n + 2) 1 

I I = -- + + . . .  n + I (n + l )(n + 2) 
l 1 <-- + + · · · n + I (n + 1 )2 

= n ! l [ 1 + n ! I + (n 1 1 )2 + . . · ] 
n + 1 I - l l(n + 1) n 

This contradiction (there is no positive integer < 1/n) completes the argument. 
Further information about irrational numbers ( 1T is irrational, etc.) is given in 

Appendix 2 at the end of this chapter. 

PROBLEMS 

1 If 2:an converges and 2:bn diverges, show that 2:(an + b,,) diverges. Hint: Assume that it converges and 
deduce a contradiction. 

I 
(f) I In 2n ; 
(h) 

' (2n + 1 )7T . L cos 2 , 

I 
(g) I 2n2 ; 
. "°' n1T 

(1) L, cos 4· 

449 

2 Decide whether each of the following series converges 
or diverges, and give convincing reasons for your an
swers: 

I I I 
(a) 500 + 505 + 5iO + . . . ; 

3 For each of the following series, find the values for x 
for which the series converges and express the sum as 
a simple function of x: 

Cb) I [; - (�t} 
(d ) I [n(n� l )  -

l�!Ol 
(c) L (;11 + ;11} 
(e) I 2- 11,, ; 

(a) ax + ax3 + ax5 + · · · , a =F O; I l I (b) � + x2 + x3 + . . . ; 
x x (c) x + � + ( I  + x)2 + . . . ; 

(d ) In x + (In x)2 + (In x)3 + · · · . 
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4 Show that 

x2 x 2 
x2 + --- + + . . .  I + x2 ( I  + x2)2 

converges for all x and find its sum. 
5 Show that L: lie 11 converges but L: 1 /(e In 11) diverges. For 

what values of x does L:e iu: converge? 
6 Show that 

� 

(a) L [tan- 1 (n + I ) - tan- 1 n] = 'Tf/4; 
n = I  

(b) 1�1 In ( 1 + �) = =. 

7 If ftn) � L, show that 
� 

L [f(n) - f(n + l )] = f( I )  - L 
11= 1 

and use this to establish the indicated sums of the fol
lowing telescopic series: 

� I I 
(a) L 4n2 - 1 = 2 ; n = I  

(b) f ( - 1 )11 + 1 . 2n + I 

n = I  n(n + I )  

� 2n + I  
(c) i�1 n2(n + 1 )2 

� 

I ; 

(d) 1�1 (4n - 1 )(4n + 3) 

I ;  

8 It follows from Example I that the series 

I I I I I - + - + - + - + - + · · ·  
22 32 52 72 I 1 2  , 

where the denominators are the squares of the succes
sive primes, converges. Why? 

9 A decimal a0.a 1a2 . . .  a,, . . .  is simply an abbreviated 
way of writing the infinite series 

� a,, a, a2 L -10" = ao + - + -- + . . .  
n=O l Q J 02 

where it is understood that a0 is an arbitrary integer and 
each of the a11's for n 2: I is one of the digits 0, I, 2, . . .  , 
9. Show that every decimal converges. 

I 0 Consider the series 

I - t + f - t + f - t + t - t + · · · = In 2, (*) 

and write under i t ,  as follows, the result of multiplying 
through by the factor t: 

I 2 - t + · · · = t In 2. 
Now add, combining the terms placed in vertical 
columns, to obtain the series 

1 + t - t + f + t - t + + - · · · = t In 2. (**) 

Satisfy yourself (a) that (**) is valid; (b) that the series 
can be produced by rearranging the terms of the series 
( * ), so that the first two positive terms of ( *) are fol
lowed by the first negative term, then the next two pos
itive terms by the second negative term, etc; and (c) that 
the value of the sum of the series ( *) has been myste
riously multiplied in this way by the factor f.t 

':' 1 1  In this problem we ask the student to give a solid proof 
of the validity of the power series expansions 

. X3 XS 
sm x = x - - + - - · · · 

and 

3! 51 

x2 x4 
cos x = I - - + - - · · · 2! 4! . 

The machinery consists of the familiar formulas 

J: sin t dt = I - cos x and J: cos t dt = sin x, 

and also the following general property of definite in
tegrals: 

lb l" if a < b and f(x) s g(x), then f(x) dx s g(x) dx. 
a " 

(a) In the inequality cos x s I ,  replace x by t and in
tegrate both sides of cos t s I from 0 to a fixed pos
itive number x to obtain 

sin x s x. 

(b) In the same way, use the result of part (a) to obtain 

x2 1 - cos x $ -2 or 
x2 

cos x 2: I - -. 2 

(c) In the same way, use the result of part (b) to obtain 

x3 
Sin x 2:: x - -3! . 

(d ) By  continuing this process indefinitely, generate the 
two sets of inequalities 

sin x s x 

. x3 
sm x 2: x - 3! 

. x 3  x5 sm x :s x - 3! + 5! 

. x3 x5 x 7 sm x 2: x - 3! + 5! - 7! 

cos x :S l 

x2 cos x 2: I - 2J 

x 2 x4 cos x :s I - 2! + 41 

x 2 x4 x6  cos x 2: I - 2! + 4! - 61 

tThis phenomenon will be explored from a different point of view, 
and we hope clarified, in Sections 1 3 .6 and 13 .8. 
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(e) To complete the proofs of (*) and (**)  for the pos
itive value of x under consideration, show that it 
suffices to know that x "/n! � 0 as n -7 oo, which is 
Example 3 in Section 1 3 .2 

(f) Finally, show that ( *) and ( **) are also valid for 
x < O. 

The easiest infinite series to work with are those whose terms are all nonnega
tive numbers. The reason for this-as we saw in Section 1 3 .3-is that the total 
theory of these series can be expressed by the following simple statement: If 
a11 2::: 0, then the series 'Lan converges if and only if its sequence { Sn }  of partial 
sums is bounded. 

Thus, in order to establish the convergence of a series of nonnegative terms, 
it suffices to show that its terms approach zero fast enough to keep the partial 
sums bounded. But how fast is "fast enough"? One answer to this question can 
be stated informally as follows: at least as fast as the terms of a known conver
gent series of nonnegative terms. This idea is contained in a formal statement 
called the comparison test: If 0 ::5 an ::5 bm then 

La11 converges if Lb11 converges; 
Lb11 diverges if La11 diverges. 

The proof is easy. The first step is to notice that if Sn and t11 are the partial sums 
of 2.a11 and 'Lbm then the assumption yields 

Our conclusion now follows at once from this inequality and the statement in the 
preceding paragraph, for if the t11 's are bounded, then so are the s11 's, and if the 
s11 's are unbounded, then so are the tn 's . 

Example I The comparison test is easy to apply to the series 
� 1 
I y;-+j n= I 

and 

The first series converges, because 

I 1 -- < -
3" + 1 - 3n 

� 1 L In n · n= l  

and 'L l/311 converges; and the second diverges, because 

I 1 
-

< --
n - In n 

( 1 )  

and 2.1 /n diverges. [To verify ( 1 )  in the equivalent form In n ::5 n, recall that the 
graph of y = In x lies below the graph of y = x.] 

It is worth remarking here that we can disregard any finite number of terms at 
the beginning of a series if we are interested only in deciding whether that se
ries converges or diverges.* This tells us that the condition 0 ::5 a11 ::5 b11 for the 
comparison test need not hold for all n, but only for all n from some point on. 

·on the other hand, if we are interested in the sum of a convergent series, then obviously we must 
take all of its terms into account. 

1 3 . 5  
SERIES OF 
NONNEGATIVE TERMS. 
COMPARISON TESTS 
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As an illustration, suppose we want to show that L(n + l )/nn converges by com
parison with Ll/n2. The inequality 

n + I  1 -- < -
n" - n2 

is not true for all n, but it is true for all n ;:::: 4. The series therefore converges by 
comparison with the convergent series Ll!n2 . 

The comparison test is very simple in principle, but in complicated cases it 
can be difficult to establish the necessary inequality between the nth terms of the 
two series being compared. Since limits are often easier to work with than in
equalities, the following limit comparison test is a more convenient tool for study
ing many series: If Lan and Lbn are series with positive terms such that 

I .  an I 1m -b = , n-+oo n 
(2) 

then either both series converge or both series diverge. To establish this, we ob
serve that (2) implies that for all sufficiently large n we have 

or 
(3) 

Since the convergence behavior of a series is not affected by multiplying each of 
its terms by the same nonzero constant, our conclusion is an easy consequence 
of the inequalities (3) and the comparison test as extended in the preceding para
graph. Thus, for instance, if Lbn converges, then L2bn converges and, by the sec
ond inequality in (3), Lan also converges; etc. 

Example 2 The series L(n + 2)/(2n3 - 3) converges, because L l /2n2 converges 
and 

(n + 2)/(2n3 - 3) 
l/2n2 

2n3 + 4n2 
2n3 - 3 � I  as 

and L sin ( l/n) diverges, because L l ln diverges and 

sin l /n 1 
--- � lln as n � =. 

[Recall that limx-70 (sin x)/x = l ;  see Section 9.2.] 

The limit comparison test is slightly more convenient to use if condition (2) 
is replaced by 

I . an L 1m -b = , n�oo n 
where 0 < L < "" · The proof is essentially the same and will not be repeated. 

Example 2 shows that in using the limit comparison test we must try to guess 
the probable behavior of Lan by estimating the "order of magnitude" of the nth 
term an. That is, we must try to judge whether an is approximately equal to a 
constant multiple of the nth term of some familiar series whose convergence be
havior is known to us, such as 
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.L, xn, I _!_, n or 

To apply this method effectively, it is clearly desirable to have at our disposal a 
"stockpile" of comparison series of known behavior. Our next example provides 
a family of series that is especially valuable for this purpose. We emphasize once 
again that the limit comparison test is used only if the terms of the series being 
tested are all positive numbers. 

Example 3 If p is a positive constant, then the p-series 
� I I I I I - = 1 + - + - + - + · · ·  n� I  nP 2P 3P 4P 

diverges if p :5 I and converges if p > l .  

(4) 

To establish this, we notice first that if p :5 l ,  then nP :5 n or l /n :5 l fnP, so 
(4) diverges by comparison with the harmonic series 2: 1 /n. We now prove that 
(4) converges if p > 1 by showing that its partial sums have an upper bound. Let 
n be given and choose m so that n < 2111 • Then 

s � S2'" - 1 = I + ( __!__ + __!__ ) + (__!__ + · · · + __!__) 11 2P 3P 4P 7P 
+ · · · + [ 1 + · · · +  I ] 

(2m- l )P (2m _ l )P 
2 4 2111- I � ! + - + - + · · · + . 2P 4P (2111- l )P 

If we put a =  l/2P- 1 , then a <  1 since p > 1 ,  and 

I - am I S11 � I + a + a2 + · · · + am- I = --- < --. I - a I - a 
This provides an upper bound for the s,,'s, and the argument is complete. 

As an illustration of the use of this family of series, we see that 

converges, because the p-series (with p = t) 2: 1/n312 converges and 

1 1Vr;3+3 IT l /n312 = ...j � ----) I .  
It i s  worth noticing that 2: 1 /nP does not necessarily converge if p is a variable > 
1 .  This is shown by the series 

I I n ' + l/n ' 
which diverges because 2: l /n diverges and 

l ln 1 + 1 111 I 
--- = - -) I . ! In � 

[Recall that limn�= n 1111 = l by Problem 3(b) in Section 1 3 .2.] 
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We conclude this section with some observations on the process of rearranging 
the terms of a series, which was briefly discussed in Section 1 3 .4. Suppose that 
Lan is a convergent series of nonnegative terms whose sum is s, and form a new se
ries Lbn by rearranging the an 's in any way. For instance, Lbn might be the series 

Let n be a given positive integer and consider the nth partial sum t12 = b 1  + 
b2 + · · · + b,, of the new series .  Since each b is some a, there exists an m with 
the property that each term in t,, is one of the terms in Sm = a 1 + a2 + · · · + 
a111• This tells us that tn :s Sm ::S s, so Lb11 converges to a sum t ::S s. On the other 
hand, the first series is also a rearrangement of the second, so by the same rea
soning we have s :s t, and therefore t = s. This proves that if a convergent se
ries of nonnegative terms is rearranged in any manner; then the resulting series 
also converges and has the same sum. If this conclusion seems rather obvious 
and trivial to students, let them recall from Problem 10 in Section 1 3 .4 that it 
isn't true if we drop the assumption that the terms of the given series are non
negative numbers. 

Establish the convergence or divergence of the following 
series by using the comparison test: 1 2  L l n  n 

3 . n 1 3 I 
1 000 

� 'V"n3 + s
' 

(a) L 1 ; Yn(n + 1 )  

(c) I �; n 

( ) ' (2n + 3)11 . g L n211 ' 

(b) I I 
; Yn2(n + 1 )  

I 
(d ) L (In n)11 ; 

' n + I  (f) L n(n - 1 )
; 

(h) I (n: i t  
Determine by any method whether each of the following se
ries converges or diverges. 

3 
2 I n2 + i · 

' . 1 
4 L sm 2. n 

1 6 I 311 + 9 ·  

' Vn 8 L n2 + 5 · 

3n + 2 411 
IO L -n- . 5n + 1 . 

' 1 + 3n2 3 L n3 + 700 ' 

1 s I cos 2. n 

I 7 L ( 1  + 1 /n)11 ' 

9 L 
In n . n 

u I 1 

n + Vn · 

14  

16 

18 

20 

22 

24 

n2 
I n1 + 100 · 

1 
L SOOOn ' 

I � 'V" n3 + 3 V' n3 + 5 

I 3 + cos n 
2 . n 

I Vn+J - v;; . n 
I Vn 1n �. n 

15 I L n ion · 
1 7 n 2  + 3n - 7 

I n3 - 2n + s ·  

1 9 n2 L ns _ 'TT' . 

21 L I n  ( I  + lln"), p > 0 .  

23 I o - cos 1 1n). 

26 If 2:a11 is a convergent series with nonnegative terms, 
show that 2:a,,2 also converges. With the same hypothe
ses, show by examples that 2:� is sometimes conver
gent and sometimes divergent. 

27 If p is a positive constant, show that 
� 1 1 1 L (2n - l ) "  = 1 + 3P + sP + . . .  n=I  

converges if p > 1 and diverges if p :=; 1 .  
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28 Show that L l /n diverges by comparing it with the di
vergent series L In ( 1  + l ln) of Problem 6(b) in Section 
13 .4. Hint: Compare the graphs of the functions y = x 
and y = In ( l + x) for x > 0.  

29 Use the idea of Problem 28 to show that 

= I 
(n + I )2 ,�1 n n(n + 2) 

converges. Also, find the sum of this series. 
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Among the simplest infinite series are those whose terms form a decreasing se
quence of positive numbers. In this section we study certain series of this type 
by means of improper integrals of the form 

(= f(x) d.x = Jim (b f(x) d.x. Ja b-700 Ja ( I )  
THE INTEGRAL TEST. 
EULER'S CONSTA T 

We recall that the integral on the left is said to be convergent if the limit on the 
right exists (as a finite number), and in this case the value of the integral is by 
definition the value of the limit. If this limit does not exist, then the integral is 
called divergent. There is an obvious analogy between ( 1 )  and the correspond
ing definition for series, 

= k 
L an = lim L a,,. k->= n=I  n= l  

Our purpose is to exploit this analogy by using integrals to obtain information 
about series. 

Consider a series 

= L a" = a , + a1 + · · · + a,, + · · ·  (2) 
n= l  

whose terms are positive and decreasing. I n  most cases the nth term a11 i s  a 
function of n given by a simple formula, a11 = f(n). Suppose that the function 
y = f(x) obtained by substituting the continuous variable x in place of the dis
crete variable n is a decreasing function of x for x � 1 ,  as shown in Fig. 1 3 .4.  
On the left in this figure we see that the rectangles of areas a i .  a2,  . • .  , a11 have 
a greater combined area than the area under the curve from x = 1 to x = n + 1 ,  
so 

2 3 

(n + I (" a1 + a1 + · · · + an � ), f(x) d.x � ) , f(x) d.x. 

n n + l  n + 2  2 3 

(3) 

n Figure 13.4 
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On the right side of the figure we make the rectangles face to the left, so that 
they lie under the curve. If we momentarily ignore the first rectangle, with area 
ai ,  then we see that 

a2 + a3 + 
. . .  + an :S r f(x) dx; 

and including a1 gives 

By combining (3) and (4), we obtain 

(n {" Ji f(x) dx :S a 1 + az + · · · + a,, :S a1 + Ji f(x) dx. 

(4) 

(5) 

The point of all this is that the inequalities (5) enable us to establish the inte
gral test: 

If f(x) is a positive decreasing function for x � 1 with the property that f(n) = a,, for 
each positive integer n, then the series and integral 

L an 
n= I  

and r f(x) dx 

converge or diverge together. * 

The argument is easy, for if the series converges, then the inequality on the left 
of (5) shows that the integral does also; and if the integral converges, then the 
inequality on the right shows that the series also converges. 

Example 1 The p-series revisited. If p is a positive constant, then we know 
from Section 13 .5 that the p-series 

� l I I L nP = I + V + y + . . . 
n = I  

(6) 

converges if p > 1 and diverges if p :S 1 .  It is of some interest to give another 
proof of this as an illustration of the integral test. Since an = l fn P, we consider 
the function f(x) = l fxP  (which clearly satisfies all the stated conditions) and ex
amine the integral 

r� dx J 1 xP "  

If p = 1 ,  this integral diverges, because 

l� dx lb dx - = lim - = l im In b = =. 
I X b->� I X b-->� 

'This test is often called the Cauchy integral test, after its discoverer, the eminent nineteenth-century 
French mathematician Augustin Louis Cauchy (pronounced "Ko-shee"). In mathematical productiv
ity Cauchy ( 1 789-1 857) was surpassed only by Euler, and his collected works fill 27 fat volumes. 
He was a prolific contributor to number theory, algebra, and many branches of physics. However, his 
most important achievements were in the field of analysis. Together with his contemporaries Gauss 
and Abel, he was a pioneer in the rigorous treatment of limits, continuous functions, derivatives, in
tegrals, infinite series, and differential equations. 
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If p i=  1 ,  then 

- = hm x-p dx = hm 1= d.x . l
b . ( b l -p - 1 ) 

l xP b-->= I b-->= 1 - p ' 

and the issue of convergence hangs on the behavior of b1 -p as b � =. If p < 1 ,  
so that 1 - p > 0, then b1 -p � oo and the integral diverges. If p > 1 ,  so that 
1 - p < 0, then b 1 -p � 0 and the integral converges .  By  the integral test we now 
conclude again that the p-series (6) converges if p > 1 and diverges if p :s 1 .  

It is clear that the integral test holds for any interval of the form x :2:: k, not 
just for x :2:: 1 .  We make use of this remark in our next example, which deals with 
a class of series whose behavior is not revealed by any of our previous tests. 

Example 2 The terms of the series 

(7) 

decrease faster than those of the harmonic series. Nevertheless, it is easy to see 
by the integral test that (7) diverges, for 

l
= dx l

b dx 
-1- = J im -1- = lim [In In x]� 2 x n x  b-->= 2 x n x  b-->= 

= lim (In In b - In In 2) = =. b-->= 
More generally, if p is a positive constant, then 

= 1 n�2 n(ln n)P 
converges if p > 1 and diverges if p :s 1 ;  for if p i= 1 ,  we have 

(= __ dx __ = Jim (b dx 
= Jim [ (In x)l-p ]b J2 x(ln x)P b-->= J2 x(ln x)P b-->= 1 - p 2 
_ 

. [ (In b)1 -r - (In 2)1 -r ] - hm 1 , b-->= - p  

and this limit exists if and only if p > l .* 

We now return to the series (2) and squeeze some additional information out 
of the inequalities (5) .  By subtracting the integral that occurs on the left, these 
inequalities can be written as 

0 :::s a1 + a1 + . . . + an - r f(x) dx :::s a 1 ,  (8) 

*The series of this example are called Abel 's series, after the great Norwegian mathematician Niels 
Henrik Abel, who first investigated them and determined their convergence behavior. Abel 
( 1 802-1 829) died of tuberculosis at the age of 26 before the publication of his many brilliant dis
coveries made him world famous among mathematicians. His most memorable achievement was his 
proof (mentioned on p . 1 06) of the impossibility of solving the general fifth-degree equation by means 
of radicals. He also contributed to the rigorous theory of infinite series, and his discovery of elliptic 
and other transcendental functions launched a new era in mathematical analysis. 
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and this serves to focus our attention on the quantity in the middle. If we denote 
this quantity by F(n) so that 

F(n) = a, + a2 + · · · + an - r f(x) dx, 
then (8) becomes 

0 :s F(n) :s a 1 •  
From our present point o f  view, the key to this situation is  the fact that { F(n) } 
is a decreasing sequence. This follows from the calculation 

F(n) - F(n + I )  = [a , + a2 + · · · + an - r f(x) dx] 
- [a1 + a2 + · · · + an+ I - r+ l f(x) dx] 

f,n+ l  
= n f(x) dx - an+ l � o, 

where the reason for the last-written inequality can be understood by examining 
the left side of Fig. 1 3 .4. Since any decreasing sequence of nonnegative numbers 
converges, the limit 

l = lim F(n) = lim [a 1 + a2 + · · · + an - (n f(x) dx] n---?oc n---?OQ J1 
exists and satisfies the inequalities 0 :'.5 L :'.5 a1 • 

(9) 

As our main application of these ideas, we deduce the existence of the im
portant limit 

Jim ( 1 + _!_ + · · · + _!_ - In n) . n-->� 2 n ( 1 0) 

This is easily seen to be the special case of (9) in which an = l !n and.f{x) = l lx, 
because 

in dx Jn - = In x = In n. I X I 
The value of the limit ( 1 0) is usually denoted by the Greek letter y (gamma), and 
is called Euler's constant: 

"}' = Jim ( 1 + _!_ + · · · + _!_ - In n) . n-->� 2 n ( 1 1 )  

This constant occurs quite frequently i n  several parts o f  advanced calculus, 
especially in the theory of the gamma function, and is, along with 1T and e, one 
of the most important special numbers of mathematics. Its numerical value, 
y = 0.5772 1 56649 0 1532 86060 . . .  , has been calculated to many hundreds of 
decimal places. Nevertheless, no one knows whether y is rational or irrational. 

In order to describe some of the uses of Euler's constant, it is convenient to 
introduce a notation which has been widely accepted in twentieth-century math
ematics. Let {an )  and { bn )  be two sequences, and suppose that bn > 0. We say 
that "an is little-oh of bn ," and symbolize this by writing 

an = o(bn), 



1 3 .6 THE INTEGRAL TEST. EULER'S CONSTANT 

if anlbn � 0. In particular, an = o( l )  means that an � 0. An equation of the form 
an = bn + o(l )  means that an - bn = o( l) ,  so an and bn differ by a quantity that 
approaches zero as n � oo. In our work we will use the symbol o( l )  to mean any 
sequence that approaches zero as n � oo, as in the calculation [a + o(l )] + 
2 [b + o( l )] = a + 2b + o( l ) . 

With the aid of this notation, ( 1 1 )  can be written in the form 

1 1 1 + 2 + · · · + -;;- = In n + y + o( l ) . ( 12) 

Since ln n � oo as n � oo, this formula displays in a very transparent way the 
reason for the divergence of the harmonic series. It is also useful for many other 
purposes, as the following examples show. 

Example 3 We can use ( 1 2) to give a simple proof of the formula 

1 1 I 1 - 2 + 3 - 4 + · · · = In 2. 

Let Sn be the nth partial sum of this series, and observe that 

1 I 1 I I 
S2 = I - - + - - - + . . .  + --- - -n 2 3 4 2n - 1 2n 

= ( 1 + _!_ + . . .  + _1_) - (_!_ + _!_ + . . .  + __!__) 3 2n - 1 2 4 2n 

= ( 1 + _!_ + _!_ + . . .  + __!__) - 2 (_!_ + _!_ + . . . + -1-) 2 3 2n 2 4 2n 

= ( 1 + _!_ + _!_ + . . . + __!__) - ( 1 + _!_ + . . .  + _!_) 2 3 2n 2 n 

= [In 2n + y + o( l )) - [In n +  y + o( l )] 

= In 2 + o( l )  � In 2. 

The odd partial sums approach the same limit, because 

( 13 )  

so the proof of  ( 1 3) is complete. We emphasize that this method establishes ( 1 3) 
on the basis of ( 1 2) alone, without making any use of the power series expan
sion of ln ( 1  + x) as given in Section 1 3 . 1 .  

Example 4 We can also use ( 1 2) to obtain the remarkable formula 

1 1 1 1 1 3 I + - - - + - + - - - + + - · · ·  = - ln 2  3 2 5  7 4  2 '  ( 14) 

which was the subject of Problem 1 0  in Section 1 3.4. The method is similar to 
that of Example 3. If Sn is the nth partial sum of ( 1 4), then, since 2n is the nth 
even number and 2n - 1 is the nth odd number, we have 
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S3 = ( 1 + _!_ - _!_) + (_!_ + _!_ - _!_) + . . . + (-1- + _I_ - _!_) " 3 2 5 7 4 4n - 3 4n - 1 2n 

= ( I + _!_ + _!_ + _!_ + . . . + _I_) - (_!_ + _!_ + . . . + _!__) 3 5 7 4n - I 2 4 2n 

= ( I + _!_ + _!_ + . . . + _!__) - (_!_ + _!_ + . . . + _!_) - (_!_ + _!_ + . . . + _!__) 2 3 4n 2 4 4n 2 4 2n 

= ( 1 + _!_ + _!_ + . . . + -1-) - _!_ ( 1 + _!_ + . . .  + _!_) - _!_( 1 + _!_ + . . .  + _!_) 2 3 4n 2 2 2n 2 2 n 

= [ In 4n + y + o( l )] - t[ln 2n + y + o( l )] - t[ln n + y + o( l )] 

I 2 4n = In 4n - 2 ln 2n + o( I )  = In -- + o( l )  v'2 n 
= In 2312 + o( I )  � In 2312 = t In 2. 

It is easy to see that the partial sums 

1 
S3n+ 1 = S3,, + 411 + I and 

I I 
S311+2 = S3n + 4n + I 

+ 4n + 3 
approach the same limit, so the proof of ( 14) is complete. 

Remark The basic idea of the integral test is to compare sums with integrals 
by looking at their geometric meanings in terms of areas. This idea can also be 
used to prove the divergence of the series of the reciprocals of the primes, as 
mentioned in Section 1 3 .3 :  

I l I I I I I - = - + - + - + - + - + · · · = oo Pn 2 3 5 7 1 1  . 

This proof is a bit complicated; and since it is not essential to the main line of 
thought in this chapter, we place it in Appendix 3 at the end of the chapter. 

Use the integral test to determine whether each of the fol
lowing series converges or diverges. 

I O  (a) Use the integral test to show that the series L;;"= 1 nle " 
converges. 

1 f �2 · n= l  e 
- I 4 I �-

n= l  

7 I tan- 1 n 
n= I 1 + n2 · 

I 
2 ,�1 n(n + I ) "  

� In n 8 L -2 · n=2 n 

3 I n2: 1 · n = I  
- I 6 

n�I 3n + 1 · 

9 (a) The series L;;"=3 (In n)/n diverges by comparison with 
the harmonic series, since 

I In n 
- ::S --
n n 

for n 2:: 3. Establish this divergence by means of the 
integral test. 

(b) If p is a positive constant, show that L;;"=3 ( In n)/nP 
converges if p > I and diverges if p :s I .  

(b) What is the sum of the series i n  (a)? Hint: Assume 
that the geometric series L;;'=oX" = I + x + x 2 + · · · = 1 /( 1  - x) can legitimately be differentiated 
term by term on the interval - l < x < I .  

1 1  The curve in Fig. 1 3 .5 is the graph of y = l /x. Convince 
yourself that the combined area of all the infinitely many 
shaded regions is Euler's constant y. By inspecting the 

2 3 4 ••• 
Figure 1 3.5 



1 3 .7 THE RATIO TEST AND ROOT TEST 46 1 

figure, show that the value of y is between ± and 1 ,  and 
is only slightly larger than t. 

diverges very slowly. To grasp how slowly, use ( 12) to 
show that in order to get Sn to exceed 

12  Use ( 12) to show that 

I + t - t + f + t - t + + - · · · = In 3 .  
1 3  I f  {xn l is the sequence defined by 

lilil 14 � 

I 1 1 x = -- + -- + · · · + --n n + l  n + 2  n + n ' 

then Xn � In 2 because 

I 1 1 1 I x = - · + - · --- + . . . + - · ---n n 1 + !In n 1 + 2/n n 1 + nln 

� ( 1 -1 dx = In 2. Jo + x 
Establish this fact by using formula ( 12). 
The harmonic series 

I I 1 
! + - + - + · · · + - + · · · 2 3 n 

(a) 1 0, we must add about 12,000 terms ;  
(b) 20, we must add about 272,405,000 terms; 
(c) 1 84, we must add about 4.56 X 1 079 terms. 
The last number is somewhat larger than the estimated 
total number of elementary particles in the entire uni
verse, which is about 2.36 X 1079.* 

'The English astronomer Sir Arthur Eddington believed he had shown 
that the number of these particles is precisely + x 1 36 x 2256, whose 
value is about 2.36 X 1 079. Most modern astronomers think Edding
ton's number is nonsense; on the other hand, few of them (if any) 
seem able to criticize his ideas-so in the time-honored tradition, 
they dismiss him as irrelevant. More detail on these matters can be 
found in Sir Edmund Whittaker's From Euclid to Eddington (Dover, 
1 958). 

In the case of the geometric series Lr" with r > 0, the ratio an+ 1 lan of the 

1 3 7 (n + l )st term to the nth term has the constant value r, since • 

an+ l  rr+ I 
-- = -- = r an yll . ( 1 )  

We know that this series converges i f  r < 1 ,  essentially because for these r's, 
condition ( l )  guarantees that the terms decrease rapidly. Analogy leads us to ex
pect that any series Lan of positive terms will also converge if the ratio a11+ 1/a11 
is small for large n, even though this ratio may not have a constant value. 

These ideas are made precise in the ratio test: 

If "Lan is a series of positive terms such that 

then 
J im Gn+ I = L, n�oo an 

(a) if L < 1 ,  the series converges; 
(b) if L > 1 ,  the series diverges; 
( c) if L = 1 ,  the test is inconclusive. 

(2) 

To establish (a), we assume that L < 1 and choose any number r between L and 
1 so that L < r < 1 .  Then the meaning of (2) tells us that there exists an n0 such 
that an+ 1/an ::5 r for all n 2: n0, which is equivalent to 

or for n 2! no. 

This says that the sequence { anlr n } is decreasing for n 2: n0; in particular, 
anlrn ::5 a11/rno for n 2: no. Thus, if we put K = an/rn°, then we have 

for n 2: no. (3) 

But LKrn converges because r < 1 ,  and therefore, by the comparison test, (3) 
implies that Lan converges. To prove (b), we simply observe that L > l implies 
that an+ if an 2: 1 ,  or equivalently an+ 1 2: a11, from some point on, so an cannot 

THE RATIO TEST AND 
ROOT TEST 
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approach zero, and by the nth term test we know that the series diverges .  Part (c) 
says that if L = 1 ,  then no conclusion can be drawn, that is, sometimes the se
ries converges and sometimes it diverges. To demonstrate this, we consider the 
p-series L: 1 /nP. It is clear that for all values of p we have 

an+I  = nP = (-n-)P � 1 an (n + l )P n + 1 ' 

and yet this series converges if p > 1 and diverges if p :S 1 .  
The ratio test is especially useful for handling series whose nth term a11 is  given 

by a formula that involves various products, since even though an itself may be 
complicated, the ratio an+ 11an can often be simplified by cancellations. 

Example 1 We know that the series 

- 1 I -n=o n !  

converges b y  the argument given i n  Section 1 3.4. The ratio test yields the same 
conclusion much more easily, because 

L = Jim an+ 1 = lim l/(n + l ) !  
an lln !  

- Jim n !  = Jim -1-= 0. - (n + l ) !  n + 1 

Since L < 1 ,  the series converges. 

Students should notice our use of the equation (n + 1 ) !  = (n + l)n! in this ex
ample, because this fact will often be needed in our future work. 

Example 2 In the case of the series 

it is easy to see that 

. an+ I . 3n+ I nl 3 L = hm -- = hm ( 
l ) I · ____:_ = Jim -- = 0. a11 n + . 3n n + 1 

Again we have L < 1 ,  so the series converges. 

(4) 

Since the nth term of any convergent series approaches zero, and therefore the 
convergence of (4) tells us that 3n1n ! -t 0, we know that n !  increases faster than 
3n as n -t oo. Students should try to develop an intuitive feeling for the relative 
rates of growth of expressions like these as an aid in forming quick but reliable 
judgments about the probable behavior of series. In this connection we point out 
here that the numerator 3n of the nth term of series (4) contributes the 3 to the 
numerator of the ratio an+ 11an after simplification, and that the n! in the de
nominator contributes the n + 1 to the denominator of this ratio. 

Example 3 For the series 
- 10 

I �n .  n= l  
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we have 

L _ 1. an+ 1 _ 1. (n + 1 ) 10 
• 
l.'.'_ 

- 1m an 
- 1m 

3n+ I n l O 

Again we have L < 1 ,  so the series converges by the ratio test. 

In this example the convergence of the series tells us that 3n grows faster than 
n10, and we see from the calculation of L that the series behaves like the geo
metric series with r = t. We also observe that the polynomial factor n 10 con
tributes the factor 1 to the calculation of L, so no such polynomial factor ever 
has any effect on the outcome of the ratio test. 

Example 4 The remark preceding Example 1 is illustrated with special clarity 
by the series 

I I · 3 I · 3 · 5 1 · 3 · 5 · · · (2n - 1 )  
- + -- + --- + · · · +  + · · ·  2 2 · 5 2 · 5 · 8 2 · 5 · 8 · · · (3n - 1 )  · 

Here the cancellation of factors yields 

I . an+ I 1 . 1 · 3 · · · (2n - 1 )(2n + l )  
L = 1m -- = 1 m  ---�-��-� 

an 2 · 5 · · · (3n - 1 )(3n + 2) 

- r 2n + l _ 2 
- im 3n + 2 

-

3' 

and the series converges because L < 1 .  

2 · 5 · · · (3n - 1 )  
1 · 3 · · · (2n - I )  

We now discuss the so-called root test, which is another convenient tool for 
studying the convergence behavior of series. 

Suppose that Lan is a series of nonnegative terms with the property that from 
some point on we have 

where 0 < r < 1 .  (5) 

The geometric series Lrn clearly converges, so Lan also converges by the com
parison test. The fact that the inequalities (5) can be written in the form 

brings us to a convenient statement of the root test: 

If �an is a series of nonnegative terms such that 

lim V1a°;; = L, n->� 

then 

(a) if L < 1, the series converges ; 
(b) if L > 1 ,  the series diverges; 
(c) if L = 1, the test is inconclusive. 

(6) 

(7) 

The proof rests on the preceding remarks. For (a), if L < 1 and r is any number 
such that L < r < 1 ,  then the meaning of (7) tells us that (6) holds for all suffi-
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ciently large n 's, so Lan converges. For (b), if L > 1 ,  then \la,; 2: 1 from some 
point on, so an 2: 1 for all sufficiently large n 's, and the series diverges because 
an does not approach zero. Finally, we establish (c) by observing that L = 1 for 
both the divergent series L l!n and the convergent series L l!n2, since � 4 1 as 
n 4 oo. 

Example 5 In the case of the series 

I L (In n)n ' 
we have 

L = Jim � = Jim -
1
-
1
- = 0. 

n n  

Since L < 1 ,  the series converges. 

In general, it is clear that the root test is most likely to be useful for treating 
series in which an is complicated but \la,; is simple, so that lim \la,; is easy to 
compute. However, the practical value of the root test is outweighed by its the
oretical significance, and this appears mainly in the advanced theory of power 
series. 

Remark 1 The ratio test and the root test were first stated and correctly proved 
by Cauchy in 1 82 1 ,  as part of the earliest satisfactory exposition of the basic con
cepts of the theory of series. 

Remark 2 We have seen that the ratio test is inconclusive when lim a,,+ 11an = 1 ,  
but this is far from the end of the story. If an+ 1 /an 4 l from above, then we have 
an+ 1/a,, 2: l or an+ 1 2: an, and La11 certainly diverges, because an does not ap
proach zero. But if a,, + 1/an � 1 from below, then there are several more delicate 
tests that are capable of yielding additional information. The curious reader will 
find some of these tests discussed in Appendix A. 1 2 .  

Use the ratio test to determine the behavior of the following 13 I · 3 I · 3 · 5 
I + -- + --- + . . .  

series. 

1 

3 

5 

7 

9 

1 1  

I;,, . 
n" L 2n· 

I�. n" 
(n !)2 I (2n)! · 

L 3 · 5 · · · (2n + I )  
I . n .  

2311 
I 32,, · 

2 
n2 L 2n· 

4 
n ! L 2n· 

6 
n ! I (2n) ! · 

8 
(n !)3 I (2n)! · 

10 2211 I (2n + t ) ! · 
1 2  

(2n + 2) 
I 3"(n !)2 . 

2 ! 3 1 
I · 3 · 5 · · · (2n - I )  

+ n ! + . . . . 

15  Let I:a,, be a series of positive terms with the follow
ing property: There exists a number r < I and a posi
tive integer no such that a11+ ifa11 ::s r for all n 2: no. 
Show that 2:a11 converges even though lim a,,+ ifa11 may 
not exist. 

Use the root test to determine the behavior of the following 
series. 
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1 6  I c'Vri - l )n. 

e" 1s I -;;· 

"'""' , ;- ( 2n - I )" 
1 7  L v n n + 1 3  

. 20 L e2" ( n : I r 
n3 

22 "'""' L (ln 2)" . 

Most of our attention so far has been directed at series of positive terms. We now 
wish to consider series with both positive and negative terms. The simplest are 
those whose terms are alternately positive and negative. These are called alter
nating series, and can be written in the form 

� 

L ( - ! )"+ 1a11 = a 1 - a2 + a3 - a4 + · · · , ( I )  n= I  
where the an's are all positive numbers. As examples that are already familiar 
from our previous work we mention the In 2 series 

and also the series 

I I 1 
I - - + - - - + · · · = In 2 2 3 4 

, 

I l I 7r 
1 - - + - - - + · · · = -

3 5 7 4
, 

whose sum was discovered by Leibniz in 1 673 (Appendix 3, Chapter 10) .  

(2) 

(3) 

It is easy to see that both of the alternating series (2) and (3) have the prop
erty that the a,,'s form a decreasing sequence that approaches zero: 

(i) a1 2: a2 2: a3 2: · · · ; 

(ii) a11 -7 0. 

In 1 705 Leibniz noticed that these two simple conditions are enough to guaran
tee that any alternating series ( 1 )  converges. This fact is called the alternating 
series test. 

The essence of the situation lies in the back-and-forth movement of the par
tial sums of the series ( 1 )  under the stated hypotheses, as illustrated in Fig. 1 3.6. 
To locate the partial sums s 1 , s2, s3 , . • .  , we start at the origin and go to the right 
a distance a1 to reach s 1 , then go left a smaller distance a2 to reach s2, then go 
right the still smaller distance a3 to reach s3, and so on. The behavior of these 

nlO 
23 L (In 3)n

. 

1 3 . 8  
THE ALTERNATING 
SERIES TEST. 
ABSOLUTE 
CONVERGE CE 
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Figure 13.6 The alternating series test. 
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partial sums is similar to that of a swinging pendulum that oscillates back and 
forth and slowly approaches an equilibrium position which represents the sum s 
of the series. We suggest that students keep this figure in mind while reading the 
proof in the following paragraph. 

Now for the details of the argument. A typical even partial sum s2n can be writ
ten in two ways, as 

S2n = (a 1  - a2) + (a3 - a4) + · · · + (a2n- I - a2n) 

where each expression in parentheses is nonnegative because the an's  form a 
decreasing sequence. The first way of writing s2n displays it as the sum of n 
nonnegative terms, so s2n ::5 s2n+2 and the even partial sums form an increasing 
sequence, as shown in the figure. The second way of writing s2n shows that 
s2n ::5 a 1 ,  so the s2n 's have an upper bound. Since every bounded increasing se
quence converges, there exists a number s such that 

lim S2n = s. n->� 

But the odd partial sums approach the same limit, because 

and therefore 

Jim s211+ 1 = Jim S2n + Jim a2n+ 1  = s + 0 = s, n---?oo n---too n�oo 

since a2n+ 1 -t 0 as n � oo. This tells us that the sequence {Sn }  of all the partial 
sums converges to the limit s, and therefore the alternating series ( 1 )  converges 
to the sum s under the stated conditions. 

Example I The alternating series test clearly implies the convergence of series 
(2) and (3), 

I 1 1 l - - + - - - + · · · = Jn 2  2 3 4 and 
I J J TT 1 - - + - - - + · · · = -
3 5 7 4 '  

because l ln and 1/(2n - 1 )  both decrease to zero. However, this test gives us no 
information at all about the sums of these series. Students will recall that the first 
of these indicated sums was established earlier by two very different methods, 
one conjectural and the other solidly rigorous, whereas the second sum is still 
only a conjecture.* 

Example 2 Determine the convergence behavior of the alternating series 

(a) L (- l )n+ ln
; (b) I (- l ) n+ I In n _ 

n = I  1000 + Sn n= 2 n 

Solution (a) Even though this series is alternating, we nevertheless have an = 

n/( 1000 + Sn) -t t as n -t oo, so the series diverges by the nth term test. 

*The method of Leibniz in Appendix 3 of Chapter I 0 assumes the validity of term-by-term integra
tion of geometric series. This procedure is valid, but we don't yet know it with certainty. 
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(b) To prove that this series converges by using the alternating series test, we 
must show that an = (In n)ln decreases to zero. We know that (In n)!n -t 0 by 
Problem 3(a) in Section 1 3 .2 .  To demonstrate that the an's are decreasing, we 
note that the function 

f(x) = In x 
x has derivative 

This derivative is negative for x > e, so f(x) is a decreasing function for x > e, 
and therefore an ;:::: an+ 1 for n ;:::: 3. (As usual in considering the matter of con
vergence, we can disregard the first few terms of the series.) In this case-and 
in others- we may be convinced that an decreases to zero without feeling any 
need for a detailed verification. However, if there is any doubt at all, we should 
be prepared to supply such a verification. 

ABSOLUTE CONVERGENCE 

Why is it that the alternating harmonic series 

1 - t + t - t + · · · 
converges, even though the harmonic series 

1 + t + t + t + · · · 
diverges? The essential reason for the divergence of the harmonic series is that 
its terms don't decrease quite fast enough, as do the terms of the convergent se
ries Ll /2n, for example. The partial sums of L lln consist of many small terms 
that add up to a large total, whereas the terms of Lll2n decrease so fast that no 
sum of any large number of them can even reach 2. 

In contrast to the relatively simple behavior of these series, the alternating har
monic series converges, not only because its terms get small, but also because 
the well-placed minus signs prevent the partial sums from growing too large and 
permit them to approach a finite limit. 

Some series with terms of mixed signs do not need the assistance of minus 
signs for convergence, but converge because of the smallness of their terms alone; 
they would still converge even if all the minus signs were replaced by plus signs. 
Series of this kind are especially important and are called absolutely convergent; 
that is, a series L:an is said to be absolutely convergent if L lanl converges. 

These remarks suggest that absolute convergence is a stronger property than 
ordinary convergence, in the sense that absolute convergence implies conver
gence. This is true and is easy to prove, as follows. Suppose that Lan is an ab
solutely convergent series, so that Llan l converges. The inequalities 0 :S an + 
lanl :S 2 lanl are clearly valid, because an + lanl equals 0 or 2lanl according as 
an < 0 or an 2= O; and since L2lanl converges, we know that L(an + lanl )  also 
converges by the comparison test. Since L(an + Ian !) and Llan l both converge, so 
does their difference, which is Lan. 

When we try to establish the convergence of a series whose terms have mixed 
signs, testing for absolute convergence is a good first step, because (as we have 
just seen) this implies convergence. To do this, we merely change all minus signs 
to plus signs and test the resulting series of nonnegative terms. We remind stu
dents that all our previous tests-the comparison tests, integral test, ratio test, 
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and root test-apply only to series of positive (or nonnegative) terms, and are 
therefore essentially tests for absolute convergence. 

Example 3 Test the following series for absolute convergence, and also for con
vergence: 

1 1 1 
(a) 1 -

22 + 32 - 42 + . . .  ; 

+ J_ + J_ + _!_ + . . . .  (b) 1 - 22 - 32 - 42 - , 

1 1 1 
(c) 1 - V2 + v'3 - v'4 + · · · . 

Solution (a) Here the series Lian! of absolute values is L l !n2
, which converges. 

This tells us that series (a) is absolutely convergent, and therefore convergent. 
This series also converges by the alternating series test. 

(b) The intent here is that the plus or minus signs are to be inserted in any 
manner, either at random or according to some systematic pattern. In either case, 
it is clear that, just as in part (a), the series is absolutely convergent, and there
fore convergent. However, without the concept of absolute convergence we would 
have no means of determining the convergence behavior of this series. 

(c) In this case the series of absolute values is L l !Vn, which is a divergent 
p-series. Series (c) is therefore not absolutely convergent. Nevertheless, this se
ries is clearly convergent by the alternating series test. 

Remark 1 A convergent series that is not absolutely convergent is said to be 
conditionally convergent. As examples we mention series (2) and (3), and also 
the series in Example 3(c). All series of this kind are capable of startling but fas
cinating misbehavior, and should be labeled "handle with care." For instance, any 
such series can be made to converge to any given number as its sum, or even to 
diverge, by suitably changing the order of its terms without changing the terms 
themselves .  On the other hand, any absolutely convergent series can be rearranged 
in any manner without changing either its convergence behavior or its sum. In 
an earlier section we said, "The effective use of infinite series rests on our free
dom to manipulate them by the various processes of algebra." Generally speak
ing, this freedom is available only when we are working with absolutely con
vergent series. These issues and others that are not normally part of a first course 
are discussed in detail in Appendix A. 1 3. 

Remark 2 The only test we have that establishes convergence rather than ab
solute convergence is the alternating series test. Several other tests of this kind 
are presented in Appendix A. 1 4. 

Remark 3 Students may have noticed that almost all of our work in the pre
ceding sections of this chapter has been devoted to showing whether a series con
verges or diverges, and very little to finding the sum of a convergent series. A 
good reason for this is that the second problem is usually much harder than the 
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first. Thus, the convergence of the series of the reciprocals of the squares is quite 
easy to establish, but the exact value of its sum, namely, the fact that 

� 1 1 1 7T2 I 71 = 1 + P- + 32 + · · · = 6' n= I 
i s  far from obvious and can only be discovered by  great ingenuity. Further, the 
convergence of the series of the reciprocals of the cubes is equally easy to es
tablish, but its sum has never been discovered and remains to this day one of the 
more tantalizing unsolved problems of mathematics: 

� 1 1 1 I � = 1 + 23 + 33 + · · · = ?  
n= I 

A second, and perhaps even more important reason for not pressing harder on 
the problem of finding the sum of a convergent series is that this problem will 
be constantly before us in the next chapter. That is, we shall be "representing" a 
given function by a certain kind of series, and we will always give careful at
tention to the matter of proving that this series actually converges to the given 
function as its sum. In this way, the sums of many convergent series of constants 
will be known to us as a minor consequence of our work on convergent series 
of functions. 

PROBLEMS 

. 2 Classify each of the following series as absolutely convergent, 
1 9  L (- 1 )"+ I sm9/2

n . 20 L (- l )n+ I In \Yn. conditionally convergent, or divergent. n 

L (- l )n+ I 1 . I <- 1 )11+ 1 _1 _ _ L (- l)n+ I _l _
_ 

4311 
2 21  22 I c- 1 )11+ 1 �· Vn+lO nVn w n. 

I c- 1 r 1 _n __ L (- l )n+ I Vn .  23 
1 I l I 1 

3 4 1 - - + - - - + - - - + · · · n + 2  Vn 2 3 !  4 5 !  6 . 

2n I (- 1 y•+ I _I_ 24 
I 1 1 1 1 1 1 - - + - - - + - - - + - - · · · 

5 I c- 1 )"+ 1 ,. 6 2 2  3 3 4 4  . 
n . 3 1111 · 

n3 I (- 1 )"+ 1 i 25 
1 1 1 1 1 1 1  

7 8 ! + - - - - - + - + - - - - - + · L (- J )n+ I --. 2 3  4 5 6 7  8 l + n5 Jn (n + 2) " 
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I (- 1 )"+ 1 v;; _ 
26 We know that if { an } is a decreasing sequence of posi-

L (- l )n+ 1 1n l.. 9 10 
In  n 

1 1  L (- l )n+ I � · 1 2  

I <- l )n+ I v;; . 13 14 n + 3 

1 5  
2 L (- l)n+ I 3n2 · 1 6  

. 2 
17  L (- l )n+ I sm

2 
n . 18 n 

n 

I ( - 1 )211+ 1 �-
1 L (- l )n+ I  Sn · 

L (- 1 )'1+ 1 sin n7T. 
. 2 L (- 1 )11+ 1  s1�12

n
· n 

27 

tive numbers such that a11 -7 0, then the alternating se-
ries ( 1 )  converges to some number s as its sum. Show 
that s lies between consecutive partial sums s11 and Sn+ 1 
and that lsn - s l :5 an+ I · 
State whether each of the following is true or false: 
(a) every convergent alternating series is conditionally 

convergent; 
(b) every absolutely convergent series is convergent; 
(c) every convergent series is absolutely convergent; 
(d )  every alternating series converges; 
(e) if Lan is conditionally convergent, then Llanl di-

verges; 
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(f) if 2:lanl diverges, then 2:an is conditionally conver
gent. 

28 If the an's are all positive numbers, show that the series 
-a1 + a2 - a3 + a4 - • • • converges if and only if the 
series a 1 - a2 + a3 - a4 + · · · converges. [This shows 
that starting an alternating series with a positive term, as 
in ( 1 ), is merely a convenience, not a necessity.] 

29 If 2:an and 2:bn are absolutely convergent, show that 
(a) 2:(an + bn) is absolutely convergent; 
(b) 2:can is absolutely convergent for any constant c. 

30 If 2:an 2 and 2:bn 2 converge, show that 2:anbn is absolutely 
convergent. Hint: (a - b)2 2: 0, so 2ab ::5 a2 + b2. 

3 1  Use Problem 30  to show that i f  2:an2 converges, then 
2:anln is absolutely convergent. 

32 In using the alternating series test, it is a common error 
to check only that an � O; but this is not enough, and 

convergence cannot be deduced unless both of conditions 
(i) and (ii) are verified. Demonstrate this fact in the case 
of the alternating series 

f - + + t - t + f - t + · · · 
by showing that 
(a) an � O; 
(b) the an 's do not form a decreasing sequence; 
(c) the series diverges (hint: consider s2n)· 

33 If s is any given number, show that the alternating har
monic series l - t + t - t + · · · can be rearranged 
(that is, its terms can be written in a different order) in 
such a way that the resulting series converges to s. Hint: 
Take just enough positive terms to get above s, then just 
enough negative terms to get below s, etc. 

CHAPTER 13 REVIEW: DEFINITIONS, CONCEPTS, TESTS 

Think through the following. 
1 Limit of a sequence. 
2 Convergent sequence. 
3 An increasing sequence converges if and only if it is 

bounded. 
4 Convergence and sum for infinite series .  

10 The limit comparison test. 
1 1  The p-series. 
1 2  The integral test. 
13 Euler's constant. 
14 The ratio test. 

5 ollletric-Secies..����������� ���- 15·--''Ph;,...,,nt-t"P<or-�������� ��������� 
6 Harmonic series. 
7 The nth term test for divergence. 
8 Repeating and nonrepeating decimals. 
9 The series for e. 

ADDITIONAL PROBLEMS FOR CHAPTER 13 

SECTION 1 3.2 
1 Find Jim Xn if 

(a) Xn = ( l - ± )( l - +) · · · ( I - �} 
(b) Xn = ( l - ;2 )( I  - ;2 ) · · · ( I - :2} 

l 1 l 
(c) x = -- + -- +  · · · + -- · " n2 + l n2 + 2 n2 + n ' 

(d ) Xn = , r;;-:-: + + · · · + 
vn2 + 1 w+z � -

2 Iff(x) = limn-+� [limm--+� (2/TT) tan- 1  (m sin2 [n ! 7TX])], 
show thatf(x) = 0 when x is rational, and l when x is 
irrational. 

1 6  The alternating series test. 
1 7  Absolute convergence. 
1 8  Absolute convergence implies convergence. 
1 9  Conditional convergence. 

3 If f(x) = l imn->� [limm--+� cosm(n! 7TX)], show that 
f(x) = I when x is rational, and 0 when x is irrational. 

4 Find the value of each of the following limits: 
I x"+ 1 + n 

(a) Jim (x > O); (b) Jim 2 . 11--700 xn + x-n n--700 x'1 + n 
S For each sequence (xn } whose nth term is given, ver

ify that the first three terms are I ,  t, t and find the fourth 
term: 

I 
(a) Xn = -; n (b) Xn = 

2n3 - 12n2 + 23n - 1 2 ; 

(c) Xn = n2(n- l)(n-2)(n-3) · 
*6 If a is any given number, define a sequence ( Xn } (by 

constructing a suitable formula for Xn in terms of n) 
which has the property that x 1 = 1 , x2 = t, x3 = t, and 
X4 = a. 
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*7 

8 

9 

1 0  

* 1 1  

12  

The so-called Fibonacci sequence I ,  I ,  2 ,  3, 5, 8 ,  
1 3 ,  . . . i s  defined recursively by putting x 1 = I ,  x2 = I ,  
and Xn = Xn-2 + Xn- 1 for n > 2.t Find a formula for Xn 
in terms of n. Hint: Make the ingenious guess that Xn 
has the form aAn + f3Bn for suitable values of a, {3, A, 
B; then determine A and B so that the recursion formula 
is true for all a's and {3's; and finally, find a and f3 so 
that x1 = 1 and x2 = I .  
If (xn l is the Fibonacci sequence defined in Problem 7, 
show that lim Xn+ 1/Xn = (1 + Vs)/2. 
The sequence Vz, \!'2-\72, �, . . . can be 
defined recursively by putting X1 = v'2 and Xn+ 1 = 
� for n 2: I .  
(a) Use mathematical induction to prove that Xn < 

Xn+ 1 < 2 for every n. t This shows that the sequence 
is increasing and has 2 as an upper bound, and there
fore converges to a limit x :s 2. 

(b) Show that x = 2 by using the recursion formula. 
(c) Show that x = 2 by finding an explicit formula for 

Xn in terms of n. 
The sequence Vz, V 2 + Vz, Y 2 + V 2 + V2, 
. . .  can be defined recursively by putting x1 = Y2 and 
Xn+ J  = � for n 2: 1 .  Show that it is increasing 
with 2 as an upper bound, and find its limit. �--

If a > 0, then the sequence Va, Ya + Va, 
Ya + Va + Va, . . . can be defined recursively as in 
Problem 10. Show that it converges and find its limit. 
Letf(x) be an increasing continuous function on the in
terval 0 :s x :s 1 .  Define two sequences { an ) and {bn l  
by 

1 
n- I ( k ) an = - L f - , n k�o n 

(a) Show that 

tfibonacci, or Leonardo of Pisa (ca. 1 170-1 230), was an Italian busi
nessman who traveled extensively in the Middle East and was chiefly 
responsible for introducing the Hindu-Arabic numerals (i.e., I ,  2, 
3, . . . ) into Europe. He encountered his sequence in a problem about 
the progeny of rabbits. It has since been applied extensively (and ec
centrically) to religion, art, the shapes of seashells, etc., etc. Fi
bonacci's problem was this: Start a rabbit colony with a pair of new
born rabbits, one male and one female. Suppose it takes a newborn 
pair I month to grow to sexual maturity and I more month to pro
duce a litter. Assuming that no rabbits die and that each litter consists 
of one male and one female, find the number of pairs in the colony 
after n months. Answer: the nth term of the Fibonacci sequence
think about it. 
iRecall that the principle of mathematical induction asserts the fol
lowing: A statement S(n) which is meaningful (in the sense of being 
either true or false) for each positive integer n is true for all n if (i) 
S( l )  is true; and (ii) S(n) implies S(n + 1 ) .  This principle is discussed 
in detail in Appendix B .2. 

* 13 

14 

* 1 5  

* 1 6  

and 

an :S fo1 f(x) dx :S b11 

0 :S ( I 
f(x) dx - an :S f( l )  - f(O) . Jo n 

(b) Show that both sequences converge to the limit 
Jbf(x) dx. 

(c) State a corresponding fact for the interval a :s x :s 
b. 

Use Problem 1 2  to obtain the following limits: 

I 2 n I (a) n2 + n2 + . . . + n2 -7 2; 
1 2 22 n2 1 (b) -;J + -;J + . . .  + -;J -7  3; 

I 1 1 
(c) -- + -- + . .  · + -- -7 ln 2· n + I n + 2 n + n ' 

I 1 I (d) -- + -- + · · · + - -7 ln k· n + I  n + 2 kn ' 

n n n w (e) --- + + . . . + -7 -· 
n2 + 1 2 n2 + 22 n2 + n2 4 ' 

n n n I 
(f) (n + I )2 + (n + 2)2 + . . . + (n + n)2 -7 2; 

I ( · 11' . 2w . nw) 2 (g) - s1n - + sm - + · · · + sm - -7 - ; n n n n 11' 

(h) - s1n - + sm - + · · · + sm - -7 -; 
1 ( . 2 11' . 2 2w . 2 nw) I 
n n n n 2 

(i) _!_ (efe + \Ye2 + · · · + �) -7 e - l ;  n 

U) I 
+ 

1 + · · · + ---
Vn2+)2 Yn2 + 22 Yn2 + n2 

-7 In ( I + Vl); 

I ( I 2 n ) (k) - In - + In - + · · · + In - -7 - 1 .  n n n n 
\Inf I Use part (k) of Problem 1 3  to show that -- -7 -. n e 

Use Problem 1 4  to show that 

1 'V 4 (a) - (n + l )(n + 2) · · · (n + n) -7 -; n e 

(b) _!_ °'V(2n + 1 )(2n + 2) · · · (2n + n) -7 !!..... n � 
If x11 -7 x, then the sequence of the arithmetic means of 
the xn's also converges to x; that is, 
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Yn = 
X1 + X2 + . . .  + Xn n � x. 

Prove this in two steps, as follows. 
(a) Begin by assuming that x = 0, find a positive inte

ger no such that lxnl < €/2 for all n 2: no, and use 
the fact that for these n's we have 

lx1 + X2 + · · · + Xno-d lxnol + · · · + lxnl IYnl s n + n 
a E < -;; + 2· 

where a = lx1 + x2 + · · · + Xno- 1 I is a constant. 
(b) In the general case, where x = 0 is not assumed, 

use the fact that since x11 - x --7 0, we can infer from 
part (a) that 

(xi - x) + (x2 - x) + · · · + (xn - x) Y11 - x = 

--7 0. 

17  Use Problem 16 to  show that 

1 + t + · · · + l ln 
(a) � O· n ' 

n 

1 + v2 + V3 + · · · + Y1n 
(b) --7 1 .  n 

* 18 If {xn } is a sequence of positive numbers such that x11+ ifxn --7 r, then we also have � � r. Prove this as 
follows: Put y11 = In x11 + ifxn; show that 

Yi + Y2 + . . . + Yn- 1 = l n  � _ I n  �; 
n 

and apply Problem 1 6. 
1 9  Use Problem 18 to  show that �In --7 lie. 

*20 Wallis's product, which can be expressed in the form 

2 2 4 4 6 6 2n 2n 7r - · - · - · - · - ·  - . .  · --- · --- --7 -1 3 3 5 5 7 2n - l 2n + I  2 ' 
is proved in Appendix 2 at the end of Chapter 10. Since 2nl(2n + I )  --7 I ,  this can also be written as 

22 42 62 (2n - 2)2 7r 
32 . 52 .  P . . .  (2n - 1 )2 . 2n � 2· 

By taking square roots and multiplying numerator and 
denominator by 2 · 4 · 6 · · · (2n - 2), establish the 
formula 

. (n !)222n • ; hm = v 7r, n-->� (2n) !Vn 
which is needed in Problem 2 1 .  

*2 1  I t  i s  a remarkable fact that the function f(n) = 
Vi;;; n"e-11 is a good approximation to n !  for large n, 
in the sense that the relative error approaches zero: 

Jim 
f(n) - n! 

= lim [ f(n) - 1] = 0. n---too n! n�oo n ! 

This is equivalent to the statement that 

Jim n !  = 1 n-->� � n"e-n ' 

which is known as Stirling 's formula.t In addition to its 
intrinsic interest, this formula is a useful tool (in statis
tics and the theory of probability) for the approximate 
numerical calculation of n ! when n is large. Prove Stir
ling's formula by verifying the following statements: 
(a) 21(2n + 1 )  s In ( l  + lln) (hint: compare the area 

under the curve y = l lx from x = n to x = n + I 
with the area of the trapezoid whose top is tangent 
to the curve at x = n + t); 

( I )n+ I/2 (b) e s I + -;; 
[hint: (n + ±) ln ( 1 + �) s Jn ( 1 + �)"+ l/2l 

(c) the area A under y = ln x from x = l to x = n is 

r ln x dx = n ln n - n + 1 = ln ( � )" + l ; 
(d) the number Xn defined by 

(nle)" Vn n !  
is s 1 [hint: compare the area A i n  part (c) with the 
area B = I + In n! - In Vn of the following fig
ure: Divide the interval from x = I to x = n into 
subintervals by the points f, f, . . . , n - t; on 
the first and last subintervals construct rectangles 
with heights 2 and ln n; and on the remaining 
subintervals construct trapezoids whose tops are 
tangent to the curve y = In x at x = 2, 3, . . . , n - I ] ;  

(e) {x11 }  i s  an increasing sequence which is bounded by 
part (d ) ,  so Jim x11 exists; 

(f) I . 1· X112 I 1m x = 1m - = --" X211 \12; 
[hint: use the formula established in Problem 20] ; 

(g) part (f) implies Stirling's formula. 

SECTIONS 1 3.3 AND 1 3 .4 
22 If 2:;= 1a11 = s, what is the sum of the series 2:;= 1(an + an+ i )? 
tJames Stirling ( 1692- 1 770) began his career by being expelled from 
Oxford for supporting the defunct Stuart dynasty, and ended it as the 
successful manager of a mining company. In his salad days he was a 
friend of Newton, and wrote an essay on infinite series in which he 
almost discovered the formula that bears his name. 
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23 For what values of x is 

valid? 

I 2 4 x - + - + - + · · · = --x x3 x5 x2 - 2 

24 Find the values of x for which 

*25 
converges. What is its sum? 
By finding a closed formula for the nth partial sum Sm 
show that the series 2:;;'= 1nx n converges to xi( ! - x)2 
when lxl < I and diverges otherwise. 

26 Find the sum of the series t + % + if + · · · . � I ,.,(2-
Use the fact that 

n�I � = 6 to show that *27 

I 1 I 1T2 
(a) 12 + 32 + SZ + · · · = 8; 

I 1 I I 1T2 
(b) 12 - 22 + 32 - 42 + . . . = 12; 

I 1 1 I I 1 7r2 
(c) 12 + 52 + 72 + Ji2 + J32 + 172 + . . . = 9 · 

28 Show that 

r� x dx � 1 Jo ex - I = L � n= l 

by expressing the integrand as a geometric series and 
integrating term by term. 

*29 Show that 
1 1 1 

(a) N + H + H + . . . = ln 2; 

I 1 I 
(b) M + M + "(5:7 + · · · = I - In 2; 

I 1 1 1 
(c) T2 - M + H - w + . . . 

= 2 In 2 - 1 .  
30 Show that 

(a) 
ntl (n : I ) !  

= ;! + �! + :! + . . .  = I ; 

� 1 1 
(b) 

n�I n(n + l )(n + 2) = 4; 

(c) � I 
n�I n(n + I )  · · · (n + k) 

3 1  Find the sum of 

(a) f In ( 1 - --\-); 
n=2 

n 

(b) f I 
. 

n= I  (n + l )Vn + n� 
*32 If f(n) � L, show that 

k .  k !
. 

� L [f(n) - f(n + 2)] = f( I )  + /(2) - 2L 
n= l 

and use this to establish the following statements: 
1 I I I 3 

(a) G + N + M + w + . . . = 4; 
1 1 1 1 I 

(b) G - N + M - w + . . . = 4. 

*33 If a 1 ,  a2, a3, . . .  are the positive integers whose decimal 
representations do not contain the digit 5, show that 
2: 1 /an converges and has sum < 90. 

*34 Figure 1 3 .7 shows the region bounded by two circles 

Figure 13.7 

of radius I that are tangent to each other and by a 
straight line tangent to both. A sequence of smaller cir
cles, each having the largest possible radius, is inscribed 
in the region in the manner shown in the figure. It is 
clear from the geometry of the situation that the lengths 
of the diameters of these smaller circles are the terms 
of a convergent series whose sum is 1 .  Show that this 
series is 

SECTION 1 3 .5 

35 Determine whether each of the following series con
verges or diverges: 

(a) 
2 L n2 + n ; 

1 
(c) L (n + 3)2 ; 

(e) L ( 1  + (n 
1
- l )/n]n

; 

(g) L tan-
3

1 n
; n 

o I (3n + 1 )3 . I (n3 + 2)2 ' 

(b) 

(d) 

(f) 

(h) 

(j) 

I n2 + 3 1  
1 0,000n3 ' 

I n 
Vn2+2 '  

L nVZ's ; 

I 3 
2 +  -Vn '  

I �3n2 + I 
, 
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(k) L I ; 
Yn(n + l )(n + 2) 

(I) I 2n + 3 ; n · 3n 

(n) L Jsin3 �; 
( n2  - l ) 1 '3 (p) I n3 + 3 

; 

2n + 3n 
(r) L 3n + 4n ; 

( )  L (n + l )n . t 
nn+ I ' 

(v) 
"°' [In (n + I )]" L., nn+ I 

Sn - 7 
(m) L (n + 5)n ! ; 

(o) I ( n � i r 
(q) I V;+J nn+ 1 12 ' 

(s) L (1 - e- 1/n)n; 

(u) I sin2 7T (n + �); 
36 If a > I ,  show that L l /a1" n diverges if a :s e and con

verges if a > e. 
37 Prove that any convergent series of positive terms can 

be rearranged so that its terms form a decreasing se
quence. 

38 If p is any positive constant, show that L l /(ln n)'' di
verges. 

39 Show that the series 

40 

4 1  

42 

l L (In n)ln n and L ( In In n)ln n 

are both convergent. Hint: Express (In n)1" 11 as a power 
of n. 
Show that 

L (In n)ln In n 

diverges. Hint: (In In n)2 :s In n for large n (why?). 
If an 2: 0 and Lan converges, and if { bn } is a bounded 
sequence of nonnegative numbers, prove that Lanbn also 
converges. Use the series I - t + t - -;\- + · · · to show 
that this is false if the assumptions an 2: 0 and b11 2: 0 
are dropped. 
If Lan and Lb11 are series of nonnegative terms such that 
La,,2 and Lb11 2 both converge, show that La11bn also con
verges. 

SECTION 1 3 .6 
43 Show that 

� I 
11�3 n In n In In n 

diverges, and also that if p is a positive constant, then 

� I 
11�3 n In n (In In n)P 

converges if p > I and diverges if p :s I . 
44 If k is any integer > l ,  show that (_l_ + -1- + · · · + _!__) � In k. n + I  n + 2  kn 
45 The sum of the convergent series L;;"= 1 l /n3 is not 

known. However, if this sum is denoted by s, show that 

*46 

*47 

*48 

l 1 I 7 
(a) J3 + 33 + 53 + . . .  = S s; 

1 1 I I 3 
(b) J3 - 23 + 33 - 43 + . . . = 4 s. 
For p > I ,  the sum of the p-series L;;"= 1 1 /nP is a func
tion of p called the zeta function (the symbol ( is the 
Greek letter zeta) and denoted by ((p); that is, 

� I 1 I ((p) = L - = I + - + - + . . . 
n = I  nP 2P 3P . 

Euler discovered that ((2) = 7T2/6, ((4) = 7T4!90, and 
((6) = 7T6/945 (see the Appendix at the end of Chapter 
14), but the value of ((p) is not known when p is odd. 
(a) Use the inequalities (5) in Section 13 .6 to show that 

the zeta function satisfies the inequalities 

and 

I p 
-- :s ((p) :s -
p - I p - 1 

I :s ((p) :s _P_. 
p - 1  

(b) Show that limp_,1 ((p) = oo and limp .... � t;, (p) = I .  
� 1 

(c) Show that lim a L ---i:;:a = I .  
a�O+ n= I n 

Let k be an integer > 1 and show that 

I a,,(k) 
= In k, 

n= I n 

where a11(k) is defined by 

a"(k) = {� (k _ I )  
if n is not a multiple of k, 
if n is a multiple of k. 

The Cauchy condensation test states that if a1 , a2, . . .  , 
a11, • • •  is a decreasing sequence of positive numbers, 
then the two series 

L an = a 1 + a1 + a3 + a4 + · · · 
n= I 

and 
� 

L 211a2· = a1 + 2a2 + 4a4 + 8as + · · · 
n=O 
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converge or  diverge together. (This statement is called 
the condensation test because it says that a rather small 
proportion of the terms of the first series determines its 
convergence behavior.) 
(a) Prove the condensation test. Hint: If Sn and tn are 

the partial sums, group the terms of the first series 
into blocks to show that Sn S tm if n S 2m, and t111 

S 2sn if 2m S n. 
(b) Use the condensation test to show that the series 

and 

diverge, and that the series 

and 
I L n(ln n)P 

converge if p > I . 
49 Prove that 

I I I I 
I + - + - + · · · + --- = - In n 3 5 2n - 1 2 

1 
+ In 2 + 2 y + o( l ) . 

*50 Show that 
� 1 

(a) 
n?t n(2n + I ) = 2 - 2 In 2; 

� I 
(b) 

n?I n( 4n2 - I ) = 2 In 2 - 1 ;  

I 3 
(c) 

n?I n(9n2 - I )  
= 2 ( In 3 - l ) ; 

� I 
(d ) �1 n( l 6n2 - I )  = 3 In 2 - 2; 

� I 3 
( e) 

n?1 n(36n2 - l )  
= l In 3 + 2 In 2 - 3; 

(f )  ,�1 (4n2 � 1 )2 = t; 
1 3 

(g) 
n?1 n(4n2 - 1)2 = l - 2 In 2. 

SECTION 1 3.7 
Use the ratio test to determine the behavior of the following 
series. 

5 1  I e�· 52 L nIOOO(�f 

53 I l · 3 · 5 · · · (2n - 1 )  
2 · 4 · 6 · · · (2n) 

54 I 
I · 3 · 5 · · · (2n - 1 )  
1 · 4 · 7 · · · (3n - 2) · 

55 

56 

57 

58 

1 · 6 · 1 1  · · · (Sn - 4) I 2 .  6 . 1 0  . . . (4n - 2) · 
1000" I -1 · n. 

' (n + 3) ! 
L n!3" . 

22n I 2 . 4 .  6 . . .  (2n) · 

59 
I I · 4 I · 4 · 7 
2 + N + 2 · 4 · 6 + · · ·  

I · 4 · 7 · · · (3n - 2) 
+ -----'----� + . . . . 2 · 4 · 6 · · · (2n) 

60 (a) Show that the ratio test fail s  for the series 

6 1  

I I 211+(- I )'" 

(b) Show that the root test succeeds for the series in 
part (a) and tells us that this series converges. (Thus, 
the root test works in some cases where the ratio 
test fails .  Even more can be said, for Additional 
Problem 1 8  asserts that if { an ) is any sequence of 
positive numbers, then 

implies 

In principle, therefore, the root test is more power
ful than the ratio test. )  

Consider the series 

L an = a + b + a2 + b2 + a3 + b3 + · · · , 
n= I 

where 0 < a < b < I .  Show that the ratio test fails, and 
establish convergence by using the root test. 

SECTION 1 3 .8 
62 Show that the series 

I _ 1 + 1 
v'2 - 1 v'2 + 1 v3 - 1  

1 --- + · · ·  
\13 + I 

diverges. Does this contradict the alternating series test? 
63 Use the alternating series test to prove the existence of 

Euler's constant y as follows. 
(a) Show that the series 

1 - (2 dx + _!_ - (3 dx + _!_ - (4 dx J 1 x 2 J2 x 3 )3 x 

converges. 
(b) If the sum of the series in (a) is denoted by y, show 

that 
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1 I I s2 - 1 = 1 + - + - + · · · + - - In n n 2 3 n 
' 

so that 

. ( I I ) 
hm I + - + · · · + - - In n = y. n--+� 2 n 

of parts, each covering an interval of length TT and ly
ing alternately above and below the x-axis; and then ex
press the integral as an alternating series, 

l� sin x l7T sin x J.27T sin x -- dx = -- dx + -- dx + . .  · 
O x  O x  7T X 

64 Use the alternating series test to show that the improper 
integral 

= a1 - a2 + a3 - a4 + · · · . 
*65 Show that 1 - t + + - 1o + · · · = } In 2 + 7r/3V3. 
*66 Show that 

r� sin x 
dx Jo x In n I L (- I )" ---;;-- = y In 2 - 2' (In 2)2. 

converges. Hint: Sketch the graph of y = (sin x)/x for 
x > 0 and observe that it consists of an infinite number 

n=2 
Hint: See equation (9) in Section 1 3 .6. 

APPENDIX 1 :  EULER'S 
DISCOVERY OF THE 

00 1 
FORMULA L n2 6 

In Section 1 3 .4 we encountered Euler's formula for the sum of the reciprocals of the 
squares, 

I I 1 � 1 + - + - + - + . . . = -
4 9 16 6 . ( I )  

Our purpose i n  this appendix i s  to understand the heuristic reasoning that led Euler to this 
wonderful discovery. 

We begin with some simple algebra. If a and b are * 0, then it is clear that these num
bers are the roots of the equation 

This equation can also be written in the form 

l - - + - x + - x2 = 0, ( 1 1 )  1 
a b ab 

(2) 

(3) 

in which it is evident that the negative of the coefficient of x is the sum of the reciprocals 
of the roots. If we replace x by x 2, and a and b by a2 and b2, then (2) and (3) become 

and 

1 - (_.!.._ + J...) x2 + -1- x4 = 0. a2 b2 a2b2 

(4) 

(5) 
The roots of (4) are plainly ±a and ±b, and (5) is the same equation in polynomial form, 
from which we see that the negative of the coefficient of x2 is the sum of the reciprocals 
of the squares of the positive roots. This pattern persists as we move to equations of higher 
degree, for 

(whose roots are obviously ±a, ± b, and ±c) can be written as 

I - - + - + - x2 + -- + -- + -- x4 - --- x6 = 0 ( 1 I 1 )  ( 1 1 1 ) 1 
a2 b2 c2 a2b2 a2c2 b2c2 a2b2c2 , 

and so on. 
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Let us now consider the transcendental equation 

sin x = 0 

x3 x5 x1 
x - - + - - - +  · · · = O 3! 5! 7! . 

6 

This can be thought of as "a polynomial equation of infinite degree" with an infinite num
ber of roots 0, ::!:: 'Tr, ::!:: 2 'Tr, ::!:: 3 'Tr, . . . .  The root 0 can be removed by dividing by x, which 
gives the equation 

or 

sin x 
= 0 

x 

x2 x4 x6 
1 - - + - - - + · . . = 0 

3! 5! 7! , 

with roots ::!:: 'Tr, ±27r, ±37r, . . . .  In the light of our knowledge of the roots of this equa
tion, the situation in the previous paragraph suggests that the infinite series 

sin x x2 x4 x6 
-- =  1 - - + - - - +  . . .  

x 3! 5! 7 !  

can be written as an "infinite product", 

sin x 
= ( l _ �)(l _ __£_)( 1 _ __£__) . . . .  

x � 4� 9� 

Further, our analogy also suggests that 

1 1 1 1 
- + -- + -- + . . .  = -7r2 47r2 97r2 3 ! , 

(6) 

from which Euler's formula ( I )  follows at once. As an additional observation, it is inter
esting to note that if we put x = 7r/2 in (6), we find that 

which is equivalent to 

! = ( 1 - ;2 )( 1 - ;2 )( 1 - �2 ) . . .  

= ( ± . % )( i . % )( % . i) . . .  , 
; = ( T - � )( � . � )( % . t) . . . .  

This is Wallis 's product, which was rigorously proved in Appendix 2 at the end of Chap
ter 10. 

These daring speculations are characteristic of Euler's unique genius, but we hope that 
no students will suppose that they carry the force of rigorous proof. It will be seen that 
the crux of the matter is the question of the meaning and validity of (6), which is known 
as Euler's infinite product for the sine. The shortcomings of this discussion invite the con
struction of a general theory of infinite products, within which formulas like (6) can take 
their place as firmly established facts. This aim is achieved in more advanced fields of 
mathematics. 

477 
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APPENDIX 2 :  MORE 
ABOUT IRRATIONAL 

NUMBERS . 7T IS 
IRRATIONAL 

INFIN ITE SERIES OF CONSTANTS 

Readers who have never thought about the matter before may wonder why we care about 
irrational numbers. In order to understand this, let us assume for a moment that the only 
numbers we have are the rationals-which, after all, are the only numbers ever used in 
making scientific measurements. Under these circumstances the symbol \/2 has no mean
ing, since there is no rational number whose square is 2. One consequence of this is that 
the circle x2 + y2 = 4 and the straight line y = x through its center do not intersect; that 
is, in spite of appearances, there is no point that lies on both, because both curves are dis
continuous in the sense of having many missing points, and each threads its way through 
a gap in the other. This suggests that the system of rational numbers is an inadequate tool 
for representing the continuous objects of geometry and the continuous motions of physics. 
In addition, without irrational numbers most sequences and series would not converge and 
most integrals would not exist; and since it is also true that e and 7T would be meaning
less (we prove below that 7T is irrational), the enormous and intricate structure of math
ematical analysis would collapse into a heap of rubbish so insignificant as to be hardly 
worth sweeping up. As a practical matter, it is clear that if the irrationals did not exist, it 
would be necessary to invent them. It was the ancient Greeks who discovered that irra
tional numbers are indispensable in geometry, and this was one of their more important 
contributions to civilization. 

In Section 1 3 .4 we proved that e is irrational by assuming the contrary and construct
ing a number a which was then shown to be a positive integer < 1 -an obvious impos
sibility. This strategy is also the key to the proofs of the following two theorems, but the 
details are somewhat more complicated. 

We shall need a few properties of the function f(x) defined by 

/;( ) - xn( l  - xr - _!_ � k J 'x -
1 

-
1 L ckx ,  n .  n . k=n 

( 1 )  

where the ck's are certain integers and n i s  a positive integer to be specified later. First, it 
is clear that if 0 < x < 1 ,  then we have 

1 0 <f(x) < !· n .  

Next, f(O) = 0 and flm!(O) = 0 i f  m < n or m >  2n; also i f  n ::S m ::S 2n, then 

(2) 

and this number is an integer. Thus, /(x) and all its derivatives have integral values at 
x = 0. Since f( l - x) = f(x), the same is true at x = 1 .  

Theorem 1 e r  is irrational for every rational number r i' 0. 

Proof If r = p!q and e' is rational, then so is (e')q = e P. Also, if e-p is rational, so is 
eP. It therefore suffices to prove that eP is irrational for every positive integer p. 

Assume that eP = alb for certain positive integers a and b. We define f(x) by ( l )  and 
F(x) by 

F(x) = p2"j(x) _ P2n- lj'(x) + P2n-2f"(x) _ . . . _ pjC2n- l l(x) + j(2nl(x), (3) 

and we observe that F(O) and F(l )  are integers. Next, ! [ePXF(x)] = ePX[F'(x) + pF(x)] = p2n+ 1ePXf(x), (4) 

where the last equality is obtained from a detailed examination of F'(x) + pF(x) based on 
(3). Equation (4) shows that 
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b fo1 p2n+ lePXj(x) dx = b[ePXF(x)Jb = aF( l ) - bF(O), 

which is an integer. However, (2) implies that 

11 bp2n+ leP (p2)n 0 < b p2n+ lepxf(x) dx < = bpeP -- ; o n !  n !  

and since the expression on the right � 0 as n � oo (by Example 3 i n  Section 13 .2), it 
follows that the integer aF( l )  - bF(O) has the property that 

0 < aF( l )  - bF(O) < 1 

if n is large enough. Since there is no positive integer < 1 ,  this contradiction completes 
the proof. 

If we say that a point (x, y) in the plane is a rational point whenever both x and y are 
rational numbers, then this theorem asserts that the curve y = ex traverses the plane in 
such a way that it misses all rational points except (0, 1 ) .  An equivalent statement is that 
y = In x misses all rational points except ( 1 ,  0), so In 2, In 3, . . .  are all irrational. It can 
also be proved that y = sin x misses all rational points except (0, 0), and that y = cos x 
misses all rational points except (0, 1 ).* Each of these theorems implies that 7r is irra
tional, since sin 7T = 0 and cos 7T = - 1 . However, we prefer to prove the irrationality of 
7T by the following more direct argument. 

Theorem 2 7T is irrational. 

Proof It is clearly sufficient to prove that 7T2 is irrational, so we assume the contrary, 
that 7T2 = alb for certain positive integers a and b. We again define f(x) by (1 ), but this 
time we put 

F(x) = bn[ 7T2"f(x) _ 7T2n-2f"(x) + 7T2n-4j(4l(x) _ . . . +(- l rJ<2n!(x)], (5) 
and again we observe that F(O) and F( l )  are integers. A calculation based on (5) shows 
that 

so 

! [F'(x) sin 1TX - TTF(x) cos 1TX] = [F"(x) + TT2F(x)] sin 1TX 

( 1 . [F'(x) sin 1TX ] 1 Jo TTa"f(x) sm 1TX dx = 7T - F(x) cos 1TX 0 = F(l )  + F(O), 

which is an integer. But (2) implies that 

11 Tran 
0 < 7Tanf(x) sin 1TX dx < -- < 1 o n !  

i f  n i s  large enough; and this contradiction-that F( l )  + F(O) i s  a positive integer < 1 -
concludes the proof. 

The underlying method of proof in Theorems 1 and 2 was devised by the French math
ematician Hermite in 1 873, but the details of the latter argument were first published by 
Niven in 1 947. 

•The details can be found in Chapter II of I .  Niven's excellent book, Irrational Numbers (Wiley, 
1956). 
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APPENDIX 3: THE 
SERIES 2-l!Pn O F  THE 

RECIPROCALS OF 
THE P RIMES 

INFINITE SERIES OF CONSTANTS 

About 300 B.C. Euclid gave the classical proof of the fact that there exist infinitely many 
prime numbers. About 2000 years after the time of Euclid, in 1 737 ,  Euler discovered two 
fundamentally different new proofs, and the methods he used laid the foundations of a 
new branch of mathematics that is now called analytic number theory. 

In order to understand Euler's ideas, we begin by recalling that the harmonic series 

I 1 1 
I + - + - + . . .  + - + . . .  

2 3 n 

diverges. On the other hand, we know that for any exponent s > 1 , the series 

I 1 1 1 + - + - +  . . .  + - +  . . .  
2" 3" n" 

converges, and the so-called zeta function is defined to be the sum of this series, 

� I l I 
ccs) = I - = 1 + - + - + . . .  

n =  I n" 2s 3s ' 

considered as a function of the variable s. * 
Euler's basic discovery was a remarkable identity connecting the zeta function with the 

prime numbers, 

((s) = IJ 1 - l ip" ' ( I )  

where the expression on the right denotes the product of the numbers l l( l  - p-") for all 
primes p = 2, 3, 5, 7, 1 1 , . . .  , that is, where 

TI l 1 1 1 1 
P 1 - l ip" = 1 - 1/2" 

. 
1 - 113" 

. 
1 - l lY 

. 
1 - 117" . . . . 

To see how the identity ( I )  arises, we recall that the geometric series 1/(1 - x) = 1 + 
x + x 2 + · · · is valid for lxl < 1 ,  so for each prime p we have 1 1 I 

--- = I + - + - + - + . . .  
1 - l ip" p" p2s p3s 

Without stopping to justify the process, we now multiply these series together for all 
primes p, remembering that each integer n > I is uniquely expressible as a product of 
powers of different primes. This yields 

Il --l- = I1 ( 1 + _!_ + _1 + -1 + . .  · ) 
p l ip" p p" p2s p3s 

which is the identity ( 1 ) . 

1 I 1 
= 1 + - + - + . . .  + - +  . . .  

2" 3" n" 

One of Euler's arguments is based on ( I )  and goes this way. We begin by observing 
that if there were only a finite number of primes, then the product on the right side of ( I )  
would be an ordinary finite product and would clearly have a finite value for every 
s > 0, even for s = I .  However, the value of the left side of ( I )  for s = I is the harmonic 
series, 

'We denote the independent variable by s (instead of p, as in Section 13.5) in order to retain the no
tation that is customary in the theory of numbers. 
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�( 1 )  = 1 + f + } + · · · , 
which diverges to infinity. This argument by contradiction, which can be made into a rig
orous proof, shows that there must be an infinite number of primes. Euler's second argu
ment rests on his discovery that the series of the reciprocals of the primes diverges, 

1 1 I I 1 I I - = - + - + - + - + - + . . .  = = · 
P11 2 3 5 7 1 1  ' (2) 

for if there were only a finite number of primes, it is obvious that this series couldn' t  pos
sibly diverge. 

The proof of (2) that we give here starts with the geometric series 

I 1 1 -- = ! + - + - +  . . .  1 - t 2 22 , 

_l_ = I + _!_ + ___!__ + . . . 
1 - t 3 32 • 

1 - t 
I 1 

! + - + - +  . . . 5 52 

I I 
---- = I  + - + -2 

+ . .  
" - l ip,, Pn p,, 

If we multiply these series together by forming a new series whose terms are all possible 
products of one term selected from each of the series on the right, then this new series 
converges in any order to the product of the numbers on the left.* Since every integer 
greater than I is uniquely expressible as a product of powers of different primes, the prod
uct of these series is the series of the reciprocals of all positive integers whose prime fac
tors are � p11• In particular, all positive integers � p11 have this property, so 

P,. I -
1
-
-
-t ' -

--( . .  ___ 
l l
_
P
_
n ?! f;-1 k 

ip,.+ I dx 
> - = In (p11 + l )  > In p,,. I X 

(It is in the transition here from the sum to the integral that we use the ideas of Section 
1 3 .6 .) It follows that 

( 1 - _!_)( 1 - _!_) . . .  ( 1 - ___!__) < -
1 

, 2 3 Pn In Pn 

and taking logarithms of both sides yields 

We next show that 

i In ( 1 - ___!__) < - In In p11• 
k�I  Pk 

_l_ < In ( 1 - ___!__), 
Pk Pk 

for when this is applied to (3), we get 

*This statement follows from one of the theorems proved in Appendix A . 1 3 . 

(3) 

(4) 

48 1 
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or 

n 1 -2 I - < - In In Pn 
k= l Pk 

n 1 I - > -2 In In Pn• 
k= l Pk 

and our conclusion that �11Pn diverges will follow from the fact that In In Pn � 00• To es
tablish (4) and complete the argument, it suffices to observe that the line y = 2x lies be
low the curve y = In ( 1  + x) on the interval - t :s x :s 0 and that every prime is � 2.* 
•For other proofs of (2), see I. Niven, Amer. Math. Monthly, 78 ( 197 1),  pp. 272-273; and C. V. Eyn
den, Amer. Math. Monthly, 87 ( 1 980), pp. 394-397. 



We have remarked before that polynomials are the simplest functions of all, and 
power series can be thought of as polynomials of infinite degree. An expansion 
of a function f(x) in a power series, 

f(x) = ao + a1x + a2x2 + · · · + a,.xn + · · · , 

is therefore a way of expressingf(x) by means of functions of a particularly sim
ple kind. 

Our introductory investigations in Section 13 .  l led us to the following impor
tant power series expansions : 

1 
-- = 1 - x + x2 - x3 + · · · 1 + x ' 

x2 x3 In (1 + x) = x - - + - - · · · 
2 3 ' 

x3 x5 
tan- 1 x = x - - + - - · · · 

3 5 

x2 x3 
ex = 1 + x + - + - + · · · 

2! 3! 

valid for - 1  < x < I ;  ( I ) 

validity unknown for the moment; (2) 

validity unknown for the moment; (3) 

validity unknown for the moment. (4) 

We have rigorously proved formula ( 1 ), but at this stage of our work the others 
are supported only by the plausibility arguments given in Section 1 3 . 1 ,  which are 
suggestive but not conclusive. What is needed for converting plausibility into cer
tainty is a method for approximating a function by polynomials, together with a 
useful expression for the error committed by making such an approximation. This 
method is provided below by Taylor's formula with remainder. The remainder
or expression for the error-will enable us to obtain definite information about 
the x's for which expansions like (2), (3), and (4) are valid. We will also be able 
to use polynomial approximations for computing numerical values of functions 
to any previously specified degree of accuracy. 

Students of calculus do not always understand that infinite series are primar
ily tools for the study of functions. For instance, in Problem 1 1  of Section 13 .4 
we proved the validity of the power series expansions of the sine and cosine, 

x3 x5 
sin x = x - - + - - · · · 

3! 5! 
and 

x2 x4 
cos x = 1 - - + - - . . .  

2! 4! 
(5) 
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1 4 . 2  
THE INTERVAL OF 

CONVERGENCE 

POWER SERIES 

for all values of x; but since these functions were presumably well known be
forehand, it may not be clear what purpose is served by expressing them in this 
form .  Expansions of known functions have their own importance, especially in 
the computation of numerical values for these functions. However, in advanced 
work it often happens that an unknown power series arises from some other 
source, perhaps as a solution of a differential equation. In such a case the series 
is used to define the otherwise unknown function which is its sum, so the series 
itself is the only tool we have for investigating the properties of this function. 
This situation can best be understood by supposing that the basic facts about 
sin x and cos x-their continuity, the identities they satisfy, their properties with 
respect to differentiation and integration, etc.-could only be discovered by 
examining the series given above. For these familiar functions such a tortuous 
process is of course unnecessary, but for many important functions of higher 
mathematics there is no practical alternative. 

Thus, we discussed series of constants in Chapter 1 3  as a prelude to studying 
power series in this chapter. And our primary motive in studying power series is 
to learn what we can about the sums of such series. Also, once the expansions 
(2), (3), and (4) are firmly established, it will be pleasant to know that so many 
familiar but very different functions share the property of being expressible in 
the single pattern provided by power series. These functions are therefore- in a 
manner of speaking-"brothers under the skin." This kinship is the central theme 
of the branch of advanced mathematics called complex analysis. 

Meanwhile, we emphasize that the power series expansions ( 1 )  to (5) are among 
the most important formulas in all of mathematics. In addition to fully under
standing them-and this is one of the main purposes of the present chapter
students should also memorize them. 

To start at the beginning, a power series is a series of the form 
� 

L a,,x" = ao + a1x + a2x2 + · · · + a,,x" + · · · ,  

n=O 
( I )  

where the coefficients a ,,  are constants and x is a variable. In view of what we 
have said in the preceding section, it should be clearly understood here that this 
series stands on its own and is not assumed to be associated with any given func
tion. Since power series are almost always indexed from n = 0 to n = oo, we 
often simplify the notation by writing ( 1 )  as 2.a,,x". 

The geometric series 

L x" = 1 + x + x2 + · · · (2) 

is evidently the simplest power series. We know that this series converges for 
I xi < 1 and diverges for I x i ;;:::: 1 .  In general, we expect a power series to converge 
for some values of x and to diverge for others. 

We will clearly be very interested in knowing the x's for which a given power 
series 2.a,,x" converges. For any such x, the sum of the series is a number whose 
value depends on x and is therefore a function of x. If we denote this function 
by f(x), then f(x) can be thought of as defined by the equation 

(3) 
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Sometimes a power series has a known function as its sum. For example, if 
lx l < 1, we know that the series (2) has 1 /(1 - x) as its sum. However, in gen
eral there is no reason to expect that the sum of a convergent power series will 
tum out to be a function that we can recognize from our previous experience. 

We will be concerned with two major groups of questions. First, what prop
erties does the function f(x) defined by (3) have? Is it continuous? Is it differen
tiable? If it is differentiable, can its derivative be calculated by differentiating (3) 
term by term? And second-turning the whole situation around-if a function 
f(x) is given beforehand, under what circumstances does it have a power series 
expansion of the form (3)? How can this expansion be calculated, and what can 
be said about the x's for which the expansion is valid? These are some of the 
issues we study in the next few sections. 

We begin by determining the nature of the set of points at which an arbitrary 
power series converges. 

First, a few examples. It is clear that every power series converges for x = 0. 
Some series converge only for this value of x, for instance, 

� 

L n"x" = x + 22x2 + 33x3 + 44x4 + . . . . * (4) 
n= I 

To see this, it suffices to observe that for any x * 0 we have lnx l > 1 if n is large 
enough, and therefore the nth term (nx)11 does not approach zero and the series 
cannot converge.  At the opposite extreme are series like 

x" x2 x3 °"' - = l + x + - + - + · · ·  L n !  2! 3 !  ' (5) 

which converges for all values of x. We establish this by showing that (5) is ab
solutely convergent for every x, and this is easy to prove by the ratio test: 

lx"+ 1/(n + l ) ! I  
= 

lxln+ I  . � =
_El_ _. 0 lx"ln ! I  (n + I ) !  lxl" n + 1 

· 

(When using the ratio test, it is necessary to test for absolute convergence, be
cause this test applies only to series of positive terms.) As a simple example that 
lies between these extremes, we have the geometric series (2), which converges 
on the interval l x l < 1 and diverges everywhere else. 

Our task is to discover the structure of the set of all x's for which a given power 
series converges. The examples discussed above show that there are at least three 
possibilities: This set may consist of the single point x = 0, or the entire real line, 
or a finite interval centered at the origin. We will prove that these are the only 
possibilities. 

In order to establish this, we need the following lemma: 

If a power series 2:anx" converges at x i ,  x1 * 0, then it converges absolutely at all x 
with Ix I < lx1 I ; and if it diverges at x , ,  then it diverges at all x with Ix I > lx1 I .  

The proof i s  quite easy. If  La11x1 11 converges, then a11x111 � 0. In  particular, if  n 
is sufficiently large, we have la11x1 11 I < 1 ,  and therefore 

lanx11 I = lanX1"l l� I" < r", 
*This series is indexed from n = I to n = oo because n" has no meaning when n = 0. 

(6) 
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where r = l x/x1 1 .  Now suppose that l xl < lxd .  Then we have 

r = l:, l < l , 

and the inequality (6) tells us that Llanxnl converges by comparison with the 
convergent geometric series L rn . This proves the first statement. To prove the 
second statement, we assume that Lanxin diverges. Then Lanxn cannot converge 
for any x with l xl > l xd ,  for if it does, then what has just been proved implies 
the absolute convergence-and therefore the convergence-of Lanx1n, and this 
contradicts our assumption. 

We are now in a position to state and prove the main facts about the conver
gence behavior of an arbitrary power series. 

Given a power series Lanx", precisely one of the following is true: 

(i) The series converges only for x = 0. 
(ii) The series is absolutely convergent for all x. 

(iii) There exists a positive real number R such that the series is absolutely convergent 
for lx l  < R and divergent for l x l  > R. 

The argument goes this way. If (i) is not true, then the series converges for some 
x1 * 0, and by the lemma we know that the positive number r = lx i l  has the 
property that La,,xn is absolutely convergent on the interval - r < x < r. Let S 
be the set of all positive numbers r with this property. If S is unbounded, then 
(ii) is true. Now suppose that neither (i) nor (ii) is true, so that S is a nonempty 
set of positive numbers which has an upper bound. By the basic completeness 
property of the real number system, S has a least upper bound. This means that 
there is a smallest number R such that r ::5 R for all r 's  in S.* It is now easy to 
see that R has the properties stated in (iii). 

The positive real number R in case (iii) is called the radius of convergence of 
the power series .  We have seen that the series converges absolutely at every point 
of the open interval ( -R, R), and diverges outside the closed interval [ - R, R] .  
No general statement can be made about the behavior of the series at the end
points R and -R. There are examples of series that converge at both endpoints, 
or diverge at both, or converge at one and diverge at the other; to find out what 
happens for any particular series, we must test each endpoint separately. The set 
of all x's for which a power series converges is called its interval of convergence. 
These ideas are illustrated in Fig. 14 . 1 .  

It is customary to put R = 0 when the series converges only for x = 0, and to 
put R = oo when it converges for all x. This convention allows us to cover all 
possibilities (except endpoint behavior) in a single statement: 

Every power series Lanx" has a radius of convergence R, where 0 :s R :s oo, with the 
property that the series converges absolutely if lx l < R and diverges if lx l > R. 

It should be noticed that if R = 0, then no x satisfies the condition lx l < R, and 
if R = =, then no x satisfies the condition ! xi > R, so in both of these cases our 
general statement is true by default. 

·see Appendix A. 1 for a general discussion of least upper bounds. 
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l i I 
I Absolute 

Divergence I convergence Divergence I 
-R 0 R 

If a power series L:anxn is given, how do we find its interval of convergence? 
The first step is to find the radius of convergence R. There is a simple formula 

for R that works in many situations: 

R = lim 1�1, an+ I 
(7) 

provided this limit exists-and has oo as an allowed value. This follows directly 
from the ratio test, because the series converges absolutely, or diverges, accord
ing as the number 

Jim lan+ 1xn+ 11 = lim I a,,+ 1 I · lx l = lxl 
lanXn I an J im la,,lan+ d 

is < 1 or > 1 ,  that is, according as 

f xf < lim 1�1  an+ I  
or f xf > Jim 

1�1-a,,+ 1 

This establishes (7). 
The second step is to test the behavior of the series at the endpoints. 

Example 1 Find the interval of convergence of the series 

As indicated, this series is understood to be indexed from n = 1 to n = oo, be
cause an = lln2 has no meaning for n = 0. 

Solution Here we have 

I a�:! I = lln2 = (n + 1 )2 -" I l l(n + 1 )2 n2 

so R = 1 .  In this example the series converges at both endpoints : At x = 1 the 
series is L lln2, which is a convergent p-series, and at x = - 1  it is L(- Irln2, 
which converges by the alternating series test. The interval of convergence is 
therefore the entire closed interval [ - 1 , 1 ] .  

Example 2 Find the interval of convergence of the series 

n + 2 3 4 °"" -- xn = 2 + -x + - x2 + · · · L, 3" 3 32 . 

Solution This time we have 

I an I n + 2 3n+ 1 n + 2 
a11+ 1 

= � . n + 3 = n + 3 . 
3 

-'> 
3 ' 
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Figure 14.l The interval of conver-
gence. 
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so R = 3. In this case the series diverges at both endpoints: At x = 3 it becomes 
2 + 3 + 4 + · · · , and at x = -3 it becomes 2 - 3 + 4 - · · · . The interval 
of convergence is therefore (-3, 3). 

Example 3 Find the interval of convergence of the series 

Solution Here we have 

I a�:! I = l/(n + I )  = n + 2 ---'> 
1 

ll(n + 2) n + I ' 

so R = 1 .  At x = l the series is the harmonic series 1 + I + f + · · · , which di
verges, and at x = - 1 it is the alternating harmonic series 1 - I + f - · · · , 
which converges. The interval of convergence is therefore [ - 1 ,  1 ) . 

Example 4 Find the interval of convergence of the series 

(8) 

Solution Formula (7) does not apply directly because half of the coefficients of 
this power series are zero. Nevertheless, the series can be written in the form 

y y2 I - - + - - . . .  
2!  4 !  

where y = x2 . Our formula can be applied to this series and yields 

I an I l /(2n) !  (2n + 2) ! 
an+ I = l /(2n + 2) !  = (2n)! 

= (2n + 1 )(2n + 2) -'> oo, 

so R = oo for the y-series. It follows that the x-series also converges for every x, 
so the desired interval of convergence for (8) is ( - oo, oo) . 

If a is a real number, the series 

L an(x - a)" = ao + ai(x - a) + a2(x - a)2 + · · · (9) 
n=O 

is called a power series in x - a. For the sake of emphasis, the special case ( 1 ) ,  
in which a = 0, is often called a power series in x. If we put z = x - a, then 
(9) becomes kanzn, which is a power series in z. If we can determine the inter
val of convergence of this latter series by the methods previously described, then 
this information can be used to find the interval of convergence of (9). For in
stance, if kanzn has [ -R, R) as its interval of convergence, then it converges for 
-R :s z < R. This means that -R :s x - a <  R or a  - R :s x < a +  R. We then 
say that [a - R, a + R) is the interval of convergence, and that R is the radius 
of convergence, of the power series (9). 

For the sake of simplicity of notation, we shall confine most of our detailed 
discussions to power series in x. 
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PROBLEMS 

Find the interval of convergence of each of the following 
power series. 

1 

3 

5 

7 

9 

L __!!__ xn 4n . 
n !  .L rnon xn. 
xn .L n + 4 · 
x" .L n3 + 1 .  

L (3n) ! n (2n) ! x · 
x 2n+ 1  

2 

4 

6 

8 

10 

_L n!x11• 
2n L 2Xn . n 

L ( - l )n+ I �-
L 2n 2n (2n)! x · 

xn L n(n + 1 ) . 
xn 

2 1  

23 

25 

27 

29 

n2 L 2n (x - 4)n. 
10" L (2n)! (x - 7Y. 

L (2�) !  (x - lO)n. n . 

L In n - (x - e)n. 
e " 

22 

24 

26 

28 

3n _L -- (x - l )n. n2 + 1 

.L <x -3)" 
n22n . 

( - 1 )"+ 1 L (x - 3)n. n ln n 
n2 L 23n (x + 2)n. 

Find the radius of convergence of 
(a) the hypergeometric series 

1 ab a(a + l )b(b + 1 )  2 + -x +  x c 2 !c(c + 1 )  
1 1  L (-3Y " 1 2  L n2n · a(a + ! )(a + 2)b(b + l )(b + 2) x 3  + . . .  ; + 3 !c(c + l )(c + 2) 
13 I <- 1 )" 2,,+ 1  2n + l 

x · 14 L n2x". (b) the Bessel function 

15  I <-2)" x" . 16 L (- l )n+ l x". 
x 2 x4 x 6  lo(x) = 1 - 22" + 22 . 42 - 22 . 42 . 62 + . . . . 

n Vn 2" 
30 Give an example of a power series with R = 'TT'. 

17  
xn 

L In n · 1 8  L ln n xn. 3 1  If infinitely many coefficients of  a power series are n nonzero integers, show that R :S 1 . 
19 

( - l )n L n(ln n)2 xn. 20 
3n I n4" xn. 

Consider a power series ka11x" with positive radius of convergence R. We saw 
in Section 14.2 that this series can be used to define a function f(x) whose do
main of definition is the interval of convergence of the series. Specifically, for 
each x in this interval we define f(x) to be the sum of the series, 

( l )  

This relation between the series and the function i s  often expressed by saying 
that ka11x" is a power series expansion of f(x) . For example, we know that if 
lxl < 1, then 

I 
-- = 1 - x + x 2 - x3 + · · · + (- l )nx n + · · · 1 + x , (2) 

because the geometric series k(- l )"x" converges and has the sum 1/( 1 + x). 
Accordingly, the function f(x) = 1/( 1  + x) has the series on the right of (2) as a 
power series expansion. 

Polynomials, which are .finite sums of terms of the form a11x", are very simple 
functions. They are continuous everywhere, and can be differentiated and inte
grated term by term. Even though the sum of a power series can be a much more 
complicated function, it is still simple enough to share these three properties with 
polynomials inside the interval of convergence. 

1 4 . 3 
DIFFERENTIATION AND 
INTEGRATIO N  OF 
POWER SERIES 



490 POWER SERIES 

We give the following formal statement of these very important facts: 

(i) Thefunctionf(x) defined by ( 1 )  is continuous on the open interval (-R, R). 
(ii) The junction j(x) is differentiable on (-R, R), and its derivative is given by the 

formula 

(iii) If x is any point in ( -R, R), then 

lx 1 1 I 
0 f(t) dt = aox + 2 a1x2 + 3 a2x3 + · · · + -;:;-+I a,,x 11+  1 + · · · . 

(3) 

(4) 

The proofs of these statements depend on a special kind of convergence called 
uniform convergence. The details can be found in Appendix A . 1 5 . 

Several comments are in order. 
First, we observe that if (ii) is applied to the function f' (x) in (3), then it fol

lows that f' (x) is itself differentiable. This in turn implies that f"(x) is differen
tiable, and so on. Thus, the original function f(x) has derivatives of all orders. 
We can summarize the situation this way: In the interior of its interval of con
vergence, a power series defines an infinitely differentiable function whose de
rivatives can be calculated by differentiating the series term by term. The term
by-term differentiation can be emphasized by writing (3) as 

_!!____ (""' a x") = ' _!!____ (a x") dx L n L dx n . 

It is worth knowing that the term-by-term differentiability of a convergent series 
of functions is usually false; it is true here only because we are dealing with a 
special kind of series. As a simple example of the failure of this property, we 
mention the series L;:;'= 1 (sin nx)ln2, which is absolutely convergent for all x by 
comparison with the convergent series Ll!n2, because ICsin nx)!n21 :::; lln2. The 
difficulty arises with the term-by-term differentiated series L(cos nx)ln, because 
this series diverges for x = 0. 

In the case of (iii), if we prefer to avoid using the dummy variable t, then ( 4) 
can be written in the form 

f 1 1 1 f(x) dx = a()X + - a 1x2 + - a2x3 + · · · + -- a,,xn+ I + · · · 

2 3 n + l ' (5) 

provided we find the indefinite integral on the left that equals zero when x = 0. 
The term-by-term integration of power series can be emphasized by writing (5) 
as 

We also point out that it is part of the meaning of (3) and (4) that the differ
entiated and integrated series on the right sides of these equations converge on 
the interval ( -R, R). We shall prove this at the end of this section. However, be
fore doing so we give several examples of the practical value of the procedures 
discussed here. 

Example I Find a power series expansion of ln ( 1  + x). 
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Solution Our starting point is the fact that the derivative of In ( 1  + x) is 
1 /( 1  + x), and for ! xi < 1 this function has the power series expansion given by 
(2). Now, using (5) and the fact that In ( 1  + x) equals zero when x = 0, and in
tegrating (2) term by term, we at once obtain 

x2 X3 Xn+ I 
In  ( 1  + x) = x - - + - - · · · + (- l )n -- + . . .  

2 3 n + I 
= i (- J )n+ l �. n= I n 

We know from the preceding discussion that this expansion is valid for l xl < 1 .  
Further, we know from Section 13 .6  that it is also valid for x = 1 ,  but our pre
sent methods give no information on this matter. 

Example 2 Find a power series expansion of tan- 1 x. 

Solution The derivative of this function is 1/( 1 + x2), and we see by replacing 
x by x2 in (2) that 

I 
--- = I  - x2 + x4 - . . .  + (- l )nx2n + . . . 1 + x2 

if l xl < 1 .  Using (4) this time, we get 

Lx dt Lx tan- 1 x = -- = ( 1  - t2 + t4 - t6 + · · · ) dt o l + t2 o 
x3 xs x1 = x - - +- - - + . . . 
3 5 7 

00 X211+ I = I (- IY --n=O 2n + I 
for ! xi < 1 .  Again, our present methods give no information about what happens 
at the endpoints x = ± 1 .  

Example 3 Find a power series expansion of ex. 

Solution In Section 8.3 we proved that ex is the only function that equals its 
own derivative everywhere and has the value 1 at x = 0. To construct a power 
series equal to its own derivative, we use the fact that when such a series is dif
ferentiated, the degree of each term drops by 1 .  We therefore want each term to 
be the derivative of the one that follows it. Starting with 1 as the constant term, 

the next should be x, then t x2, then 
2 
� 

3 
x3, and so on. This produces the 

series 

x2 x3 xn 
1 + x + - + - +  · · · + - + · · · 

2 !  3 !  n! 
which converges for all x because 

R I. l /n ! 1. ( l )  = 1m l/(n + l ) ! = 1m n + = oo. 

(6) 

We have constructed the series (6) so that its sum is unchanged by differentia
tion and has the value 1 at x = 0. In view of the above remark, this establishes 
the validity of the expansion 
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x2 x3 xn ex = I + x + - + - +  · · · + - + · · · 
2 !  3 1 n 1 

for all x. 

Example 4 Find power series expansions of 1 /( 1  - x)2 and 1 /( 1  - x)3 . 

Solution We begin by noticing that 

( I  � x)2 = ! C � J. 
The next steps are to expand 1 /( 1  - x) into the power series 2,xn for lx l < 1 ,  and 
then to differentiate this series term by term: 

I d --- = - ( 1  + x + x2 + · · · + xn + · · · ) ( I  - x)2 dx 
= I + 2x + 3x2 + · · · + nx11- 1 + · · · 

� � = L nxn- 1 = L (n + l )x". 
11= 1 n=O 

Another differentiation yields 

so 

2 d [ I ] 
( I  - x)3 

= dx ( I  - x)2 

d = - ( I  + 2x + 3x2 + · · · + nx11- 1 + · · ·) dx 

= 2 + 3 · 2x + 4 · 3x2 + · · · + n(n - l )x11-2 + · · · , 

I I --� = - [2 + 3 · 2x + 4 · 3x2 + · · · + n(n - I )x11-2 + · · · J 
( I  - x)3 2 

= I n(n - 1 )  x"_2 = I (n + 2)(n + I ) x". 
11=2 2 11=0 2 

Example S Find the sum of the series 

x2 x3 � x11 x + - + - + . . .  = I -. 2 3 n= I n 

Solution It is easy to see that R = 1 ,  so the series converges to some function 
f(x) for lxl < 1 .  Differentiating this series clearly simplifies it to 

f' (x) = I + x + x2 + · · · + x" + · · · = -1- . 1 - x 

Since f(O) = 0, integration now yields 

f(x) = -In ( I  - x). 

Example 6 Find the sum of the series 
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� x + 4x2 + 9x3 + · · · = L n2x". n= I 
Solution Again we clearly have R = 1 ,  so the series converges to some func
tion f(x) for lxl < 1 .  We can write 

f(x) = x + 4x2 + 9x3 + · · · + n2x" + · · · = xg(x), 
where 

g(x) = I + 22x + 32x2 + · · · + n2xn- l  + · · · . 

At this point we notice that 

d g(x) = - (x + 2x2 + 3x3 + · · · + nx" + · · -) dx 

By Example 4, 

so 

and 

d 
= dx [x( l + 2x + 3x2 + · · · + nxn- l + · · - )] . 

l + 2x + 3x2 + · · · + nxn- l + . . . = __ I _ 

( I  - x)2 ' 

(x) _ _!!__ [ x ] _ l + x g - dx ( 1  - x)2 - ( 1  - x)3 

x + x2 f(x) = ( 1  - x)3 . 

In conclusion, we return to the unfinished business of showing that series (3) 
and ( 4) converge on the interval ( -R, R). 

The proof for (4) is easy: Since 2:lanxnl converges and 

the comparison test implies that L I :�nl 
I converges, and therefore 

also converges. 

a xn l x I-"- = I -- anxn+ l n + l  n + l 
The proof for (3) is a bit more complicated. Let x be a point in the interval 

(-R, R) and choose E > 0 so that lxl + E < R. Since l xl + E is in the interval, 

2:lanClxl + E)nl converges. In Problem 7 students are asked to show that the in
equality 

is true for all sufficiently large n's .  This implies that 

lnanxn- l l � lanCl xl + e)" I , 
so the series 2:lnanxn- l I converges by the comparison test. 
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PROBLEMS 

2 

3 

4 

Find power series expansions for the following functions, 
and determine the values of x for which these expansions 
are valid: 

1 
(a) ( l + x)2 ; (b) (1 + x)3 · 
Show that 

� 

I 
n=O 

(n + l )(n + 2)(n + 3) l 6 x" = ( l - x)4 · 

Find the sum of each of the following series: 
x3 XS x2n+ 1 

(a) x + 3 + S + . . .  + 2n + 1 + . . .  ; 
x x2 x11- 1 

(b) l + - + - + . . . + -- + . . . . 2 !  3 !  n !  ' 
( c) x + 2x2 + 3x3 + · · · + nx" + · · · ; 
(d) x + 2x3 + 3x5 + · · · + nx211- 1 + · · · . 
Show that 

f x" = _ (x In ( 1 - t) dt. n= I n2 Jo t 

by integrating another series. 
7 If E > 0, show that the inequality lnx"- 1 I � ( lx l  + e)" i s  

true for all sufficiently large n's. Hint: n 1111 lx l 1 - C l ln) � lx l . 
8 On p. 41 -7 in Vol .  1 of his Lectures On Physics (Addison

Wesley, 1964), Richard Feynman (Nobel Prize, 1 965) 
writes: 

Thus the average energy is 

liw(_O + x + 2x2 + 3x3 + · · · ) (E) = I + x + x2 + · · · 

Now the two sums which appear here we shall leave for 
the reader to play with and have some fun with. When 
we are all finished summing and substituting for x in 
the sum, we should get-if we make no mistakes in the 
sum-

liw 
(E) = ehwlkT _ 

S Show that the Bessel function 

This, then, was the first quantum-mechanical formula 
ever known, or ever discussed, and it was the beautiful 
culmination of decades of puzzlement. 

x2 x4 x6 
lo(x) = l - 22 + 22 . 42 - 22 . 42 . 62 + · · · 

satisfies the differential equation xy" + y' + xy = 0. 
6 Obtain the series 

Use Problem 3(c) to have the fun that Feynman recom
mends. (It is not necessary to know that Ii is Planck's con
stant, but it is necessary to substitute x = e-fiwlkT.) A few 
sentences on, Feynman writes: "This expression should, 
of course, approach kT as w � 0. See if you can prove 
that it does-learn how to do the mathematics." Prove that 
it does . 

� l x3 1 · 3 x5 
In (x + x ) = x - 2 3 + � S 

1 4 . 4  
TAYLOR SERIES AND 
TAYLOR'S FORMULA 

l · 3 · 5 x7 - 2 4 6 -7 + · · ·  . . 

We have solved the problem of determining the general nature of the function 
that is the sum of a convergent power series: Inside the interval of convergence, 
it is a continuous function with derivatives of all orders. We now investigate the 
converse problem of starting with a given infinitely differentiable function and 
expanding it in a power series. In Section 14 .3  we established several such ex
pansions for a few special functions with particularly simple derivatives. Our pur
pose here is to consider a method of much greater generality. 

It may seem that the coefficients of a convergent power series are not con
nected with one another in any necessary way. In fact, however, they are bound 
together by an invisible chain, which we now make visible. 

To this end, let us assume that a function f (x) is the sum of a power series 
with positive radius of convergence, 

f(x) = L anX " = ao + a,x + a2x 2 + · · · ,  R > O. ( 1 )  
n= O  



14.4 TAYLOR SER IES AND TAYLOR'S FORMULA 

By the results of Section 14.3, repeated term-by-term differentiation is legitimate 
and yields 

f'(x) = a1 + 2a2x + 3a)X 2 + · · · , 
f"(x) = 1 · 2a2 + 2 · 3a:JX + 3 · 4a4X 2 + · · · , 

f"'(x) = I · 2 · 3a3 + 2 · 3 · 4a4X + 3 · 4 · 5asX 2 + · · · , 

and in general, 

fCnl(x) = n!an + terms containing x as a factor. 

We know that these series expansions of the derivatives are valid on the open 
interval lxl < R. By putting x = 0 in these equations we obtain 

so 

f(O) = ao, 

f"'(O) = 1 · 2 · 3a3, 

f"(O) az = 2!, 

ao = f(O), 

f"'(O) 
a3 = -3-,-, 

f"(O) = I · 2a2, 

f(n)(Q) = n !am 

a1 = f'(O), 

f<"l(Q) an = --1-. n .  (2) 

These are very remarkable formulas, for they tell us that if f (x) has a power 
series expansion of the form ( ! ) , then its coefficients must be the numbers given 
by (2). The series ( 1 )  therefore becomes 

f"(O) f<11l(O) f(x) = f(O) + f'(O)x + 2! x 2  + · · · + -n
-
! 
- x " + · · · . (3) 

The power series on the right of (3) is called the Taylor series of f(x) [at x= O] . 
The following conclusion is implicit in this discussion: 

If a function is represented by a power series with positive radius of convergence, then 
there is only one such series and it must be the Taylor series of the function. 

Briefly, power series expansions are unique, because (2) tells us that the coeffi
cients are uniquely determined by the function itself. If we use the standard con
ventions mentioned earlier, that O! = 1 and that the zeroth derivative of f(x) is 
f(x) itself [J<0l(x) = f(x)] ,  then (3) can be written as 

f(x) = f f(n)�Q) x n. 
n= O  n .  

The numbers a11 = j<11l(Q)/n ! are called the Taylor coefficients of  f(x).* 

(4) 

Equation (3) was true in the preceding discussion because we started with a 
convergent series whose sum is denoted by f(x). We now start with a function 
f (x) that has derivatives of all orders throughout some open interval I containing 

*Brook Taylor ( 1 685-173 1 )  was secretary of the Royal Society and an enthusiastic supporter of New
ton in his acrimonious controversy with Leibniz and the Bernoullis about the invention of calculus. 
Taylor published his power series expansion of a function in 1 7 15,  but only as a formula and with
out any consideration at all of the issue of convergence. This expansion had already been published 
by John Bernoulli in 1 694. Taylor was fully aware of this fact, but chose to ignore it out of partisan 
malice. In those days science roused passions that today we see only in politics and religion. 
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the point x = 0. We can form the Taylor series on the right of (3) and ask the 
question, Is equation (3) a valid expansion of f(x) on the interval I? Lest there 
be any misunderstanding, we state as clearly as possible that this equation is not 
always valid, and whether it is or not depends entirely on the individual nature 
of the function f(x). In Remark 2 we will give an example of an infinitely dif
ferentiable function whose Taylor series converges everywhere, but not to the 
value of the function, so in this particular case equation (3) is false. 

In order to put our ideas on a firm foundation, we proceed as follows. Break 
off the Taylor series on the right side of (3) at the term containing xn and define 
the remainder Rn(x) by the equation 

f"(O) j<11l(O) f(x) = /(0) + f'(O)x + � x 2  + · · · + -n-1 - x" + R,,(x). (5) 

Then the Taylor series on the right side of (3) converges to the function f(x) 
precisely when 

(6) 

These equations don't really solve anything, because R11(x) is defined to be what
ever it takes to make (5) true, and (6) is merely the meaning of the statement that 
the Taylor series converges to the function. This approach is useful only if we 
can show that R11(x) can be expressed in a form that makes it feasible to try to 
prove (6) in the case of particular functions. We emphasize that (6) is not always 
true, because (3) is not always true. The most convenient general formula for 
R11(x) is 

1<11+ ' l(c) 
R,,(x) = (n + I ) ! x n+ I , (7) 

where c is some number between 0 and x. When R11(x) is expressed this way, (5) 
is called Taylor's formula with derivative remainder. • The proof of (7) that we 
give is fairly technical, and is placed in Remark 3 so that students who wish to 
skip it can easily do so. 

To summarize, Taylor 's formula with derivative remainder states that under 
the above assumptions the function f(x) can be written in the form 

f"(O) j<11l(O) j<11+  ' l(c) 
f(x) = f(O) + f'(O)x + -- x2 + · · · + -- x" + x 11+ 1  

2 !  n !  (n + I ) !  ' 

where c is some number between 0 and x. 
We now give several illustrations of the use of (6) and (7). First, however, we 

observe that 

lim hl'._ = 0 
n---?oo n !  (8) 

for every x, because the series °2:.x"/n ! is absolutely convergent everywhere. We 
shall need this fact in our first two examples. 

Example 1 Find the Taylor series for the functionf(x) = ex, and use (6) and (7) 
to prove that it converges to e x for every x. 

Solution We clearly have 

'There are other forms of the remainder that we do not discuss. 
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f(x) = e x, 

J'(x) = e x, 

J"(x) = e x, 

and so on. By substituting in (3) we obtain 

f(O) = I ; 

f' (O) = I ;  

f"(O) = I ;  

x2 x 11 � x" e x = I + X + - + · · · + - + · · · = L 
I • 2 ! n ! n � o  n . (9) 

and to prove the validity of this expansion by our present methods, we examine 
the remainder Rn(x). For any x, the maximum value of the exponential function 
on the interval from 0 to x is easily seen to be its value M at the right endpoint. 
By (7) and (8) we therefore have 

I f (n+ l l(c) I I e c  I lxl11 + 1 IR11(x)I = (n + l ) !  x "+ I = (n + l ) ! x n+ I ::5 M (n + l ) ! --'> 0, 

so (9) is valid for all x. Of course, we established (9) in another way in Section 14.3 .  

Example 2 Find the Taylor series for f(x) = sin x, and use (6) and (7) to prove 
that it converges to sin x for every x. 

Solution We can arrange our work as follows: 

f (x) = sin x, f (0) = O; 
f' (x) = cos x, J' (O) = I ;  

f"(x) = -sin x, f"(O) = O; 
f"'(x) = -cos x, f"'(O) = - l ;  

and the subsequent derivatives follow this same pattern. By substituting in (3), 
we obtain 

x 3  XS x 2n+ I  sin x = x - - + - - · · · + (- 1 )11 + · · · 3 !  5 !  (2n + I ) ! 
00 x 2n+ I = �o (- l )ll (2n + l ) ! · ( I Q) 

So far, all we know is that if sin x has a power series expansion, then that ex
pansion must be ( 10). To prove that ( 1 0) is actually true for every x, we use (6) 
and (7). Since either 

l fCn+ 1 l(x)I = I sin xi or I J<n+ l )(x)I = icos xl , 
it is clear that IJ(n+ 1 l(c)I ::::: 1 for every number c. Therefore by (7) and (8) we 
have 

lxl"+ I lxln+ I IRnCx) I = lf(n+ I l(c) I (n + l ) ! ::=;; (n + l ) ! � 
0, 

so ( 1 0) is true for all x. Students will remember that we proved ( 1 0) in Prob
lem 1 1  of Section 1 3 .4 by a very different method, one requiring considerable  
ingenuity. Our present method has the advantage of  being straightforward and 
systematic. 
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Example 3 Find the Taylor series for cos x, and prove that it converges to 
cos x for every x. 

Solution We could proceed directly, as in Example 2. Instead, this is left for 
students to carry out in the problems, and we obtain the desired series by dif
ferentiating ( 1 0), 

x 2  x4 x 2n cos x = 1 - - + - - · · · + (- I )n -- + . .  · 2 !  4! (2n) ! 
� 2n = 2= c- 1 )" c

x
2 ) ' . n=O n · 

( 1 1 )  

The validity of this expansion is guaranteed b y  the results of Section 14.3. Since 
we have found a power series expansion for cos x, we know by the discussion 
of uniqueness given above that this series must be the Taylor series. 

The three series established in these examples can be used to find power se
ries expansions for many other functions. Thus, since (9) is true for every x, a 
power series representation for e-x' can be found by substituting -x 2 for x. This 
yields 

x4 x6 x 2n 
e-x' = 1 - x 2  + - - - + · · · + (- 1 )" - + . .  · 2 !  3 !  n !  · 

We can apply this formula to evaluate the definite integral 

( 1 2) 

even though the corresponding indefinite integral cannot be calculated in terms 
of elementary functions. Term-by-term integration of ( 12) gives 

( ' - ' [ x3 xs  x 7 ] 1  
Jo e x dx = x - 3 + � - � + . . .  

o 

I 1 I = 1 - - + -- - -- + . . .  3 5 · 2 ! 7 · 3 ! . 

This expression for the value of the integral as a series of constants is exact, 
and can be used to obtain this value in decimal form to any desired degree of 
accuracy. 

Example 4 The inverse tangent series and the computation of 'TT. In Example 2 
of Section 14.3 we gave a rigorous proof that the expansion 

x 3  xs x1 � x 2n+ I  tan- 1 x = x - - + - - - + · · · = I (- 1 )" -- ( 13) 3 5 7 n=O 2n + 1 
is valid for - 1 < x < 1 ,  but this proof gave no information about what happens 
at the endpoints x = ± 1 .  Taylor's formula is not much help here either, because 
it is very laborious to calculate the successive derivatives of the function f (x) = 

tan- 1 x. To give a rigorous  proof that ( 1 3) is actually valid on the closed inter
val - 1  � x � 1 ,  we adopt a completely different-and much more elementary 
-approach. 

We begin with the algebraic identity 
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I xn 
-- = I  + x + x2 + . . . + xn- 1 + --
1 - x  I - x ' x of- I ,  

which can easily be  verified by multiplying both sides by 1 - x. Replacing x 
by - t  gives 

I _ _ ( - I )" tn -- = J - ( + 12 _ . . . + (- J )n I tn I + ��-
1 + t l + t , 

with the restriction that t =t= - 1 .  When t is now replaced by t2, this becomes 

I _ _ ( - l )"t2" -- = I - r2 + t4 - . . . + ( - l )n I t2n 2 + ��-
) + t2 I + 12 ' 

without restriction. By  integrating both sides of this from t = 0 to t = x, we 
obtain 

where 

Ix dt x3 x 5  x 2n- I 
tan- I x =  -- = x - - + - - · · · + (- l )n- I --- + R (x) 

O I + t2 3 5 2n - I n ' 

Ix r2n 
Rn(x) = (- J )n -

1--2 dt. 0 + t 

( 1 4) 

We now prove that Rn(x) � 0 as n � oo, provided only that - 1  :s x ::::: 1 .  But 
this is easy, because the inequality 1 + t2 ;::::: 1 allows us to write 

IR (x)I = -- dt :s t2n dt = � :s --- -4 0. llx r2n I llx I lx12n + I I 
n o I + 12 o 2n + I 2n + I 

The fact that R11(x) � 0 for the stated values of x enables us to conclude from 
(14) that 

x 3 x s  tan- I x = x - - + - - · · · 
3 5 

Leibniz's famous formula 

- I :s x :s l . 

'TT 1 I I - = ! - - + - - - + · · ·  
4 3 5 7 

( 1 5) 

now follows at once from ( 15) on putting x = 1 .  In principle, Leibniz's formula 
can be used for computing the numerical value of 7T, but as a practical matter, 
the series converges so slowly that this method is of little value. A more efficient 
procedure is to use the formula 

'TT 1 1 - = tan- I - + tan-I -4 2 3 '  ( 1 6) 

and then to compute the two terms on the right by means of ( 15). [To establish 
( 1 6), notice that if A = tan- 1 f and B = tan- 1 t, then 

l + _!_ 
tan (A + B) = tan A + tan B = _2 

__ 3 
= 1 .] 1 - tan A tan B 1 - i 

However, most of the extended computations of 7T have been based on the 
formula 

'TT I I - = 4 tan - I - - tan - 1 --4 5 239 '  ( 1 7) 
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which was discovered in 1 706 by John Machin, a Scottish astronomer. We shall 
not pursue the details of these matters any further, but instead simply mention 
that 7T has been computed by these methods to more than 500,000 decimal places, 
of which the first twenty are 

7T =  3 . 1 4 1 59 26535 89793 23846 . . . .  

Further information can be found in P. Beckmann, A History of 7T (Golem Press, 
197 1 ), especially pp. 140- 14 1  and 1 80- 1 8 1 .* 

Remark 1 Given a functionf(x) that is infinitely differentiable in some interval 
containing the point x = 0, we have examined the possibility of expanding this 
function as a power series in x. More generally, if f(x) is infinitely differentiable 
in some interval containing the point x = a, we can ask about its possible ex
pansion as a power series in x - a, 

f(x) = I an(X - ar = ao + a , (x - a) + a2(X - a)2 + . . . . ( 1 8) 
n=O 

This problem is equivalent to the first, because ( 1 8) is the same as the series 
g(w) = ao + a iw + a2w2 + · · · , where w = x - a and g(w) = f(x), and 
therefore no separate discussion is required. Since gCn)(O) = fCn>(a), the Taylor 
series of f(x) in powers of x - a (or at x = a) is 

� J<"l(a) f (x) = L -- (x - a)n 
n=O n !  

f"(a) = f(a) + f'(a)(x - a) + -z! (x - a)2 + · · · .  ( 1 9) 

Some writers refer to (3), which is the special case of ( 19) corresponding to 
a = 0, as Maclaurin 's series. However, this custom has no historical justification 
and is rapidly being abandoned. Whenever we use the phrase "Taylor series" 
without qualification, we always mean "Taylor series in powers of x," or at 
x = 0. 

The fundamental tool for proving the validity of the Taylor series expansion 
( 19) for a specific function f(x) is a slightly expanded version of Taylor 's for
mula with remainder as discussed above. This expanded version states that f (x) 
can be written in the form 

f"(a) f"'(a) f(x) = f(a) + f'(a)(x - a) + -- (x - a)2 + -- (x - a)3 2 !  3 !  

J<"l(a) + · · · + --1 - (x - ar + Rn(x), (20) n .  

where the remainder Rn(x) i s  given by  the formula 

J<n+ l l(c) R,,(x) = (n + l ) !  (x - a)n+ I (2 1 )  

and c i s  some number between a and x .  And just as in the simpler but equiva
lent case expressed by (5), (6), and (7), the series on the right of ( 1 9) converges 

'More recently, 7T has been computed to more than 100 million decimal places. For an account of 
this see the article on the Indian mathematical genius Srinivasa Ramanujan ( 1 887-1920) in the Feb
ruary 1988  issue of Scientific American. 
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to f (x) precisely when 
J im R11(x) = 0. (22) 11-->� 

The polynomial part of (20) is called the nth-degree Taylor polynomial at x = a. 
We notice that the remainder term (21 )  is very similar in form to the terms in the 
Taylor polynomial, except that/<11+ 1 l(x) is evaluated at c instead of a. All we can 
say about c is that it lies somewhere between a and x. The expression (2 1 )  for 
the remainder is often called Lagrange 's remainder formula. * 

Example 5 Use (2 1 )  and (22) to prove the validity of the following Taylor se
ries expansion of f(x) = sin x about the point a = n/2: 

sin x =  l - J_ (x - ..!!_)2 + J_ (x - ..!!_)4 _ J_ (x - ..!!_)6 + · · · (23) 2! 2 4! 2 6! 2 . 
Solution We start by calculating the successive derivatives of f(x) = sin x and 
finding their values at a = 'TT/2: 

f(x) = sin x, 

f' (x) = cos x, 

f"(x) = -sin x, 

f"'(x) = -cos X, 

f <4l(x) = sin x, 

f (;) = sin ; = I ;  

f' ( ; ) = cos ; = O; 

r(;) = -sin ; = - ! ;  

f"'( ;) = -cos ; = O; 

J<4J( ;) = sin ; = I ; 

and so on. These results show that in this case the Taylor series ( 1 9) is just the 
series (23). We must now prove that this series converges to sin x for all x. But 
Lagrange's formula gives 

= I J<n+ l l(c) ( - ..!!_)"+ 1 1 < Ix -7Tl21"+ I IRh)I (n + !) ! x 2 - (n + I ) !  

because f<n+ ll(c) i s  either ± sin c or ±cos c ,  and therefore IJ <n+ I l(c) I :5 1 .  By 
using (8) we now conclude that 

Jim R11(x) = 0, n-->� 
and this proves the validity of (23). 

*Joseph Louis Lagrange ( 1 736- 1 8 1 3) was the foremost French mathematician of the late eighteenth 
and early nineteenth centuries. In his early life he made outstanding discoveries in the calculus of 
variations, number theory, and analytical mechanics. His genius for generalization and analysis was 
most fully revealed in his great treatise Mecanique Analytique ( 1 788). In this masterpiece he unified 
general mechanics and made of it, as the Irish scientist Sir William Hamilton later said, "a kind of 
scientific poem." Among the enduring legacies of this work for the mathematical physics of our own 
time are Lagrange's generalized coordinates, Lagrange's equations of motion, and the concept of po
tential energy. [For some details about these matters, see pp. 526-532 of George F. Simmons, Dif
ferential Equations, 2nd ed. (McGraw-Hill, 1 99 1  ).] His later life was shadowed by a profound melan
choly in which he lost his taste for mathematics and science and was sadly skeptical of the grandiose 
bureaucratic schemes of politicians for reforming human nature and relieving human misery. "If you 
wish to see the human mind truly great," he said, "enter Newton's study when he is decomposing 
sunlight with his prism or unveiling the system of the world with his mathematics." 
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Figure 14.2 

POWER SERIES 

Remark 2 In Problem 42 of Section 1 2.3 we asked students to consider the func
tion f(x) defined for all real numbers x by { e- l lx 2 

f(x) = 0 
x * 0, 
x = 0. 

This function is continuous and has derivatives of all orders for all values of x. 
Furthermore, every derivative vanishes at x = 0, that is,J <n)(O) = 0 for every pos
itive integer n. This means that the graph of the function (Fig. 14.2) is extremely 
flat at the origin-we might even say "infinitely flat." For this function, Taylor's 
formula (5) becomes 

f(x) = 0 + 0 + · · · + 0 + Rn(x). 

The Taylor series of the function is therefore the series 

O + O + · · · + O + · · · , 

which converges for every x but converges to f (x) only for x = 0. Thus, even 
though a function has derivatives of all orders everywhere, it still is not neces
sarily represented by its Taylor series; and if we wish to establish the validity of 
such a representation, we must invoke solid additional arguments of some kind, 
as illustrated in the examples discussed above. 

Remark 3 We now give a proof of formula (7) for the remainder Rn(x). First, 
we define a function Sn(x) by writing 

for x =F 0. Next, we hold x fixed and define a function F(t) for 0 :s t :s x (or 
x :s t :s 0) by writing 

J"(t) 
F(t) = f(x) - f(t) - f'(t)(x - t) - 2! (x - t)2 - · · · 

f (n)(t) - --, - (x - t)n - Sn(x)(x - t)n+  1 • n .  

Equation (5)  shows that F(O) = 0. Also, it is obvious that F(x) = 0. I t  follows 
that F ' (c) = 0 for some number c between 0 and x. • By differentiating F(t) with 
respect to t, canceling, and replacing t by c, we get 

so 

J<n+ I l(c) 
F '(c) = - 1 (x - cY + Sn(x)(n + l )(x - c)" = 0, 

n .  

j<n +  l l(c) 
S,,(x) = 

(n + I ) !  

and the proof of (7) i s  complete. 

•rn words, if the graph of our function F(t) touches the I-axis at two points, then it must have a hor
izontal tangent somewhere in between. This inference rests on the Mean Value Theorem. 
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PROBLEMS 

1 Use (3) to find the Taylor series of each of the follow
ing functions, and then use (6) and (7) to prove that each 
of these expansions is valid for all x: 
(a) cos x; (b) e-x; (c) e3x. 

2 Obtain the series ( 1 1 ) for cos x from the series ( IO) for 
sin x by integrating term by term. Hint: Remember that 
the indefinite integral on the left must equal zero when 
x = 0. 

3 Obtain the series ( 1 0) for sin x by differentiating the 
series ( I l )  for cos x. 

4 Find the Taylor series expansion of each of the follow
ing functions (hint: any power series that converges to a 
function in an interval about x = 0 must be the Taylor 
series of that function): 
(a) x2ex; (b) xe-3x; 
(c) cos Yx; (d ) x sin 5x; 
(e) sin x2 ;  
(f) cos2 x [hint: cos2 x = tC I + cos 2x)]; 
(g) sin2 x; (h) I - 7 sin2 x; 
. sin x (1 ) f (x) = -- for x * O,f (0) = I .  x 

In Problems 5-9, use any method to obtain each of the given 
Taylor series expansions as far as indicated, without worry
ing about convergence. 

5 tan x = x + ±x3 + -fs x5 + · · · . 
6 sec2 x = 1 + x2 + f x4 + · · · . 

x2 x4 x6 
7 In (cos x) = -2 - 12 - 45 - · · · . 

8 In ( I  + sin x) = x - +x2 + tx3 - -lzx4 + · · · . 
9 In ( 1  + ex) =  In 2 + +x + tx2 - 1�2x4 + · · · . 

10 Show that a polynomial P(x) = ao + a1x + a2x2 + · · · + 
a,,xn is its own Taylor series. 

1 1  If P(x) is a polynomial of degree n and a is any number, 
show that 

P' (a) p<nl(a) P(x) = P(a) + -1 1- (x - a) + · · · +  -n
-
1
- (x - a)". 

12 Find the Taylor series expansion of 
(a) 3x2 - 5x + 7 in powers of x - I ;  
(b) x3 in powers of x + 2 .  
Check the expansions in (a) and (b) by using algebra. 

13 (a) Let p be an arbitrary constant and use (3) to obtain 
the binomial series 

(1 + x)P = I + px + p(p - I ) x2 
2 !  

+ 

+ p(p - l )(p - 2) x3 + .
. .  

3 !  

p(p - l )(p - 2 )  · · · (p - n + 1 )  
n !  x n  + . . . .  

(b) Observe that this series terminates and is a polyno
mial whenever p is a nonnegative integer, and only 
in this case. In all other cases, show that this series 
has radius of convergence R = 1 .  The fact that the 
expansion in (a) is valid for lxl < I is not easy to es
tablish by the methods of this section; a different 
type of proof is outlined in Additional Problem 9 at 
the end of this chapter. 

1 4  Use Problem 1 3  to write the Taylor series expansion of 
( 1  - x2)- 112, and integrate this to get the Taylor series 
for sin- 1 x. 

1 5  Find power series representations for 

(a) J si: x dx; (b) J � dx; 

I dx 
(c) Vl+7 . 

16 Prove formula ( 1 7) by putting A = tan- 1 t. B =  
tan- 1 2�9 , and computing successively tan 2A, tan 4A, 
and tan (4A - B). EJ 17  Calculate the numerical value of 7T from each of formu
las ( 16) and ( 1 7) by using the first four nonzero terms of 
the series ( 1 5) to calculate the inverse tangents. Round 
off your answers to five decimal places . 

1 8  Use Lagrange's remainder formula to prove the validity 
of the following Taylor series expansions for all x: 

(a) sm x = - + - v 3 x - - - - · - x - -. 1 I , ;::;- ( 7T ) l l ( 7T )2 
2 2 6 2 2 !  6 

(c) sm x = - v 3 + - x - - -. L ;::;- 1 ( TT) 
2 2 3 

_!_ v3 . ..!_ (x - !!._)2 - _!_ . ..!_ (x - 7T)3 + 2 2! 3 2 3 !  3 

(d ) cos x = - (x - ;) + ;, (x - ;)3 -
...!... (x - 7T)s + 5 !  2 



504 

14 . 5 
COMPUTATIONS USING 

TAYLOR'S FORMULA 

II 

0 
1 
2 
3 
4 
5 
9 

10  

I +  I + _!__ + _!__ + · · · + _!__ 2 1  3 1 11 1 

1 .000000000 
2.000000000 
2.500000000 
2 .666666667 
2. 708333334 
2.7 1 6666667 
2 .7 1 828 1526 
2 .7 1 828 1801 

POWER SERIES 

How are the values of sin x computed? In everyday work, we simply push a cou
ple of buttons on our calculator and the desired values are displayed. But where 
do the values come from that the engineers put into the calculator in the first 
place? Is there a little old man in the calculator factory with very sharp eyes, a 
superb protractor, and a space-age-quality ruler who draws the angles with great 
care, measures the opposite side and hypotenuse, and then computes the sine? 
Not very likely. This method might give two or even three decimal places cor
rectly, but not the many decimal places available from a good calculator. 

In this section we describe a method for obtaining any value of sin x with great 
accuracy. More generally, we will show how to use the Taylor polynomials of 
Section 14.4 to find the values of such important functions as sin x, cos x, ex, 

and In x to as many decimal places as we please. And in doing this ,  we will freely 
use the great power of calculators for quickly performing simple but tedious arith
metical calculations. 

THE USE OF LAGRANGE'S REMAINDER FORMULA 

In the previous section we proved that for all x, 

x2 x3 xn ex = l + x + - + - +  . .  · + - + . . . 
2 !  3 !  n !  

In particular, i f  we put x = 1 we  obtain the following familiar formula for e as 
the sum of an infinite series: 

I I I e = l + I + - + - + · · · + - + · · ·  2 !  3 !  n !  · 

This means that e can be approximated to any degree of accuracy by using a suit
able partial sum, 

1 I I e = l + l + - + - + · · · + -2 !  3 !  n ! ' ( I )  

The value of  n in this sum i s  a t  our disposal : the larger we take n ,  the more 
accurate the approximation will be. This is shown in the adjoining table, where 
we have used ( 1 )  to approximate e for various values of n. The value of e to nine
decimal-place accuracy is 2.7 1 828 1 828. This level of accuracy is achieved with 
n = 12. 

Now suppose we want to approximate e to a previously specified level of ac
curacy. It would then be important to determine how large the value of n should 
be to guarantee the desired accuracy. For example, how large should n be to guar
antee an error that is less than 0.000005? Lagrange's remainder formula is the 
basic tool for answering such questions. 

According to Lagrange's formula (2 1 )  in Section 14.4, if f(x) is approximated 
by its nth-degree Taylor polynomial at x = a, then the absolute value of the er
ror Rn(X) is 

IR (x) I = c (x - a)n+ l  = c Ix - al"+ ' .  I f(n+ l )( ) I I J (n+ l )( )I n (n + 1 )  ! (n + 1 )  ! (2) 

In this formula, c is an unknown number between a and x, so the value of 
J<n+ 1 l(c) usually cannot be determined exactly. However, we saw in Section 14.4 
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that it is often possible to find an upper bound for J J <n+ l l(c) J ,  that i s ,  to find a 
number M such that J J <n+ 1 l(c)J ::5 M. In such a case it follows from (2) that 

IR,,(x)I :S (n �l) !  Ix - aln+ I , (3) 

so we have a convenient upper bound for the magnitude of the error R,,(x). In the 
following examples we give several applications of these ideas, but first we in
troduce some terminology intended to clarify the concept of the accuracy of ap
proximations. 

We say that an approximation is accurate to n decimal places if the magni
tude of the error is Jess than 0.5 X 1 0-11• This means that the largest possible 
error cannot change the figure in the nth decimal place. The following table will 
be helpful for understanding this idea. 

Level of accumcY 

l decimal place 
2 decimal places 
3 decimal places 
4 decimal places 

Magnirude of" error 
is less than 

0.05 = 0.5 x 10- 1 
0.005 = 0.5 x 10-2 
0.0005 = 0.5 x 10-3 
0.00005 = 0.5 x 10-4 

Example 1 Use ( 1 )  to find an approximation for e that is accurate to four dec
imal places. 

Solution By Taylor's formula with remainder we have 

x2 x" ec ex = I + x + - + · · · + - + x"+ 1 , 2 ! n !  (n + I ) !  
where c is between 0 and x .  For x = 1 this gives 

I I ec e = 1 + 1 + -21 + . . .  + I + ( 1 ) 1 ' . n . n + . 
where c is between 0 and 1 .  Thus the magnitude of the error in the approxima
tion ( 1 )  is 

I ec I ec IR,, I =  (n + l ) !  = (n + l ) ! '  
where 0 < c < 1 .  Even though we do not know the exact value of c, neverthe
less c < 1 tells us that ec < e 1 = e, so 

IR,,I < (n : I ) ! . (4) 

Furthermore, even though we do not know the exact value of e (this is what 
we are trying to approximate !), we do know that e < 3. This allows us to replace 
(4) by 

(5) 

We are now on solid ground: If we choose n so that 

505 



506 POWER SERIES 

IRn l < (n : I ) !  < 0.5 X I 0-4 = 0.00005, (6) 
then the approximation ( 1 )  is guaranteed to be accurate to four decimal places. 
A suitable value of n can be found by trial and error by using a calculator. Thus, 
we can calculate 3/(n + 1 )  ! for n = 0, 1, 2, . . . until we find a value of n satis
fying (6). For n = 7 and n = 8 we have 

3 
(7 + I ) !  = 0.000074 and 

3 (8 + I ) !  = 0.000008, 
so n = 8 is the first positive integer satisfying (6). Therefore, to four-decimal
place accuracy we have 

I I I I I I I 
e =  1 + I + - + - + - + - + - + - + -2 ! 3 !  4 ! 5 !  6! 7 !  8 ! '  

which a calculator shows is approximately 2.71 827876985. We conclude that 
e = 2 .7 1 83 to four-decimal-place accuracy. 

APPROXIMATING SINES AND COSINES 

Example 2 Use the Taylor series for sin x at a = 0 to approximate sin 5° to five
decimal-place accuracy. 

Solution In the Taylor series 

. x3 x5 x7 
Sin X = X - - + - - - + · · · 3 !  5 !  7 ! 

we remind the student that the angle x i s  assumed to be  measured in radians. 
Since 5° = 1T/36 radians, we have 

sin 50 = sin ..!!_ = ..!!_ -
( 7T/36)3 + ( 7T/36)s - ( 7T/36) 7 + . . .  36 36 3 ! 5 1  7 ! . (7) 

We must now decide how many terms of this series to keep in order to guaran
tee five-decimal-place accuracy. 

If we write f(x) = sin x, then by (2) the magnitude of the error committed when 
sin x is approximated by its nth-degree Taylor polynomial is 

1!<11+ 1 )< )I IR I = c JxJn+ I 11 (n + 1 )  ! ' 
where c is some number between 0 and x. Since J<n+ 1\c) is either ±sin c or 
±cos c, it is clear that I J <11+ 1 l(c) I :s: 1 ,  and therefore 

In particular, if x = 1Tl36 then 

JxJn+ I IRnl :S (n + l ) !  · 

( 7T/36)11 + I IRnl :S (n + l ) !  · 
This shows that we will achieve five-decimal-place accuracy if 
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( 7r/36)n+ 1 < 0 5 X 1 0-5 = 0 000005 (n + 1 ) !  · · · (8) 
By experimenting with the help of a calculator, we find that for n = 2 and n = 3 
we have 

(7r/:!6)3 = 0.0001 and ( 71"�16)4 = 0.000002, 
so n = 3 is the first positive integer satisfying (8). This shows that in (7) we only 
need to keep terms up to the third power to guarantee five-decimal-place accu
racy. We can therefore write 

. 5° = � - (7r/36)3 = 0 087 16 sm 36 3! · ' 

in full confidence that five decimal places are correct. 

To approximate the value of a function /(x) at a point xo by using a Taylor se
ries in x - a, two factors must be kept in mind when choosing the location of 
the point a. First, it should be fairly easy to evaluate f(x) and its derivatives at a, 
since these values are necessary for constructing the Taylor series. And second, 
a should be as close as possible to x0, since the series will converge more rapidly 
when x0 - a is small; that is, fewer terms will be required in a partial sum to ob
tain a specified level of accuracy. 

Example 3 Approximate cos 93° to six-decimal-place accuracy. 

Solution We choose a = 7r/2 ( = 90°), because cos x and its derivatives are easy 
to evaluate at this point and this value of a is quite close to the point x0 = 93° = 
%1i'TT' where we want to make the approximation. From Problem 18(d) in the pre
vious section, the Taylor series for cos x at a = 'TT'/2 is 

cos x = -(x - 'Tr) + _!_(x - 71")3 - __!_ (x - !!_)5 + . .  · 2 3 ! 2 5 ! 2 . 
For x = %1i 'TT this becomes 

3 1  'Tr 1 ( 'Tr )3 1 ( 'Tr )5 cos 930 = cos 60 'Tr = - 60 + 3! 60 - 5! 60 + . . . . (9) 
We must now decide how many terms of this series to keep for six-decimal-place 
accuracy. 

If we write f(x) = cos x, then the magnitude of the error committed in ap
proximating cos x by its nth-degree Taylor polynomial at a = 'TT'/2 is 

- lf(n+ l )(c)I I - 'Tr ln+ I IRnl - ( n  + l ) !  X 2 , 
where c is some number between 'TT'/ 2  and x. Just as in Example 2 we have 
j/Cn+ I l(c) j :s 1 ,  so 

In particular, if x = %1i 'TT then 

< Ix -7r/2jn+ I IRnl - (n + I ) !  
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( 7T/60)n+ I 
IRn l :S (n + I ) !  · 

We will have six-decimal-place accuracy if 

( 7T/6or+ I < 0 5 X J 0-6 = 0 0000005 (n + I ) ! . . . 

For the cases n = 2 and n = 3, our calculator tells us that 

( 7T/:!0)3 
= 0.00002 and 

( 7T/60)4 
= 0 0000003 4 !  . , 

( 1 0) 

so n = 3 is the first positive integer that satisfies ( 1 0) .  Thus, in (9) we only need 
to keep terms up to the third power to be sure of six-decimal-place accuracy: 

1T I ( 7T )3 cos 93° = -
60 

+ 3! 
60 

= -0.052336. 

APPROXIMATING LOGARITHMS 

The approximation of natural logarithms begins with the familiar series 

x2 x3 x4 
In (1 + x) = x - 2 + 3 - 4 + · · · , ( I I )  

which is valid for - 1  < x :s; 1 (Example J in Section 14.3) . This series itself is 
of little value for computation because it converges so slowly. However, if we 
replace x by -x we obtain 

x2 x3 x4 In ( I  - x) = -x - - - - - - - · · · 
2 3 4 

for - 1  :s; x < 1 ,  and by subtracting ( 1 2) from ( 1 1 ) we get 

In -- = 2 x + - + - + - + · · · ( I + x ) ( x3 xs x 7 ) 1 - x 3 5 7 

( 1 2) 

( 1 3) 

for - 1  < x < 1 .  This series can be used for computing the natural logarithm of 
any positive number y by putting 

or equivalently 

l + x 
y = �, 

y - l x =  y+T· 

( 14) 

( 1 5) 

If we sketch the graph of the function ( 14) [Fig. 14 .3 ] ,  we see at once that y > 0 
corresponds to - 1  < x < 1 .  Thus, for example, to compute In 2 we put y = 2 in 
( 1 5), which gives x = t. Substituting this value in ( 1 3) yields 

In 2 = 2 [ t + + ( + )3 + i ( t )5 + t ( + r + · · -
] . 

If we now calculate the sum of the four terms shown here and round off to five 
decimal places, we get 

In 2 = 0.693 13 ,  

which compares favorably with the calculator value In  2 = 0.693 14  7 1 8056. 
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PROBLEMS 

It is to be understood that these are all calculator problems, 
so we will not repeat the symbol � that signals this fact. 

1 Use the inequality (5) to find a value of n that guaran
tees that ( I )  will approximate e to 
(a) five-decimal-place accuracy; 
(b) ten-decimal-place accuracy. 

2 Use x = - J in the Taylor series for ex at a = 0 to ap
proximate 1/e to four-decimal-place accuracy. 

3 Use x = + in the Taylor series for ex at a = 0 to ap
proximate Ve to five-decimal-place accuracy. 

4 Use the Taylor series for sin x at a = 0 to approximate 
sin 3° to six-decimal-place accuracy. 

5 Use the Taylor series for cos x at a = 0 to approximate 
cos ( 7T/l 5) to six-decimal-place accuracy. 

6 Use an appropriate Taylor series for sin x to approximate 
sin 84° to six-decimal-place accuracy. 

7 Use an appropriate Taylor series for cos x to approximate 
cos 32° to six-decimal-place accuracy. 

8 Use an appropriate Taylor series for sin x to approximate 
sin 50° to six-decimal-place accuracy. 

9 Find the lowest-degree Taylor polynomial for sin x at 
a = 0 that guarantees five-place-accuracy on the interval lxl :s 7T/4. 

10 If Rn is the nth remainder for sin x at a = 0, show that 
(a) IR3I < 0.5 X 1 0-5 for lxl < 0.22 = 1 2.6°; 

(b) IR5I < 0.5 X 1 0-5 for lxl < 0.59 = 33.8°; 
(c) IR1I < 0.5 X 1 0-5 for lxl < 1 .06 = 60.7°; 
(d) IR9I < 0.5 X 1 0-5 for lxl < 1 .6 1 = 92.2°. 

1 1  If R,, is the nth remainder for cos x at a = 0, show that 
(a) IRzl < 0.5 X 1 0-5 for lxl < 0 . 1 0  = 5.7°; 
(b) IR4I < 0.5 X 1 0-5 for lxl < 0.39 = 22.3°; 
(c) IR61 < 0.5 X 1 0-5 for lxl < 0 .8 1  = 46.4°; 
(d) IRsl < 0.5 X 1 0-5 for lxl < 1 .33 = 76.2°. 

1 2  Use the first two nonzero terms o f  the series ( 1 3) to ap
proximate In 1 .25. Round off your answer to four deci
mal places. Repeat the calculation by using the first four 
nonzero terms of the series. 

13  Repeat the preceding problem for In 3 by using the first 
two, four, five, and six nonzero terms of the series, each 
time rounding off your answer to four decimal places. 

1 4  Find an interval of  values centered on x = 0 within which 
3 

sin x can be approximated by x - � ! with four-decimal-
place accuracy guaranteed. Find a corresponding inter-

3 5 val for approximating sin x by x - � ! + 1T with the 
same accuracy. 

1 5  Find an upper bound for the error in the approximation x2 x4 of cos x by l - 2T + 4T on the interval lxl < 0.4. 

One very large part of mathematics where power series can be put to effective 
use is in the solution of differential equations. We hinted at this in Section 1 3  . 1 ,  
and now we explore the possibilities a little more fully. 1 4 . 6  

APPLICATIONS TO 
DIFFERENTIAL 
EQUATIONS 

Example 1 We begin by considering the equation 

y' = y, ( 1 )  

which we  discussed i n  an  informal way i n  Section 1 3 .  l .  We assume that this 
equation has a power series solution of the form 

(2) 

that converges for lxl < R with R > 0. We know from Section 14.3 that a power 
series can be differentiated term by term in its interval of convergence, so 

(3) 

If two power series are equal on an interval, the ideas of Section 14."4 tell us that 
the corresponding coefficients must also be equal. Therefore, since y' = y, the 
series (2) and (3) must have equal coefficients: 

These equations enable us to express each a,, in terms of a0: 

ao an = ,, n.  
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When these coefficients are inserted in (2), we obtain our power series solution, ( x2 x3 xn ) y = ao l + x + - + - + ·  . .  + - + · · ·  2 !  3 !  n !  ' (4) 

where no condition is imposed on a0. It is important to understand that so far 
this solution is only tentative, because we have no guarantee that ( 1 )  actually has 
a power series solution of the form (2). The above argument shows only that if 
( I )  has such a solution, then that solution must be (4). However, it follows at 
once from the ratio test that the series in (4) converges for all x, so the term-by
term differentiation is valid and (4) really is a solution of ( 1 ) . In this case we 
easily recognize the series in (4) as the power series expansion of eX, so (4) can 
be written as 

Needless to say, we can get this solution directly from ( 1 )  by separating vari
ables and integrating. Nevertheless, it is important to realize that (4) would still 
be a perfectly respectable solution even if ( 1 )  were unsolvable by elementary 
methods and the series in (4) could not be recognized as the expansion of a fa
miliar function. 

Example 2 We next attack the second-order equation 

y "  + y = 0 (5) 

by the same method. That is, we assume the equation has a solution in the form 
of a power series � 

y = ao + a ,x + a2x2 + aJX3 + · · · = L anX11 
n=O 

(6) 

with radius of convergence R > 0. It is permissible to differentiate this series 
term by term, so 

and 

y' = a, + 2a2x + 3aJX2 + · · · = L nanXn- l 
n= I  

y" = 2a2 + 2 · 3aJX + 3 · 4a¥2 + · · · = L ( n  - l )na11x11-2. 
11=2 

In order to combine the series for y and y" more easily, we write y" as follows: 
� 

y" = L (n + l )(n + 2)a11+zX11• (7) 
n=O 

In effect, we replace n in the first formula for y" by n + 2 and start the summa
tion at 0 instead of 2. Now, adding the series (6) and (7) in accordance with the 
differential equation (5), we obtain 

� 

L [(n + l )(n + 2)an+2 + an]X" = 0. (8) 
n=O 

By thinking of the right side of this as a power series whose coefficients are all 
zero, we see that all the coefficients on the left must also be zero: 
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or 

(n + l )(n + 2)an+2 + Gn = 0 

Gn+2 = - (n + l )(n + 2) ' (9) 

where n = 0, 1 ,  2, 3, . . . .  This is called the recursion formula for the coefficients 
an, because it enables us to calculate them step by step starting with a0. We can 
see more clearly what this means if we write these equations out as follows: 

n = 0, 

n = 1 , 

n = 2, 

n = 3, 

n = 4, 

n = 5, 

and so on. The emerging pattern is now clear: 

for even coefficients, 

for odd coefficients, 

G2n = ( - l )n (;�) ! ; 
- ( l )n 

a , a2n + I  - - (2n + I ) !  

By putting these coefficients back into the power series (6), we can write the so
lution of (5) as 

ao 2 a, 3 ao 4 a , 5 ao 6 a 1 7 Y = a  + a x - -x - -x + -x + -x - -x - -x + · · · O I 2 !  3 !  4 ! 5 !  6 !  7 !  

[ x2 x4 x6 ] [ x3 x5 x 7 ] 
= ao 1 - 2! + 4! - 6! + · · · + a1 x - 31 + 5! - 71 + · · · . ( 10) 

Again, all we have shown is that if (5) has a solution of the form (6), then that 
solution must be ( 10). And again, since both series in ( 10) converge by the ratio 
test, term-by-term differentiation of these series is valid and ( 10) really is a so
lution of (5), without any restrictions on the constants a0 and a 1 •  In particular, 
we see that each of the bracketed series in ( 1 0) taken individually is a solution 
of (5), by first putting a0 = 1 and a 1 = 0, and then ao = 0 and a1 = 1 .  

In this problem luck is on our side, because we recognize the two series in 
( 1 0) as the Taylor series expansions of cos x and sin x. This solution of (5) is 
therefore the general solution that we already know from our earlier work, namely, 
y = a0 cos x + a1 sin x, where a0 and a 1 are arbitrary constants.* 

*Problem 19 in Section 9.2. 

5 1 1  
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However, in most cases we won' t  be this lucky. Our solution will be a power 
series, but only rarely will we be able to recognize it as the power series expan
sion of any function that we know. The student should realize that we have at
tached names to only a few of the infinite number of functions that exist out there 
in the universe of mathematics, and it is extremely unlikely that any given dif
ferential equation will have solutions that can be expressed in terms of these fa
miliar named functions. Our next example provides an illustration of this. 

Example 3 The differential equation 

xy" + y' + xy = 0 ( 1 1 ) 

has applications in mathematical physics that justify giving it serious special at
tention. To solve it, we assume a power series solution 

= 

y = ao + a 1x + a2x2 + ayr3 + · · · = L a,,x" n=O 
with positive radius of convergence. Then 

= 

y' = a1 + 2a2x + 3ayr2 + · · · = L na,,x11- 1 n= I 
and 

= 

y" = 2a2 + 2 · 3a:ix + 3 · 4a,µ2 + · · · = L (n - l )na,,x11-2. n=2 
The terms on the left side of ( 1 1 )  can now be written 

and 

xy" = 2a2x + 2 · 3a3x2 + 3 · 4a,µ3 + · · · = L (n - l )na,,x"- 1 , n=2 
= 

y' = a 1 + 2a2x + 3a3x2 + · · · = L na11x11- 1 n= l 
= a + ' na x"- 1 I L n · ' n=2 

= 

xy = aox + a1x2 + a2x3 + · · · = I a,,x11 + 1  n=O 
= 

- ' n- 1 - L G11-2X . n=2 

( 1 2) 

If we add these three series in accordance with the differential equation ( 1 1 ), the 
result is 

a 1 + L [(n - l )na,, + na,, + a11-2]x11- 1 = 0. n=2 
All the coefficients on the left must be zero, so a 1 = 0 and (with a slight sim
plification) we have the recursion formula 

or 
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an-2 a,, = -7 ( 1 3) 

for n 2:: 2. Since a 1  = 0, repeated application of ( 1 3) tells us that a11 = 0 for every 
odd subscript. We now calculate the nonzero coefficients a2n as follows: 

a2n = (- 1 )" ao & 
22"(n ! )2 ' 

since 22 · 42 · 62 · · · (2n)2 = (2 · 1 )2(2 · 2)2(2 · 3)2 · · · (2 · n)2 = 22n(n ! )2 . With 
this information we can now write the solution ( 12) as [ x2 x4 x6 ] 

Y = ao 1 - 22 + 22 . 42 - 22 . 42 . 62 + . . .  
00 x2n = ao L (- 1 )" 22"(n ! )2 · n=O 

This series is very similar to the cosine series in ( 10). It can be obtained from 
the cosine series by replacing each odd factor in the denominators by the next 
larger even number. Its sum is a useful special function that is studied in ad
vanced mathematics. This function is denoted by J0(x) and called the Bessel 
function of order 0 [see Problems 29(b) in Section 14.2 and 5 in Section 14 .3 ] . *  

'Friedrich Wilhelm Bessel ( 1784-1 846) was a famous German astronomer and an intimate friend of 
the great mathematician Gauss, with whom he corresponded for many years. He was the first man 
to determine accurately the distance of a fixed star: his parallax measurement of 1 838 yielded a dis
tance for the star 61 Cygni of 1 1  l ight-years, or about 360,000 times the diameter of the earth's or
bit. In 1 844 he discovered that Sirius, the brightest star in the sky, has a traveling companion and is 
therefore what is now known as a binary star. This Companion of Sirius, with the size of a planet 
but the mass of a star, and consequently a density many thousands of times the density of water, is 
one of the most interesting objects in the universe. It was the first white dwarf star to be discovered 
(see Section 5.5) and occupies a special place in modem theories of stellar evolution. 

PROBLEMS 

5 1 3  

1 Consider the following differential equations: 
(a) y' = 2xy; 
(b) y' + y = 1 .  
In each case, find a power series solution of the form 
L:anx ", try to recognize the resulting series as the expan
sion of a familiar function, and verify your conclusion by 
solving the equation directly. 

3 The differential equations considered in the text and pre
ceding problems are all linear, which means essentially 
that the dependent variable y and its derivatives occur only 
to the first power. The equation 

2 Consider the following differential equations: 
(a) xy' = y; 
(b) x2y' = y. 
In each case, find a power series solution of the form 
L:a,,x ", solve the equation directly, and explain any dis
crepancies that arise. 

y' = I + y2 
is nonlinear, and it is easy to see directly that y = tan x is 
the particular solution for which y(O) = 0. Show that 

tan x = x + f x3 + -fs x5 + · · · 

by assuming a solution for equation ( *) in the form of a 
power series L:a11x" and finding the a,,'s in two ways: 
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(a) by the method of the examples in the text (note par
ticularly how the nonlinearity of the equation compli
cates the formulas); 

4 Solve the equation 

y' = x - y, y(O) = 0 

(b) by differentiating equation (*) repeatedly to obtain by each of the methods suggested in Problem 3. What fa
miliar function does the resulting series represent? y" = 2yy', y"' = 2yy" + 2(y' )2, 

5 Find a power series solution of xy" - y = 0. For what x 
does this series converge? and using the formula an = J<n)(Q)/n ! .  

1 4 . 7  
(OPTIONAL) 

OPERATIONS ON 
POWER SERIES 

In Section 14.4 we obtained Taylor series for various functions by using the for
mula an = f (n)(O)/n! to find the coefficients. But computing successive deriva
tives can be difficult and discouraging work if no simple pattern emerges. We 
can easily appreciate this fact by finding the seventh derivative of such functions 
as tan x or x5/( l - x4), because the calculations visibly sink us deeper into the 
bog with every step. For some functions we were able to establish the validity 
of their Taylor expansions by proving that Rn(x) � 0 as n � oo, but this also can 
be difficult. To avoid such problems, we now discuss several algebraic methods 
for obtaining valid new Taylor expansions from ones that are already known. 

Before we begin, we remind students that power series expansions are unique. 
This means that if a function f(x) can be expressed as the sum of a power series 
by any method, then this series must be the Taylor series of f(x). For example, 
we know from Section 1 3 .3  that 

1 
-- = I + x + x2 + x3 + · · · , I - x  lxl < l ;  ( I )  

and by  first replacing x by  x 4 and then multiplying through by  x 5, we find that 

and 

1 --- = I + x4 + x8 + x 1 2 + . . .  , I - x4 

XS 
--- = xs + x9 + x l3 + x ' 7 + . . . , 1 - x4 

!xi < I , 

lxl < 1 . 

We have deliberately avoided the very laborious task of using the formula an = 
J<11l(O)/n ! to verify that the three series on the right are actually the Taylor series 
of the functions on the left. But these verifications aren't necessary, because this 
conclusion follows automatically from the uniqueness principle stated above. 

MULTIPLICATION 

Suppose we are given two power series expansions, 

f(x) = 2:anx" = ao + a,x + a2x 2  + a3x3  + · · · (2) 

and 

(3) 

both valid on an interval lxl < R. If we ignore the question of convergence for a 
moment, then we can multiply these series in the same way we multiply two 
polynomials. That is, we systematically multiply each term of the first series into 
all the terms of the second series and then collect terms involving the same power 
of x. First, the term-by-term multiplication-
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ao: aobo + aobix + aob2x2 + aob3x3 + · · · 

a,x: a 1box + a ,b,x2 + a 1b2x3 + · · · 

a2x2: a2box2 + a2b1x3 + · · · 

a3x3: a3box3 + · · · 

By adding these columns, we obtain the power series 

aobo + (aob1 + a 1bo)x + (aob2 + a,b , + a2bo)x2 
+ (aoh + a1 b2 + a2b1 + a3 bo)x3 + · · · .  (4) 

The form of the coefficient of x "  in (4) is evident: The subscripts of the a's in
crease as the subscripts of the b's decrease, and their sum remains constant and 
equals the exponent n on x". Briefly, we have multiplied (2) and (3) to obtain 

f(x)g(x) = ntO (�0 akbn-k) x". (5) 
We assert that this product of the series (2) and (3) actually converges on the in
terval lxl < R to the product of the functions f(x) and g(x), as indicated by (5). 
The proof is not easy, and depends on the absolute convergence of the two se
ries in the given interval. The details can be found in Appendix A . 1 3 .  

Example 1 Find the Taylor series for ex sin x. 

Solution We know that 

and 

x2 x 3 
ex = l + x + - + - + · · · 2 ! 3 ! 

x3 x5 
sin x = x - - + - - · · · 3 ! 5 ! 

Our work can be  arranged a s  follows: 

ex sin x = ( l + x + 
x
2
2 

+ · · · )(x - x; + . . .  ) 
= x  x3 

- - + · · ·  6 

+ x2 
x3 

+ -2 
= x + x2 + -}x3 + · · · . 

x4 - - + · · ·  6 

x5 
- - + · · ·  1 2  

(6) 

(7) 

Since the two given series (6) and (7) converge for all x, the same is true of the 
product series. It is rarely easy-and usually quite impossible- to recognize the 
formula for the general term of the product series in this process. 

5 1 5  
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Example 2 Find the Taylor series for [ln ( 1  - x)]/(x - 1 ) . 

Solutio11 We know that 

so 

( x2 x 3 ) 
In (I - x) = - x + T + 3 + · · · , 

_ln�(_I _-_x�) = 
(-1-) 

[- In ( I _ x)] 
x - l I - x  

lxl < 1 , 

( x2 x3 ) 
= ( 1  + x + x2 + · · · ) x + T + 3 + · · · 

= x + (I + t)x2 + ( 1  + t + t)x3 + · · · 

= I 1 + - + . . . + - x", 
� ( I 1 ) n= I 2 n 

lxl < I . 

This is one of the rare cases where the general term of the product series is easy 
to recognize. 

DIVISION 

Two power series can be divided by the long division process that is used in el
ementary algebra for dividing polynomials. S ince we are working with power se
ries, the terms are of course arranged in order of increasing exponents, instead 
of in order of decreasing exponents as is usual with polynomials. In particular 
cases, however, one or both of the given series may be a polynomial. 

Example 3 Find the Taylor series for tan x by dividing the series for sin x by 
the series for cos x. 

Solution We have 

so 

x + }x3 + fsx5 + · · · 1 - x; + �: - . . . Ix - x: + t:o - . . . 

X 3 XS x - 2 + 24 - . · . 

}x3 - fo-xS + . . . 

}x3 - ixs + . . . 

fsxS + . . .  , 
tan x = x + tx3 + 125 x 5 + · · · .  (8) 

It can be shown that this expansion is valid on the interval Jx J < 7T/2. Since this 
is the largest interval with center x = 0 on which the denominator cos x is nonzero, 
the series (8) has radius of convergence R = 7T/2. The problem of discovering 
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a formula for the general term of this series was solved by Euler in 1 748. His 
solution depends on the ideas in the next section and is outlined in the Appen
dix at the end of this chapter. 

The actual process of dividing one power series by another is clearly not very 
difficult. The theory that j ustifies this process is given in Appendix A. 1 6. 

SUBSTITUTION 

This is a method we have already used: If a power series 

f(x) = ao + a1x + a2x2 + · · · (9) 

converges for lxl < R and if lg(x) I < R, then we can certainly findf [g(x)] by sub
stituting g(x) for x in (9). For example, there is no problem in using the series 
( 1  ), (6), and (7) to obtain 

and 

1 + 2x2 
1 ---- = I + (-2x2) + (-2x2)2 + · · · I - (-2x2) 

= I - 2x2 + 4x4 - · · • , 

, (x4)2 (x4)3 e-' = 1 + x4 + -- + -- + · · · 2! 3 !  

XS X 1 2 
= 1 + x4 + - + - + · · · all x; 2 !  3 !  

. (3x)3 (3x)5 sm 3x = 3x - -- + -- - · · · 3 !  5 !  

27 243 = 3x - - x3 + - x5 - · • • all x. 3 !  5 !  , 

In these examples we have substituted the simple functions g(x) = -2x2, x4, and 
3x into appropriate power series, but much more is possible. Under suitable con
ditions, we can actually substitute one power series into another! Thus, suppose 
that the function g(x) is given by a power series, 

g(x) = bo + b1x + b2x2 + · · · , 

and substitute this entire series for x in (9), 

f [g(x)] = ao + a1g(x) + a2 [g(x)]2 + · · · 

( 1 0) 

= ao + a1 [bo + b1x + · · ·] + a2 [bo + b1 x + · · · ]2 + · · · . ( 1 1 )  

Again, this is perfectly legitimate as long as lg(x) I < R .  However, the series on 
the right of ( 1 1 )  can now be converted into a power series in x by squaring, cub
ing, etc . ,  and collecting like powers of x, and it can be proved that the power 
series formed in this way converges to f [g(x)] whenever ( 1 0) is absolutely con
vergent and lg(x) I < R. * 

*See p. 1 80 of K. Knopp, Theory and Application of Infinite Series (Hafner, 195 1  ). 

5 1 7  
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Example 4 Apply the method of substitution to find the Taylor series of esin x 
up to the term containing x 4. 

Solution We can use (6) and (7) to write 

+ t ( x - x; + . .  .y + 2
1
4 (x - x; + . .  - )4 + 

( x3 ) 1 ( I ) I = I +  x - 6 + . . .  + 2 x2 - 3 x4 + . . .  + 6 (x3 + . . - ) 

1 I = 1 + x + - x2 - - x4 + · · · . 2 8 

1 +-(x4 + . . · ) + . . .  
24 

If we try to apply this method to e cos x, we find that infinitely many terms con
tribute to the formation of each coefficient, which is a difficult situation to deal 
with. For this reason, the method of substitution is not a practical tool unless 
b0 = 0 in the series ( 1 0). 

EVEN AND ODD FUNCTIONS 

A function f(x) defined on an interval lxl < R is said to be even if f( -x) = f(x), 
and odd if f(-x) = -f (x). The Taylor series of the even function cos x contains 
only even powers of x, and the Taylor series of the odd function sin x contains 
only odd powers of x. These facts are special cases of a general principle: If f(x) 
is an even function, then its Taylor series has the form 

ao + a2x2 + a,µ4 + a6x6 + · · · ; 

and if f(x) is an odd function, then its Taylor series has the form 

That is, the Taylor series of an even (odd) function contains only even (odd) 
powers of x. This is very easy to prove from the uniqueness of power series ex
pansions.* As another example of this phenomenon, we know beforehand that 
the series on the right side of (8) contains only odd powers of x, because tan x 
is an odd function. 

Many functions are even and many are odd, but most are neither. However, 
every functionf(x) defined on an interval lx l < R can be expressed as the sum of 
an even function and an odd function: 

f(x) = t[f(x) + f(-x)] + t [f(x) - f(-x)] = g(x) + h(x), 
where-as is easily verified-

·we have only to point out that if f(x) = La,,xn is even, then La,,xn = L(- l )"a,,xn, so by unique
ness we have an = ( - l )na"' and therefore an = -an or an = 0 if n is odd. Similar reasoning applies 
if f(x) is odd. 
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g(x) = f [f(x) + f(-x)] is even 

and 

h(x) = ±U(x) - f(-x)] is odd. 

Further, iff(x) = L:;;'=0a11x", then 
� � g(x) = L a211x211 and h(x) = _I a2,,+ 1x211+ 1 . n=O n=O 

Thus, the Taylor series of f(x) splits into two power series, one with even expo
nents representing the even part of f(x) and one with odd exponents represent
ing the odd part. 

Example 5 The even part and the odd part of 

x2 x3 x4 xs f(x) = e x = I + x + - + -+ - + - + · · · 
2 1 3 !  4 !  5 1 

are 

and 

e x +  e -x x2 x4 g(x) = = I + - + - + · · · 
2 2 !  4 1 

e x - e -x x3 x5 h(x) = = x + - +- + · · · 2 3 !  5 !  
. 

These are the two hyperbolic functions cosh x and sinh x that were defined in 
Section 9.7. 

Example 6 Find the sum of the series 

x2 x4 - + - + · · ·  
2 4 . 

Solution This is the even part of the familiar series 

x2 x 3 x4 f(x) = -In ( 1  - x) = x + 2 + 3 + 4 + · · · . 

The sum of the given series is therefore 

tlf(x) + f(-x)] = f[ - ln ( I - x) - In ( I + x)] 
= -± In (I - x2) = - In �. 

PROBLEMS 

1 In Example I ,  continue the calculation and find the terms 
of the product series as far as the term containing x6. 

In Problems 2- 13 ,  use multiplication to show that the given 
function has the indicated power series expansion. 

sin x 5 5 10 1  2 -- = x + x2 + -x3 + -x4 + --x5 + · · · . 1 - x 6 6 1 20 
3 e x+x 2 = I + x + f x 2 + fx3 + *x4 + . . . . 
4 e x cos x = I + x - f x 3 - tx4 - fo-x5 + · · · . 

5 1 9  
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tan - 1 x 2 2 4 1 3  s 5 --- = x + x2 + - x3 + -x + - x + · · · . 1 - x 3 3 15 
6 In2 ( I  - x) = x2 + x3 + -ftx4 + %xs + · · · . 
7 

cos x = 1 + x + _!_ x2 + _!_ x3 + Q x4 + Q xs + . . . . I - x 2 2 24 24 
8 tan2 x = x2 + f x4 + fs-x6 + · · · . 

e x l I l I 1 
9 -- = - + - x + - x2 + -x3 + -x4 + · · · . 2 + x 2 4 8 48 96 

1 0  VJ+x In ( !  + x) = x - ftx3 + ftx4 - 1��0x5 + · · · . 
1 1  e -x tan x = x - x2 + tx3 - tx4 + 1��xs + · · · . 
1 2  

1 - x 
I - x3 1 + x + x2 - x + x3 - x4 + x6 - x7 

+ x9 - x lO + · · · . 
sin x 2 5 3 5 4 LO I s + 13 � = x - x + 6 x - 6 x + 1 20 x . . . . 

1 4  By squaring the series for sin x and cos x, show that 
sin2 x + cos2 x = I ,  at least as far as the x6 term. 

1 5  I f  j(x) = 2:-;;'=oanxn, use multiplication of  series to show 
that 

I � 

--J(x) = L (ao + a 1 + · · · + an)Xn. ] - X n=O 
Use this result to write down the series in Problems 2, 5, 
and 7 by inspection. 

16 Use Problem 15 to find the sum of the series 
2:';;'=0(n + I )xn. 

1 7  The binomial series expansion of I /� is 
1 --- -� 

I I · 3 1 · 3 · 5 + + 2 + x3 2 x 22 · 2 ! x 23 · 3 ! 
+ _1_·_3 __ · 5_· _7 x4 + . . . .  24 · 4 ! 

Check this by squaring the series and showing that the 
result is I + x + x2 + x3 + x4 + · · · , at least as far as 
the x4 term. 

1 8  In Example 3 ,  continue the calculation and find the se
ries for tan x as far as the term containing x 7. 

1 9  Use division to obtain the series expansions given in 
Problems 2, 5, 7, 9, 1 2, and 13 . 

In Problems 20-27, use division to obtain the given expan
sions. 

20 

2 1  

22 

1 = 1 + 2x + 3x2 + 4x3 + · · · . ( I  - x)2 1 - x = 1 _ x2 _ x3 + xs + x6 - x  + x2 - xB - x9 + . . . . 
x2 

----�-� = x2 + x3 + x6 + x 7 + . . . . 1 - x + x2 - x3 

_x_ = 1 + _!_x2 +-7-x4 + . . .  23 sin x 6 360 
24 

25 

l = 1 - x + x + x2 + x3 + · · · · 
sin x 1 + _!_x _ _!_ x2 _ __!__x3 + . . . . ln ( l  + x) 2 4 24 

I 1 5 26 sec x = -- = 1 + - x2 + -x4 + · · · . cos x 2 24 
sin- 1 x 2 1 1  s 27 --- = x + - x3 + -x + cos x 3 30 

In Problems 28 and 29, use the method of substitution to find 
the given Taylor series. 

28 In ( 1  + sin x) = x - tx2 + 7,-x 3 + · · · . 
29 

I + x2 + x3 + l x4 + Jl x5 I - x2ex 2 6 
+ Iix6 + . . . . 24 

30 Use substitution and the fact that sec x = I /cos x = 
I/[ I - ( I  - cos x)] to find the Taylor series for sec x up 
to the term containing x6. What is the radius of conver
gence? 

3 1  Use multiplication and the result o f  Problem 30 t o  find . . 7 the Taylor series for tan x up to the term containing x . 
32 (a) Find the Taylor series for sec2 x as far as the term 

containing x6 by expanding sec2 x = l /cos2 x = 
I /( I - sin2 x) as a geometric series in sin2 x. 

(b) Find the same series by squaring the series found in 
Problem 30. 

(c) Find the same series by differentiating the series 
found in Problem 3 1 .  

33 Show that a function f(x) defined on an interval lxl < R 
can be expressed in only one way as the sum of an even 
function g(x) and an odd function h(x). X3 XS 

34 Find the sum of the series x + 3 + 5 + · · · · 
35 Calculate each of the following limits by first finding the 

Taylor series of the given function: 
l - cos x . x - sin x (a) Jim 2 (b) 11m 3 . x->0 x x->0 X 

In this way, the use of Taylor series often provides a con
venient alternative to the use of L'Hospital 's rule. 

36 Find the sum of each of the following series : 
(a) x + x2 - x3 + x4 + xs - x6 + + - · · · ; 
(b) x2 + x3 + x4 - xs + x6 + x 7 

+ x B - x9 + + + - . . . ; x x2 x3 x4 (c) 2! + 3T + 4T + 51 + . . .  ; 
x4 xB x 1 2 (d ) I + - + -+ - + · · · 4 ! 8 ! 12 1 

37 Calculate f (7l(O) if f(x) = tan x and use this to verify the 
coefficient of x7 in the expansion found in Problem 18 . 
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Consider the three familiar power series expansions 

and 

x2 x3 x4 xs ex =  I + X + - + - + - + - + · · · 
2 !  3 !  4 !  5 !  

x2 x 4  
cos x = I - - + - - · · · 

2 !  4 !  

x3 x 5  
sin x = x - - + - - · · · 

3 !  5 !  

( 1 )  

(2) 

(3) 

The second and third of these series seem to be parts of the first series in some 
nonobvious way that involves changes in the signs of some of the terms. This 
in turn suggests that the three functions on the left are probably related to one 
another. There is indeed such a relation, which is known as Euler's formula: 

e ix = cos x + i sin x, (4) 

where i = \/=! is the so-called imaginary unit. This formula turns out to be one 
of the most important facts in the whole of mathematics, with implications that 
deeply influence mathematics itself and also many of its applications, particu
larly in the fields of physics and electrical engineering. A full explanation of 
Euler's formula would require us to develop a fairly complete theory of complex 
numbers and functions of a complex variable. With apologies, we leave this task 
to a more advanced course, and instead briefly outline a few of the necessary 
ideas in a very incomplete way that at least has the merit of lending a little plau
sibility to formula (4). 

Up to this point, all of our work in this book has taken place in the context of 
the real number system. Nevertheless, the real numbers do have a serious defi
ciency-not every polynomial equation has a solution. Thus, the quadratic equa
tion x2 + 1 = 0 has no solution in the real number system because there is no 
real number whose square is - 1 .  This deficiency was so crippling that several 
hundred years �mathematicians felt the need to use the seemingly contradic
tory symbol V - 1  to signify a solution of x2 + 1 = 0. This symbol was later 
denoted by the letter i, and was thought of as an imaginary or fictitious number 
that could be manipulated algebraically just like an ordinary real number, except 
that i2 = - 1 . Any qualms these early mathematicians may have felt about the 
puzzling nature of this "number" were set aside because it was too useful to ig
nore. Thus, for example, the equation x2 + 1 = 0 was factored by writing it in 
the equivalent forms x2 - i2 = 0 or (x + i)(x - i) = 0, and its solutions were 
exhibited as the numbers x = :!::. i. 

Without entering into the details that would be needed to give mathematical 
respectability to our discussion, we now simply describe the complex numbers 
as all formal expressions a + bi, where a and b are real numbers and i is the 
imaginary unit for which i2 = - 1 . The complex numbers take on the character 
of a legitimate number system by means of the following general rule for per
forming calculations: In adding, multiplying, and dividing, follow all the famil
iar rules of elementary algebra and then simplify wherever possible by using the 
equation i2 = - 1  to remove all powers of i higher than the first, as in 

i3 = i2 · i = (- l ) ' i = -i, i4 = i2 · i2 = (- l) (- l ) = l , i5 = i4 · i = i, (5) 

and so on. 

5 2 1  

14 . 8 
(OPTIONAL) COMPLEX 
NUMBERS AND EULER'S 
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The complex number a + bi can be identified with the real number a if 
b = 0, so the complex number system constitutes an enlargement of the real 
number system. Not only does the equation x2 + 1 = 0 acquire the two solutions 
i and - i  in this way, but also every quadratic equation ax2 + bx +  c = 0 ac
quires the two familiar solutions 

-b ± Yb2 - 4ac x =  
2a 

which are real and distinct if b2 - 4ac > 0, real and equal if b2 - 4ac = 0, 
and complex and distinct if b2 - 4ac < 0. For example, the equation x2 -
6x + 1 3  = 0 has the distinct complex roots 

6 ± Y36 - 52 6 ± V-16 6 ± 4v=l 
x = ------

2 

= 
6 ± 4i 

= 3 + 2i 2 - . 

2 2 

Much more than this is true: Every polynomial equation of the form 

where n is a positive integer and the a's are arbitrary real numbers with an i= 0, 
has exactly n roots (some of which may be equal to one another) among the com
plex numbers. Moreover, this is still true even if the coefficients are complex. 
This fact is known as the fundamental theorem of algebra. It shows that there is 
no need to construct further enlargements of the complex number system in or
der to solve all polynomial equations with complex coefficients. •  

We now return to our original purpose, which was to gain a little insight into 
why Euler's formula (4) is true. 

A perfectly satisfactory theory of power series can be constructed in which the 
variable is permitted to be a complex number instead of merely a real number. 
Within this theory, all of the series ( 1 ), (2), and (3) converge for all complex val
ues of the variable. If we replace x in ( 1 )  by ix and use (5), then we obtain 

ix - 1 . (ix)2 (ix)3 + (ix)4 
+ (ix)s + . . .  e - + IX + 

2! 
+ 3 ! 4! 5 !  

x2 x3 x4 x5 
= 1 + ix - - - i - + - + i - - · · · 

2 !  3 ! 4 !  5 !  

= ( 1 - x2 
+ £ - · · ·) + i (x - � + .£. - · · ·) 

2 !  4! 3 ! 5 !  , 

which gives Euler's formula 

e ix = cos x + i sin x. 

If we now replace x by -x and use the fact that cos ( -x) = cos x and sin ( -x) = 
- sin x, then this becomes 

e-ix = cos x - i sin x; 

*There are many proofs of this important theorem, of varying levels of sophistication. See, for ex
ample, pp. 269-27 1 of R. Courant and H. Robbins, What Is Mathematics? (Oxford University Press, 
194 1 ). 
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and by first adding and then subtracting, w e  at once obtain 

cos x = 2 and 
eix _ e-ix 

sin x = ----
2i 

These formulas have many uses in advanced mathematics. A particularly inter
esting application is sketched in the Appendix at the end of this chapter. We also 
point out that if we put x = 'TT in Euler's formula, then we get 

e7Ti 
= cos TT + i sin TT 

or 

This beautiful equation, connecting the mysterious and pervasive numbers TT, e, 
and i, is one of the most remarkable facts in mathematics. 

The ideas of this section are sketched in such a cursory fashion that they are 
bound to seem more suggestive than convincing. The eminent British mathemati
cian E. C. Titchmarsh once remarked, "I met a man recently who told me that, so 
far from believing in the square root of minus one, he did not even believe in mi
nus one. This is at any rate a consistent attitude." There is only one way to lift 
these concepts from the status of reasonable speculations to the realm of certainty, 
and this is to undertake a careful study of the theory of functions of a complex 
variable, also known as Complex Analysis. This subject is one of the richest and 
most rewarding branches of mathematics, and we heartily recommend it. 

CHAPTER 14 REVIEW: CONCEPTS, FORMULAS, METHODS 

Think through the following, and memorize the main ex
pansions. 

3 Taylor series. 
4 Taylor's formula with derivative remainder. 
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1 Power series, radius and interval of convergence. 
2 Differentiation and integration of power series. 

S �aylor series expansions of 1 � x' In ( 1  + x), tan- 1 x, eX, 
sm x, cos x. 

ADDITIONAL PROBLEMS FOR CHAPTER 14 

SECTION 14.2 
1 Consider a power series Lanxn and assume that Jim � exists, with oo as an allowed value. Show that the 

radius of convergence R of the series is given by the 
formula 

R = 1 . 
lim � 

Use this formula to find the radius of convergence of 
xn 1 (a) I --;:;;; ; (b) I (In nt x

n
; n' 

(c) I (n : l )n' xn. 

2 If the radius of convergence of Lanxn can be calculated 
from formula (7) in Section 1 4.2, show that it can also 

be calculated from the formula in Problem 1 .  (Hint: See 
Additional Problem 1 8  in Chapter 1 3 .) Show that the 
latter formula is more powerful than the former by con
sidering the series 

� n x x2 x 3 x4 ""' x = - + - + - + - + · · · 
n�I 2n+ (- l )"+1 22 21 24 23 

*3 If a power series converges conditionally at a point xi .  
or  diverges in such a way that its terms are bounded, 
show that x1 must be an endpoint of the interval of con
vergence. 

4 Use Problem 3 to find by inspection the radius of con
vergence of 

x x 2  x 3 
(a) l + 3 + 32 + 33 + . . . ; 
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x4 x6 (b) x 2  - 2 + 3 - . . . ; 

(c) 2:xn ! = x + x + x 2  + x 6  + x24 + · · · ; 
x x2 x3 x4 x5 x6 

(d )  1 + - + - + - + - + - + - + . . . . 
2 32 23 34 25 36 ' 

x x3 
(e) 2:[2<- I l"x]" = 1 + 2 + 22x2 + 23 

5 Find the interval of convergence of 2:anx"  if its coeffi
cients are chosen in order from among the numbers 2, 
3, . . .  , 1 2  by throwing a pair of dice. 

SECTION 14 .3 

6 Consider a power series 2:anx" in which the coefficients 
repeat cyclically, an+k = a n . Show that 
(a) R = I ;  
(b) the sum is 

ao + a1x + a2x 2 + · · · + ak- ix k- I 
1 - xk. 

7 Find the sum of each of the following series: 
x3 xs x 7 (a) x - 32 + 52 - 72 + · · · ; 

x2 x3 x4  x5 
Cb) N - N + � - w + · · · ;  

(c) I + 4x + 9x2 + 1 6x3 + 25x4 + · · · 

x4 xs x 1 2 x l6 
(d ) - + - + - + - +  . . . . 

4 8 1 2  1 6  , 

(e) x + 23x2 + 33x3 + 43x4 + . . . ; 
(f) 4 + Sx + 6x2 + 7x3 + · · · . 

SECTION 1 4.4 

8 Use any method to obtain each of the following Taylor 
series expansions as far as indicated: 

(a) e sin x = l + x + tx2 - tx4 + · · · ;  

1 1 1 1 (b) -- = - - - x  + -x3 + · · · · 
1 + ex 2 4 48 ' 

(c) eX'-x = 1 - x + fx2 - f x3 + �x4 + . . . . 

9 Consider the binomial series 

( 1  + x)P = 1 + px + p(p - 1) x2 2 !  

+ p( - l )(p - 2) x3 + . . .  
3 !  

+ p(p - l )(p - 2) · · · (p - n + 1 )  
n !  x "  + . . . , 

where p is an arbitrary constant. In Problem 13 of Sec
tion 14.4 the series on the right was obtained as the Tay
lor series of the function ( 1  + x)P, and we also saw that 
this series converges for lxl < 1 . We here outline a se
quence of steps to prove that the series on the right ac
tually converges to the function on the left for these val
ues of x. 
(a) Letf(x) denote the sum of the series for lxl < 1 ,  cal

culate f' (x) and xf' (x), and show that 

( 1  + x)f' (x) = pf(x). 

(b) Define g(x) by 

f(x) g(x) = 
( I  + x)P 

and use part (a) to show that g ' (x) = 0 for lxl < 1 ,  
so that g(x) = c for some constant c. 

(c) Show that c = 1 in part (b), and conclude that 

( 1  + x)P = f(x). 

SECTION 1 4.7  
1 0  Iff1 (x) = 2:;;'= 1nx", calculate ( 1  - x)/1 (x), and use the 

result to find a closed formula for /1 (x). 
1 1  Use the idea of Problem 1 0  to find a closed formula for 

fz(x) = 2:;;'= 1 n(n + l )x". 
12  Use the idea of  Problems 10 and 1 1  to find a closed for

mula for f3(x) = 2:;;'= 1n(n + 1 )(n + 2)x". 
* 1 3  In the notation o f  Problems 10 t o  1 2, show that 

� L n2x" = fz(x) - !1 (x) 
n = l  

and 
� 

L n3x"  = h(x) - 3h(x) + f1 (x). 
n= I 

Using these ideas as a starting point, devise a proof of 
the following theorem: If p(n) is a polynomial in n, then 
f(x) = 2:;;'=oP(n)x" is a rational function. 

* 14 Show that l /Y 1 - 2xt + t2 = 2:;;'= 1Pn(x)t", where Pn(X) 
is a polynomial of degree n, by substituting h = 2xt -
t2 in the binomial series for 1/ \ll=h (see Problem 1 7  
i n  Section 1 4.7). Find Po(x), P1(x), P2(x), and P3(x). The 
polynomials Pn(x) are called the Legendre polynomials; 
they are important in mathematical physics, for instance, 
in the study of heat flow in solid spheres. 

1 5  Calculate the following limits by  using Taylor series : 
x cos x - sin x 

(a) !� x2 tan x (b) lim 
x-->0 

sin x - tan x 
sin2 x 



APPENDIX: THE BERNOULLI NUMBERS AND SOME WONDERFUL DISCOVERIES OF EULER 

In this Appendix we derive several formulas discovered by Euler that rank among the most 
elegant truths in the whole of mathematics. We use the word "derive" instead of "prove" 
because some of our arguments are rather formal and require more advanced ideas than 
we can provide here to become fully rigorous in the sense demanded by modern concepts 
of mathematical proof. However, the mere fact that we are not able here to seal every 
crack in the reasoning seems a flimsy excuse for denying students an opportunity to 
glimpse some of the wonders that can be found in this part of calculus. For those who 
wish to dig deeper, full proofs are given in the treatise by K. Knopp mentioned in Sec
tion 14.7. 

THE BERNOULLI NUMBERS 

Since 

ex - 1 x x2 --- = l + - + - + . . .  x 2 !  3 !  

for x * 0, and this power series has the value 1 at x = 0, the reciprocal function x/(ex - 1 )  
has a power series expansion valid in some neighborhood of the origin if the value of this 
function is defined to be 1 at x = 0. We write this series in the form 

x � Bn B1 2 --- = L -x" = Bo + B1x + - x + · · · .  ex - 1 n=O n! 2 !  ( 1 )  

The numbers Bn defined in this way are called the Bernoulli numbers, and i t  i s  clear that 
Bo = 1 .  It is easy to see that 

__ x_ = � ( ex +  1 - l ) = - � + � · ex +  1 
ex - 1 2 ex - 1 2 2 ex - 1 · (2) 

A routine check shows that the second term on the right is an even function, so B1 = -t 
and Bn = 0 if n is odd and > 1 .  If we write ( 1 )  in the form 

- + -x + - x + . .  · - + - + - +  . . · = 1 (Bo B1 B1 2 ) ( 1 x x2 ) 
O! l !  2 !  1 !  2 !  3 !  ' 

then it is clear that the coefficient of xn- I in the product on the left equals zero if n > 1 .  
By the rule for multiplying power series, this yields 

Bo . _!__ + !!J._ . I + B2 . I + . . . + Bn- 1 1 O O! n !  1 !  (n - 1 ) !  2! (n - 2) ! (n - 1 ) !  ' IT = ' 

and by multiplying through by n !  we obtain 

n !  n !  n l  n !  
O !n !  Bo + l ! (n - 1 ) !  Bi + 2 ! (n � 2) ! B2 + . . .  + (n - 1 ) ! 1 !  Bn- I = O. C3) 

This equation can also be written more briefly as 

or 

:t� (�) Bk = 0, 

where (�) is the binomial coefficient n !/[k!(n - k) ! ] .  By taking n = 3, 5, 7, 9, 1 1 ,  . . .  in 

(3) and doing a little arithmetic, we easily find that 
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Bs = -fo-, Bto = -ft, 
These calculations can be continued recursively as far as we please, and so all the Bernoulli 
numbers can be considered as known, even though considerable labor may be required to 
make any particular one of them visibly present. We also point out that it is obvious from 
(3) and the mode of calculation that every Bn is rational. 

THE POWER SERIES FOR THE TANGENT 

We now begin to explore the uses of these numbers. 
In equation (2) we move the term -x/2 to the left and use the fact that 

to obtain 

X ex + I x ex12 + e-xl2 
- . --- = - . -,.,...----= 2 ex/2 _ e-x/2 

x ex12 + e-x/2 - B2n 2 . ex/2 - e-x/2 = L 
(2n) ! 

x2n. 
n=O 

On the left side of this, we now replace x by 2ix, which yields 

2ix e ix + e-ix (e ix + e-ix)/2 - · . . = x . . . = x cot x, 
2 e u  - e-ix (eu - e-u)21 

(4) 

by the formulas for sin x and cos x that were derived in Section 14 .8 .  Making the same 
substitution on the right side of (4) gives 

so 

- B 
- zins L ---1!!._ (2ix)2n = L (- l )n __ 2_n x2n 

n=O (2n) ! n=O (2n)! ' 

- z2ns x cot x = L (- 1 )" �  x2". 
n=O (2n). (5) 

The trigonometric identity tan x = cot x - 2 cot 2x now enables us to use (5) to write 

so 

- zins - zins tan x = L (- l )" -_2_n x2n- I  - 2 L (- l )" --2_n (2x)2n - J 
n=O (2n)! n=O (2n)! 
- z2ns - zins 

= I (- l )" --2_n x2n- I - I <- l )" --2_n z2nx2n- 1 
n=O (2n)! n=O (2n)! 
- z2ns 

= I <- i )n � 0 _ 22")x2n- 1 . 
n=O (2n). 

tan X = f (- 1 )"+ 1 22"(22n - l l )B2n x2n- I . 
n= I  (2n) . 

This is the full power series for tan x that was encountered several times in truncated form 
in Section 14.7. Based on our knowledge of the Bernoulli numbers, the first few terms of 
this series are easy to calculate explicitly, 

tan x = x + fx3 + fsx5 + 3\75 x7 + 2�;5 x9 + · · · . 

THE PARTIAL FRACTIONS EXPANSION OF THE COTANGENT 

By using entirely different methods, Euler discovered another remarkable expansion of 
the cotangent: If x is not an integer, then 
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1 � I 7r COt 1TX = - + 2x L -2--2 . X n= J X -n  (6) 

We will examine this formula from two very different points of view, and give two 
derivations. 

First, it is quite easy to see that (6) is analogous to the expansion of a rational function 
in partial fractions. For instance, if we consider the rational function (2x + 1 )/ 
(x2 - 3x + 2) and notice that the denominator has zeros 1 and 2 and can therefore be 
factored into (x - l )(x - 2), then this leads to the expansion 

2x + I  2x  + 1 Ct c2 ------ = -- + --(x - 1 )(x - 2) x - 1 x - 2 x2  - 3x + 2 

for certain constants Ct and c2. The constant Ct can now be determined by multiply
ing through by x - l and allowing x to approach 1 ,  and similarly for c2. Formally, 
(6) can be obtained in much the same way by noticing that cot m: = cos 1Txlsin m: 
has a denominator with zeros 0, :±: 1 ,  ±2,  . . .  , and should therefore be expressible in 
the form 

a � ( bn Cn ) cot 1TX = - + L -- + -- . x n= J x - n  x + n  (7) 

From this, the constants a, bn, and Cn can be found by the procedure suggested (they 
are all equal to 1 11T), and (7) can then be rearranged to yield (6). For reasons that 
will now be obvious, it is customary to refer to (6) as the partial fractions expansion 
of the cotangent. The main gap in this suggestive but rather tentative derivation is of 
course the fact that we have no prior guarantee that an expansion of the form (7) is 
possible. 

Another way of approaching (6) is to begin with the infinite product (6) in Appendix 
l at the end of Chapter 1 3 :  

I f  w e  take the logarithm of both sides t o  obtain 

In sin x = I 1n ( 1 - �2 
2 )• x n= J  n 1T 

and then differentiate, the result is easily seen to be 

or 

l � -2x cot x - - = L ---=----=-----=
x n= l n21T2 - x2 

l � l cot x = - + 2x L 2 2 2 ; x n= J  x - n 1T 

and replacing x by 1TX and then multiplying through by 1TX yields 

which is equivalent to (6). 

� l 1TX cot 1TX = I + 2x2 L 2 _ 2 , 
n= l x n 

EULER'S FORMULA FOR �Iln2k 

(8) 

We now obtain a major payoff from (5) and (8) by replacing x by 1TX in (5) and equating 
the two expressions for 1TX cot 1TX, 
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� -2x2 - � - k 22kB2k 2k l + n�1 n2 - x2 - l + k�I ( I ) (2k)! (7Tx) , (9) 

where we use k as the index of summation on the right for reasons that will appear in a 
moment. Each term of the series on the left is easy to expand in a geometric series, 

-2x2 x2/n2 - (x2 )k - x2k 
n2 - x2 = -2 

I - x2/n2 = -2 'J;, --;;'2 = - 2  'J;, n2k , 
so (9) can be written as 

- ( - 2k ) - 22kB 1 + n�I -2 k�I :2k = 1 + 'J:,, (- J )k (2k)�k 1T2kx2k. 
We now interchange the order of summation on the left and obtain 

- ( - I ) - 22kB 1 + L - 2  L ---:zk x2k = I + L (- J )k --�-k 1T2kx2k, k= I n= I n k= l (2k) . 
and equating the coefficients of x2k yields 

� _
I
_ - k- 1 22kB2k 1T2k n�I n2k - (- 1 ) 2(2k) I 

for each positive integer k. In particular, for k = I ,  2, 3 we get 
- I 7T4 
I - = -n= I n4 90 , 

- I 7T6 I n6 = 945 · n = I 
It is very remarkable that for more than 250 years there has been no progress whatever 
toward finding the exact sum of any one of the series - 1 L 3· n= I n 
Perhaps a second Euler is needed for this breakthrough, but none is in sight. 



CONIC 
SECTIONS 

In order to understand the central ideas of Chapters 1 3  and 14, it was necessary 
to pay close attention to the precise wording of definitions and to the details of 
proofs, so the level of mathematical rigor in those chapters was rather high. How
ever, we now turn to work that is mostly geometric in nature. We shall therefore 
rely much more heavily on reasoning based on spatial intuition and the kind of 
insight that can be obtained from carefully drawn figures. 

Consider a circle C. Let A be the line through the center of C perpendicular 
to the plane of C, and let V be a point on A not in the plane of C, as shown in 
Fig. 15 . 1 .  Let P be a point on C, and draw the infinite straight line through P 
that also passes through V. As P moves around C, the line PV sweeps out a right 
circular cone with axis A and vertex V. Each of the lines PV is called a genera
tor of the cone, and the angle a between the axis and any generator is called the 
vertex angle. The cone shown in Fig. 15 . l has a vertical axis, and the upper and 
lower portions of the cone that meet at the vertex are called the nappes of the 
cone.* In elementary geometry a cone is usually understood to be a solid figure 
occupying the bounded region of space that lies between V and the plane of C 
and is inside the surface we have just described. However, in the present context 
the cone is this surface itself, and is understood to consist of both nappes, ex
tending to infinity in both directions. 

The curves obtained by slicing a cone with a plane that does not pass through 
the vertex are called conic sections, or simply conics. If the slicing plane is par
allel to a generator, the conic is called a parabola. Otherwise, the conic is called 
an ellipse or a hyperbola, depending on whether the plane cuts just one or both 
nappes. The hyperbola is to be thought of as a single curve consisting of two 
"branches," one on each nappe. These three curves are illustrated in Fig. 15 .2 .  

The three curves shown in Fig. 15 .2 can be described in another way. Imag
ine a source of light placed at V and a circular ring placed at C. Then the shadow 
cast by the ring on a plane will be a parabola, an ellipse, or one branch of a hy
perbola, depending on the steepness of the plane. If the plane is parallel to one 
of the lines joining V to C, we get a parabolic shadow; the shadow will be an el
lipse if the plane is less steep than this, and part of a hyperbola if it is more steep. 

"'Nappe" is from the French word nappe, meaning a sheet of something, perhaps cloth, as in "nap
kin" or "napery" (household linen). 
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Figure 1 5.2 

CONIC S ECTIONS 

- -- - - - -

I t  should be noted that if we move each of the slicing planes in Fig. 15.2 par
allel to itself until it passes through the vertex, then we get three so-called de
generate conic sections, namely, a single straight line, a point, and a pair of in
tersecting straight lines. 

Many important discoveries in both pure mathematics and science have been 
linked to the conic sections. The classical Greeks-Archimedes, Apollonius and 
others- studied these beautiful curves for the sheer pleasure of it, as a form of 
play, without any thought of their possible uses. The first applications appeared 
almost 2000 years later, at the beginning of the seventeenth century. About the 
year 1 604 Galileo discovered that if a projectile is fired horizontally from the top 
of a tower and is assumed to be acted on only by the force of gravity-that is, 
if air resistance and other complicating factors are ignored-then the path of the 
projectile will be a parabola. One of the great events in the history of astronomy 
occurred only a few years later, in 1609, when Kepler published his discovery 
that the orbit of Mars is an ellipse and then went on to suggest that all the plan
ets move in elliptical orbits. And about 60 years after this, Newton was able to 
prove mathematically that an elliptical planetary orbit implies, and is implied by, 
an inverse square law of gravitational attraction. This led Newton to formulate 
and publish (in 1687) his famous theory of universal gravitation as the explana
tion of the mechanism of the solar system, which has been described as the great
est contribution to science ever made by one man. These developments took place 
hundreds of years ago, but the study of conic sections is far from outdated even 
today. Indeed, these curves are important tools for present-day explorations of 
outer space, and also for research into the behavior of atomic particles. Artificial 
satellites move around the earth in elliptical orbits, and the path of an alpha par
ticle moving in the electric field of an atomic nucleus is a hyperbola. These ex
amples and many others show that the importance of conic sections, both his
torically and in modem times, is difficult to exaggerate. 

We shall be studying the conic sections as plane curves. For this purpose it is 
convenient to make use of equivalent definitions that refer only to the plane in 
which the curves lie and depend on special points in this plane called foci (fo
cus is the singular). An ellipse can be defined as the set of all points in the plane 
the sum of whose distances d1 and d2 from two fixed points F and F' (the foci) 
is constant, as shown on the left in Fig. 1 5 . 3 .  A hyperbola is the set of all points 
for which the difference jd1 - d2j is constant. And a parabola is the set of all 



d1 + d2 = a  constant 
(Ellipse) 

1 5 .2 ANOTHER LOOK AT CIRCLES AND PARABOLAS 

ld1 - d2 1 = a constant 
(Hyperbola) 

Directrix 
I I 

di = d2 
(Parabola) 

points for which the distance to a fixed point F (the focus) equals the distance 
to a fixed line (called the directrix). 

There is a simple and elegant argument which shows that the focal property 
of an ellipse follows from its definition as a section of a cone. This proof uses 
the two spheres shown in Fig. 15 .4, which are internally tangent to the cone along 
the horizontal circles C1 and C2, and are also tangent to the slicing plane at the 
points F and F' . If P is an arbitrary point on the ellipse, we must show that the 
sum of the distances PF + PF' is constant in the sense that it does not depend 
on the particular position of P. To see this, we notice that if Q and R are the 
points on C1 and C2 that lie on the generator through P, then PF = PQ and PF' = 
PR, because any two tangents to a sphere drawn from a common external point 
have the same length. It follows that PF + PF' = PQ + PR =  QR; and the ar
gument is completed by observing that QR, as the distance from C1 to C2 down 
a generator, has the same value for every position of P. 

With slight modifications this proof also works for the hyperbola and the 
parabola. In the case of the hyperbola, we use one sphere in each portion of the 
cone, with both spheres tangent to the slicing plane. And for the parabola we use 
one sphere tangent to the slicing plane. The focus of the parabola is this point of 
tangency, and its directrix is the line of intersection of the slicing plane with the 
plane of the circle along which the sphere is internally tangent to the cone. Stu
dents should use these hints to draw suitable pictures and prove for themselves 
that the focal properties of the hyperbola and the parabola can be derived from 
their definitions as sections of a cone. 

Circles and parabolas were discussed fairly thoroughly in Chapter 1 .  However, 
that was a long time ago, and it may be helpful to give a very brief review of the 
main facts in order to assist students in fitting these topics into the context of the 
present chapter. 

CIRCLES 

Referring to Fig. 1 5 .4, we see at once that a circle can be thought of as the spe
cial case of an ellipse obtained by taking the slicing plane perpendicular to the 
axis of the cone, so that the foci coincide. Nevertheless, for several reasons it is 
convenient to discuss circles separately, and to reserve the word "ellipse" for the 
case in which the foci are two distinct points. 

5 3 1 

Figure 15.3 

Figure 1 5.4 The focal property of an 
ellipse. 
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Figure 15.5 A circle. 

Figure 15.6 A parabola. 

CONIC SECTIONS 

A circle, therefore-as we very well know-can be defined as a plane curve 
consisting of the set of all points at a given fixed distance (called the radius) 
from a given fixed point (called the center). If r > 0 is the radius and (h, k) is 
the center, and if (x, y) is an arbitrary point on the circle (see Fig. 1 5 .5), then by 
using the distance formula we can write the defining condition as 

Y(x - h)2 + ( y  - k)2 = r 

or 

(x - h)2 + (y  - k)2 = r2, ( I ) 

which is the equation of the circle in standard form. By squaring the terms on 
the left of ( 1 )  and rearranging, this equation can be written in the form 

x2 + y2 + Ax + By + C = 0. (2) 

Conversely, by completing the square on the x and y terms, any equation of 
the form (2) can be written in the form ( 1 ), and therefore represents a circle if 
r2 > 0. As students will remember, there is a slight difficulty with this procedure 
as a result of the fact that the constant r2 on the right of ( 1 )  may tum out to be 
zero or a negative number. In these cases, ( 1 )  can be thought of as the equation 
of a single point or the empty set. 

PARABOLAS 

As we saw in Section 15 . 1 ,  a parabola can be defined as a plane curve consist
ing of the set of all points P that are equally distant from a given fixed point F 
and a given fixed line d, as shown on the left in Fig. 15.6. The fixed point is 
called the focus, and the fixed line is called the directrix. To find a simple equa
tion for this curve, we introduce the coordinate system shown on the right in the 
figure, in which the focus is the point F = (0, p), where p is a positive number, 
and the directrix is the line y = -p. If P = (x, y) is an arbitrary point on the 
parabola, then by using the distance formula the defining condition can be writ
ten as 

Vx2 + (y - p)2 = Y + p. 

- - - - - - - -d 
I p 

__ _ _ _ _ L _ 

y = -p 

(3) 
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y = p  

x2 = -4py 

x = -p 
I 
I 
I 
I 

y2 = 4px 

By squaring and simplifying we get 

x2 + y2 _ Zpy + p2 = y2 + Zpy + p2 

or 

x2 = 4py. 

x p 

y2 = -4px 

(4) 

Conversely, by reversing the steps, it can be shown that (3) can be derived from 
( 4 ). Equation ( 4) is therefore the equation of this particular parabola in standard 
form. The line through the focus perpendicular to the directrix is called the axis 
of the parabola, and the point V where the parabola intersects the axis is called 
the vertex. For the parabola (4), the axis is clearly the y-axis, and the vertex is 
the origin. 

If we change the position of the parabola relative to the coordinate axes, we 
naturally change its equation. Three other simple positions, each with its corre
sponding equation, are shown in Fig. 15 .7. Students should verify the correct
ness of all three equations. We emphasize that the constant p is always under
stood to be a positive number; geometrically, it is the distance from the vertex 
to the focus, and also from the vertex to the directrix. 

We illustrate a further point about parabolas by considering the equation 

x2 - 8x - y + 1 9  = 0. 

If we write this as x2 - 8x = y - 19 and complete the square on x, then the re
sult is 

(x - 4)2 = y - 3 . 

If we now introduce new variables x '  and y' by writing 

x' = x - 4, 

y' = y - 3 ,  

then our equation becomes 

x'2 = y' .  

The graph of this equation is clearly a parabola with vertical axis whose vertex 
lies at the origin in the x ' ,  y '  coordinate system, and this origin is located at the 
point (4, 3)  in the x, y system, as shown in Fig. 1 5 .8 .  In exactly the same way, 
any equation of the form 

Figure 15.7 

y 

x2 + Ax + By + C = 0, (5) Figure 1 5.8 

533 

y' 

(4, 3 ) x'  

x 



534 CONIC SECTIONS 

represents a parabola with vertical axis. The vertex of this parabola is easily lo
cated by completing the square on x, and in this way the equation can be writ
ten in the form 

(x - h)2 = 4p( y  - k) or (x - h)2 = -4p( y  - k), 

where the point (h, k) is the vertex.• Similarly, any equation of the form 

y2 + Ax + By + C = 0, A if' 0, 

represents a parabola with horizontal axis, and the geometric features of this 
parabola can be discovered by completing the square on y and writing the equa
tion as 

(y - k)2 = 4p(x - h) or (y - k)2 = -4p(x - h). 

We conclude this section by describing the so-called reflection property of 
parabolas. Consider the tangent line at a point P = (x, y) on the parabola y

2 = 
4px (Fig. 15.9), where F = (p, 0) is the focus. As shown in the figure, let a be 
the angle between the tangent and the segment FP, and let f3 be the angle be
tween the tangent and the horizontal line through P. In Problem 9, students are 
asked to prove that a = {3. 

Figure 1 5.9 The reflection property. 

This geometric property of parabolas has many applications. For example, it 
is used in the design of mirrors for searchlights. To construct such a mirror, re
volve the parabola about its axis to form a surface of revolution, then coat the 
inside with silver paint to make a reflecting surface. If a source of light is placed 
at F, each ray will be reflected along a line parallel to the axis to form a beam 
of parallel rays. The same principle is used in a more important way in the de
sign of mirrors for reflecting telescopes and solar furnaces, where rays of light 
that are parallel to the axis and come in toward the mirror are reflected in to the 
focus. This reflection property of parabolas also underlies the design of radar an
tennas and radio telescopes. 

*We point out here that if B = 0 is allowed in (5), then the graph of the equation can be one straight 
line, or two parallel lines, or the empty set. For the particular equation x2 - 2x - k = 0, or equiva
lently (x - 1 )2 = k + 1 ,  these cases correspond to k = - 1 ,  k > - 1 , and k < - 1 . 

PROBLEMS 

1 For each of the following equations, determine the na
ture of the graph by completing the square: 
(a) x2 + y2 - 2x - 6y - 15 = 0; 
(b) x2 + y2 + 4x - 1 8y + 88 = 0; 
(c) x2 + y2 - lOx + 2 y  + 26 = O; 
(d )  x2 + y2 - 16x + 1 2 y  + 96 = O; 
(e) x2 + y2 + 6x - 1 4y + 58 = O; 
(f) x2 + y2 + 14x + l Oy + 95 = 0. 

2 If 0 < a < b, find the radius r and center (h, k) of the 
circle that passes through the points (0, a) and (0, b) and 
is tangent to the x-axis at a point to the right of the ori
gin. 

3 For each of the following parabolas, find the vertex, fo
cus, and directrix :  

(a) x2 + 4x - 4y = O; 
(b) y2 - 8x - 2y + 25 = O; 
(c) x2 + 4x + 16y - 76 = O; 
(d) y2 + 12x - 2y + 25 = O; 
(e) y = x2 + 2x + 3 . 

4 A searchlight reflector is designed as stated in the text. 
If it is 2 ft deep and the opening is 5 ft across, find the 
focus. 

5 Find the equation of the parabolic arch with base b and 
height h that is shown in Fig. 1 5 . 1 0. 

6 Show that the area of the parabolic segment in Fig. 
15 . l 0 is thb. (Notice that this area is four-thirds the area 
of the triangle with the same base and height, a fact that 
was discovered and proved by Archimedes.) 
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F 

(b, 0) A B d 
Figure 15.10 Figure 15. 1 1  

7 If the parabolic segment in Fig. 1 5 . 1 0  is revolved about 
its axis, show that the volume of the resulting solid of rev
olution is three-halves the volume of the inscribed cone. 

8 A parabola with focus F and directrix d that are given 
and marked on a sheet of paper can be constructed as 
follows (see Fig. 1 5 . 1 1 ) .  On a drafting board, fasten a 
ruler to the paper with its edge along d, and place the 
short leg AB of a draftsman's triangle ABC against the 
edge of the ruler. At the opposite vertex C of the trian
gle fasten one end of a piece of string whose length is 
the same as that of the long leg BC of the triangle, and 
fasten the other end of the string at F. If a pencil point 
at P keeps the string taut, as shown in the figure, then 
the point of the pencil draws part of a parabola as the 
triangle slides along the ruler. Explain why this con
struction works. 

12 Let C be a circle of radius r0 and L a line that lies in 
the same plane and does not intersect C. Show that the 
centers of all circles that do not surround C and are 
tangent to both C and L lie on a parabola (Fig. 1 5 . 1 2) .  
State the location of the focus and directrix of this 
parabola. 

9 Prove that a = f3 in Fig. 15 .9. Hint: Extend FP through 
P and use the subtraction formula for the tangent to 
show that tan a = tan {3. 

10  Show that the lines tangent to a parabola a t  the ends of 
a focal chord (a chord through the focus) intersect at 
right angles. 

*1 1  Show that the lines tangent to a parabola at the ends of 
a focal chord intersect on the directrix. Figure 15. 12  

In Section 1 5.2 we gave "set of all points" definitions for both circles and parabo
las. It is also possible to give "locus" definitions, in which each curve is defined 
-and thought of-as the path of a moving point that satisfies a certain condi
tion as it moves. This language has the advantage of greater pictorial vividness. 
Thus, a parabola can be defined as the locus of a point that moves in such a way 
that it maintains equal distances from a given fixed point and a given fixed line. 

Similarly, in accordance with Section 1 5 . 1 ,  we can define an ellipse as the lo
cus of a point P that moves in such a way that the sum of its distances from two 
fixed points F and F' is constant, as shown on the left in Fig. 15 . 1 3 . To simplify 
later equations, we denote this constant by 2a and write the defining condition 
as 

PF + PF' = 2a. ( I )  

c 
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Figure 1 5 . 1 3  

y 

(0, b )  P =  (x, y) 

(a, 0) 

x 

(0, -b) 

Figure 1 5. 1 4  

CONIC SECTIONS 

p Sum = 2a B 

B' 

The two points F and F' are called the foci (plural of focus) of the ellipse be
cause of the reflection property discussed in Remark 1 below. Since circles are 
not considered to be ellipses in this discussion, F and F' are understood to be 
two distinct points: F =fo F' . 

The definition provides an easy way to draw an ellipse on a sheet of paper. 
We begin by fastening the paper to a drawing board with two tacks placed at F 
and F' . Next, we tie the ends of a piece of string to the tacks and pull the string 
taut with the point of a pencil. It is clear that if the pencil is moved around while 
the string is kept taut, then its point draws an ellipse. Because of this construc
tion, the defining condition ( 1 )  is often called the string property of an ellipse. 

We now introduce several standard notations for the dimensions of an ellipse. 
It is easy to see from the definition that the curve is symmetric with respect to 
the line through the foci, and also with respect to the perpendicular bisector of 
the segment FF' .  On the right in Fig. 1 5 . 1 3  the segment AA ' is called the major 
axis and the segment BB' is called the minor axis of the ellipse, and the point 0 
where these axes intersect is called the center. The two points A and A 1 at the 
ends of the major axis are called the vertices of the ellipse. We denote the length 
of the minor axis by 2b and the distance between the foci by 2c. It is clear that 
BF = a, because BF + BF' = 2a and BF = BF', so 

a2 = b2 + c2. (2) 

Since AF + AF' = 2a and AF' = FA ' ,  we see that AA ' = 2a, so the length of the 
major axis is 2a. The numbers a and b are called the semimajor axis and the 
semiminor axis. 

It is easy to see from equation (2) that b < a. If b is very small compared with 
a, so that the ellipse is long and thin, then (2) shows that c is nearly as large as 
a, and the foci are near the ends of the major axis; and if b is nearly as large as 
a, so that the ellipse is nearly circular, then c is small, and the foci are close to 
the center. The ratio c/a is called the eccentricity of the ellipse and is denoted 
by e : 

c Va2 - b2 
e = - = ---- (3) a a 

Notice that 0 < e < 1 .  Nearly circular ellipses have eccentricity near 0, and long, 
thin ellipses have eccentricity near 1 .  

In order to find a simple equation for the ellipse, we take the x-axis along the 
segment FF' and the y-axis as the perpendicular bisector of this segment. Then 
the foci are F = (c, 0) and F' = (-c, 0), as shown in Fig. 15 . 14, and the defin
ing condition ( 1 )  yields 

Y(x - c)2 + y2 + Y(x + c)2 + y2 = 2a 

as the equation of the curve. 

(4) 
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To simplify this equation, we follow the usual procedure for eliminating rad
icals, namely, solve for one of the radicals and square. If we move the first rad
ical in ( 4) over to the right side, square both sides, and simplify, then we obtain 

and 

PF = Y(x - c)2 + y2 = a - _£ x a 

PF' = Y(x + c)2 + y2 = a + _£  x, a 

(5) 

(6) 

where (6) follows from (5) because PF' = 2a - PF. By squaring again and sim
plifying, either of these equations gives 

or 

( a2 - c2 ) _a_2_ xl + y2 = al - c2 

xl y2 - + --- = 1 al al - cl . (7) 

By using (2) to simplify (7) still further, we now put the equation into its final 
form, 

(8) 

This argument shows that (8) is satisfied if (4) is. It can be shown, conversely, 
that (4) is satisfied if (8) is, but we omit the details. Equation (8) is therefore the 
standard form of the equation of the ellipse shown in Fig. 1 5 . 14. 

We pause briefly to point out that equation (8) easily yields most of the sim
pler geometric features of the ellipse that are visible in Fig. 15 . 14. (i) If y = 0, 
then the equation tells us that x = ±a, and if x = 0, then y = ±b, so the curve 
crosses the x and y axes at the four points (±a, 0) and (0, ±b). (ii) Since both 
terms x1!a2 and y2/b2 are nonnegative and their sum is 1 ,  it follows that neither 
of them can be greater than 1 ,  so !x i :::; a and !YI :::; b .  This means that the whole 
ellipse is contained in the rectangle whose sides are x = ±a and y = ±b, and is 
therefore-unlike the parabola-a bounded curve. (iii) If (x, y) satisfies the equa
tion, then so do (x, -y) and (-x, y), so the curve is symmetric with respect to 
both the x-axis and the y-axis. This tells us that to graph the complete curve it 
suffices to sketch the graph in the first quadrant and then extend it to the other 
quadrants by symmetry. The left-right symmetry of the ellipse that is so obvious 
from equation (8) is really rather remarkable, because most people contemplat
ing Fig. 1 5 .2 for the first time feel quite sure that an ellipse should be an egg
shaped oval which has a "small end" at the part of the ellipse nearest the vertex 
of the cone and a "big end" at the part farthest from this vertex-but of course 
this is not true. 

We consider again formulas (5) and (6) for the right and left focal radii PF 
and PF', which can be written as 

(9) 

and 

PF' = a + � x = e 
( 
� + x) = e [x - (-�) l ( 10) 
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a x = - 
e 

a x = 
e 

D 

where e = c/a is the eccentricity defined earlier. The quantities in brackets can 
be interpreted (see Fig. 1 5 . 1 5) as the distances PD and PD' from P to the lines 
x = ale and x = - ale, respectively. Formulas (9) and ( 1 0) can therefore be writ
ten in the form 

PF' 
and PD' = e. ( 1 1 )  

Each of the lines x = ale and x = -ale is called a directrix of the ellipse. Equa
tions ( 1 1 ) show that an ellipse can be characterized as the locus of a point that 
moves in such a way that the ratio of its distance from a fixed point (a focus) 
to its distance from a fixed line (the corresponding directrix) equals a constant 
e < 1 .  We shall see in Chapter 1 6  and elsewhere that this way of characterizing 
ellipses is often very useful. 

Example 1 Identify the graph of 1 6x2 + 25y2 = 400 as an ellipse, and find its 
vertices, foci, eccentricity, and directrices. Sketch the graph. 

Solution First, we divide by 400 to convert the equation into the standard form 

x2 y2 -
25 + 16 -

l , 
which on comparison with (8) tells us that the graph is an ellipse. Since a2 = 25 
and b2 = 1 6, we have a = 5 and b = 4, so the vertices are (±5,  0) and the ends 
of the minor axis are (0, ±4), as shown in Fig. 15 . 16 .  Next, c2 = a2 - b2 = 25 -
1 6  = 9, so c =  3 and the foci are ( ± 3, 0). Finally, the eccentricity is e = c/a = t, and the directrices are the vertical lines x = ±ale = ±¥. 

In the above discussion it is assumed that the ellipse has its center at the ori
gin and its foci on the x-axis. However, if its center is the origin and its foci lie 
on the y-axis, then its major axis is vertical and the roles of x and y are inter
changed. 

Example 2 Show that 9x2 + 4y2 = 36 represents an ellipse, and find its vertices, 
foci, eccentricity, and directrices. Sketch the graph. 

Solution As before, we divide by 36 to convert the given equation into the rec
ognizable standard form 



x2 y2 - + - =  l 4 9 
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Observe that here the denominator of the y term is larger, so we have an ellipse 
whose major axis is vertical. The semimajor and semiminor ax.es are clearly a = 3 
and b = 2, so the vertices (see Fig. 1 5 . 1 7) are (0, ±3)  and the ends of the minor 
axis are (±2, 0). Since c2 = a2 - b2 = 9 - 4 = 5, c = Vs, and the foci are the 
points (0, Vs) and (0, -Vs) on the y-axis. The eccentricity is e = c/a = Vsl3, 
and the directrices are the horizontal lines y = ±ale = ± 91Vs = ±tVs. 

Examples 1 and 2 illustrate the fact that if we have an equation of the form 

x2 y2 ()2 + ()2 =  l 
with unequal denominators, then the equation represents an ellipse, and the ques
tion of whether the foci and major axis lie on the x-axis or the y-axis is deter-

(-2, 0) 

mined by which denominator is larger. Figure 1 5. 1 7  

In  equation (8), x and y are the horizontal and vertical displacements from the 
axes of the ellipse to the point P = (x, y). If the center is the point (h, k) instead 
of the origin, then these displacements are x - h and y - k, and the equation of 
the ellipse becomes 

(x - h)2 ( y - k)2 a2 + b2 = I . ( 12) 

Example 3 Show that 4x2 + 1 6y2 - 24x - 32y = 1 2  is the equation of an el
lipse, and find its vertices, foci, eccentricity, and directrices. Sketch the graph. 

Solution The equation can be written as 

4(x2 - 6x) + l 6( y2 - 2y) = 1 2. 
Completing the squares inside the parentheses, we obtain 

4(x - 3)2 + l 6( y - 1 )2 = 64 
or 

(x - 3)2 + ( y  - 1 )2 - 1 
_1_6_ 4 - . 

Comparison with ( 1 2) shows that this represents an ellipse with center (3 ,  1 ), hor
izontal major axis, and semiaxes a =  4, b = 2, so the vertices (Fig. 1 5 . 1 8) are 
the points (7, 1 ) ,  (- 1 ,  1 )  and the ends of the minor axis are (3, 3), (3, - 1 ) .  The 
foci are a distance c = Y a2 - b2 = Vi2 = 2\13 to the right and left of the cen
ter, and are therefore the points (3 ± 2\13, 1 ). The eccentrici_!Y is e = c/a = 1\13, 
and the directrices are vertical lines at a distance ale = 81\13 = f\13 to the right 
and left of the center. Their equations are x = 3 ± fv'3. Figure 15 .18 

Remark 1 Like parabolas, ellipses also have a remarkable reflection property. 
Let P be a point on an ellipse with foci F and F', and let T be the tangent at P, 
as shown in Fig. 1 5 . 1 9. If T makes angles a and f3 with the two focal radii PF 
and PF' ,  then a =  {3. Students are asked to prove this in Problem 9. 
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Figure 15.20 Eccentricities of 
planetary orbits. 
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This reflection property has no important scientific applications like those we 
saw in the case of parabolas, but there is at least one mildly amusing conse
quence. Let the ellipse in the figure be revolved about its major axis to form a 
surface of revolution, and imagine that a room is built with its walls and ceiling 
having the shape of the upper part of this surface, with the two foci about shoul
der height above the floor. Then a whisper uttered at one focus can be clearly 
heard a considerable distance away at the other focus even though it is inaudi
ble at intermediate points, because the sound waves bounce off the walls and are 
reflected to the second focus, and furthermore arrive together because they all 
travel the same distance. There actually exist several rooms of this kind-known 
as whispering galleries-in certain American museums of science and in the 
castles of a few eccentric European monarchs. 

A less frivolous application is in the new treatment for kidney stones called 
lithotripsy ( from the Greek lithos, stone + trips is, a rubbing or pounding). An 
ellipsoidal reflector is placed in such a position that the offending kidney stone 
is at one focus. High-intensity sound waves generated at the other focus are re
flected harmlessly through the patient's body and are concentrated at the stone, 
which they pound into powder. The patient is spared having to go through surgery 
and recovers in a few days. 

Remark 2 Except for small perturbations resulting from the influence of the 
other planets, each planet in the solar system revolves around the sun in an el
liptical orbit with the sun at one focus. As we pointed out in Section 1 5 . 1 ,  this 
phenomenon was discovered empirically by Kepler in the early seventeenth cen
tury, and was explained mathematically by Newton in the later decades of the 
same century. We shall give a detailed treatment of Newton's ideas at the end of 
Chapter 17. 

Most of the planets, including the earth, have orbits that are nearly circular . 
This can be seen from the eccentricities given in the table in Fig. 1 5 .20. Mer
cury, however, has a rather eccentric orbit, with e = 0.2 1 ,  as does Pluto, with e = 
0.25. Other bodies in the solar system have even more eccentric orbits, for in
stance, the flying mountains known as asteroids. Thus the asteroid Icarus, which 
was discovered at Mount Palomar in 1 949 and is about 1 mi in diameter, has an 
orbit so eccentric, with e = 0.83, that at its closest approach to the sun (Fig. 
1 5 . 2 1 )  it is halfway between the sun and the orbit of Mercury, and at its farthest 
it is out beyond the orbit of the earth.* 

One of the most interesting objects in the solar system is Halley 's Comet, 
which has eccentricity e = 0.98 and an orbit (Fig. 1 5 .22) about 7 astronomical 
units wide by 35 astronomical units long. [One astronomical unit (AU) is the 
semimajor axis of the earth's orbit, approximately 93 million miles or 1 50 mil
lion kilometers.] The period of revolution of this comet around the sun is about 
76 years. It appeared in 1910, and again in 1985- 1986. It was observed in 1682, 
and the astronomer Edmund Halley (Newton's friend ) successfully predicted its 
return in 1758, many years after his own death in 1 742. This was one of the most 
convincing successes of Newton's theory of gravitation. At its closest approach, 

*The surface temperature of Icarus has been estimated at about 900°F at its closest approach to the 
sun. Arthur C. Clarke has used this fact as the basis for a fine story, "Summertime on Icarus," in his 
collection The Nine Billion Names of God (New American Library, 1 974). See also Chapter 2, "The 
Little Planets," in Fletcher G. Watson's Between the Planets (Doubleday Anchor Books, 1 962), es
pecially p. 29. 
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Figure 15.22 Orbit of Halley's 
Comet, drawn approximately to scale. 

Halley's Comet is only 0.59 AU away from the sun. Its previous visits to the near 
neighborhood of the sun have been traced back step by step by means of histor
ical records to the year 1 1  B .C . ,  and perhaps even earlier.* 

*For a more detailed account of these remarkable events, see P. L. Brown, Comets, Meteorites and 
Men (Taplinger, 1 974); or N. Calder, The Comet ls Coming! (Viking, 1980). 

PROBLEMS 

Find the equation of the ellipse 
(a) with foci at (±2, 0) and major axis of length 10; 
(b) with foci at (0, ±4) and minor axis of length 1 2; 
(c) with major and minor axes of lengths 4 and 3, re-

spectively, center at the origin, and foci on the y-axis; 
(d ) with foci at (±3, 0) and eccentricity e = t; 
(e) with eccentricity e = ±. center at the origin, and the 

ends of the major axis at (0, ±6); 
(f) with eccentricity e = t and the ends of the minor axis 

at (0, ± 10). 
2 Find the equation of the ellipse 

(a) with vertices (6, 2), ( -4, 2) and minor axis of length 
6; 

(b) with major axis 8 units long, and foci at (6, 3) and 
(2, 3) ; 

(c) with minor axis 6 units long, and foci at ( 1 ,  0) and 
( 1 ,  6); 

(d) with eccentricity e = i, and ends of the major axis 
at ( 10, 1 )  and (-6, I ) .  

3 Find the center, vertices, foci, and eccentricity of each of 
the following ellipses: 
(a) 25x2 + 9y2 = 225; 
(b) x2 + 4y2 = 4; 
(c) 2(x + 2)2 + (y - 1 )2 = 2 ;  
(d )  x2 + 4y2 - 2x = O; 
(e) 4x2 + 9y2 - 16x + 1 8y = 1 1 ; 
(f) x2 + 2 y2 - 8y = 0. 

4 Consider an equation of the form 

A.x2 + By2 + Cx + Dy + E = 0, 

where A and B are both positive or both negative and 
A * B. Show that the graph is an ellipse, a single point, 
or the empty set. 

S Write down the integrals that give (a) the first-quadrant 
area of the circle x2 + y2 = a2, and (b) the first-quadrant 

area of the ellipse x2/a2 + y2/b2 = 1 .  Show that the sec
ond integral is b/a times the first, and in this way obtain 
the area of the ellipse from the known area of the circle. 

6 If a cylindrical drinking glass with some water in it is 
tilted slightly, as in Fig. 15 .23, then the surface of the 
water is no longer a circle but looks like an ellipse. Prove 
that it really is an ellipse by modifying the argument used 
in Fig. 15 .4. 

Figure 15.23 

7 Find the volume of the solid of revolution obtained by 
revolving the ellipse x2!a2 + y2!b2 = 1 about 
(a) the x-axis; 
(b) the y-axis. 
If a > b, the first solid is called a prolate spheroid and 
the second an oblate spheroid. 

8 The base of a solid is the region bounded by an ellipse 
with semiaxes 5 and 3. Find the volume of the solid if 
each cross section in a plane perpendicular to the major 
axis is 
(a) a square; 
(b) an equilateral triangle. 

9 Prove that a =  f3 in Fig. 15 . 1 9. Hint: Extend FP and F' P 
through P and show that tan a = tan f3 by using the sub
traction formula for the tangent. 
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10 Consider two ellipses with the same eccentricity e, both 
centered at the origin and both with major axis on the 
x-axis. Suppose that their equations are 

and 

Show that these ellipses are similar in the sense that 
(a) there exists a constant k such that 

El = !!J. = .£.!.. = k· G2 b2 C2 , 
(b) if a half-line from the origin 0 intersects the first el

lipse at P1 and the second at P2, then 

OP1 = k OP2 . 
1 1  Show that the line tangent to the ellipse x2/a2 + y2!b2 = 

l at a point P1 = (x1 , Y1 ) is 

XX) + YY1 = 1 a2 b2 . 
1 2  I f  tangent lines to the ellipse x2/25 + y2/ l 6 = 1 intersect 

the y-axis at (0, 8), find the points of tangency. 
13  If tangent lines to the ellipse x2!a2 + y2/b2 = 1 intersect 

the y-axis at (0, d), where d > b, find the points of tan
gency. 

1 4  Let F be a point which is inside a given circle but i s  not 
the center C. Consider a point P that moves in such a 
way as to be equidistant from F and the circle. Show that 
the path of P is an ellipse. 

1 5  Show that the point on an ellipse that i s  closest to a fo
cus is the end of the major axis nearest that focus, and 
also that the point on the ellipse farthest from this focus 
is the other end of the major axis. 

1 6  The apogee of an earth satellite is its maximum altitude 
above the surface of the earth during orbit, and its perigee 
is its minimum altitude during orbit.• If R is the radius 
of the earth, use Problem 15 to show that if a satellite 
has an elliptical earth orbit with the center of the earth 
at one focus and semimajor axis a, then 

2a = 2R + apogee + perigee. 

1 7  The point of the orbit o f  a planet nearest the sun is called 
the perihelion, and the point farthest from the sun is 
called the aphelion. If the ratio of the earth's distance 
from the sun at perihelion to its distance at aphelion is 
¥o. find the eccentricity of the earth's orbit. 

18 A line segment moves with one end A on the y-axis and 
the other end B on the x-axis. A point P fixed on the seg-

*These words are also used to mean the corresponding points of the 
orbit. 

1 9  

ment i s  a units from A and b units from B .  Find the equa
tion of the path of P. 
(a) Show that the length of the part of the ellipse x2/a2 + y2!b2 = 1 (a > b) that lies in the first quad

rant is 

a2 - e2x2 
a2 - x2 dx. 

(b) Use the change of variable x = a sin 8 to transform 
the integral in (a) into 

(1Tl2 a Jo Yl - e2 sin2 8 d8. 

This is called a complete elliptic integral of the second kind, and cannot be evaluated by means of ele
mentary functions. 

20 Let P be a point on the ellipse x2/a2 + y2/b2 = l that 
does not lie on either axis. If a > b, show without using 
calculus that the distance from P to the origin is greater 
than b and less than a. 

2 1  There are exactly two lines with given slope m that are 
tangent to the ellipse x2/a2 + y2/b2 = l .  Find their equa
tions. 

22 Consider two circles centered at the origin with radii a 
and b, where b < a. Draw a half-line from the origin in
tersecting the smaller circle at Q and the larger circle at 
R. If the horizontal line through Q and the vertical line 
through R intersect at P = (x, y), show that P lies on the 
ellipse x2!a2 + y2/b2 = l. Hint: Let the coordinates of Q 
and R be (q, y) and (x, r), and use the fact that Q and R 
lie on a line through the origin. 

23 Let C 1 and C2 be circles in the same plane with radii r1 
and r2. Assume that r1 > r2 and that C1 surrounds C2, 
but that C 1 and C2 are not concentric. Show that the cen
ters of all circles that lie between C1 and C2 and are tan
gent to both lie on an ellipse whose foci are the centers 
of C1 and C2 (Fig. 15 .24). What is the length of the ma
jor axis? 

Figure 15.24 
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The ideas of Section 1 5 . l  allow us to define a hyperbola as the locus of a point 
P that moves in such a way that the difference of its distances from two fixed 
points F and F' (called the foci) is constant. If this constant is denoted by 2a, 
with a > 0, then a little thought will show that the locus consists of two branches, 
as shown in Fig. 1 5 .25, where the right branch is the locus of the equation PF' -
PF = 2a and the left branch is the locus of the equation PF - PF' = 2a. The 
defining condition for the complete hyperbola can therefore be written as 

PF' - PF = ±2a. ( ! ) 

To find a simple equation for the hyperbola, we talce the x-axis along the seg
ment FF' and the y-axis as the perpendicular bisector of this segment. If 2c de
notes the distance between F and F' ,  then F = (c, 0) and F' = ( - c, 0), as shown 
in Fig. 15 .25, and ( 1 )  becomes 

Y(x + c)2 + y2 - Y(x - c)2 + y2 = ±2a. 
By moving the second radical to the right side, squaring, and simplifying, we ob
tain the focal radius formulas 

PF = Y(x - c)2 + y2 = ±(� x - a) (2) 

and 

PF ' =  Y(x + c)2 + y2 = ±(�x + a), (3) 

where (3) follows from (2) because PF' = ±2a + PF. As in ( 1 ) ,  the plus signs 
here correspond to the right branch of the curve, and the minus signs to the left 
branch. By squaring and simplifying, either of these equations gives 

or 

(c2 - a2 ) _a_2_ x2 - y2 = c2 - a2 

x2 y2 
- - -- = l a2 c2 - a2 . (4) 

To simplify this equation still further, we begin by observing that in the triangle 
PF' F with P on the right branch we have PF' < PF +  FF', because one side of 
a triangle is less than the sum of the other two sides. Therefore PF' - PF < FF', 
or 2a < 2c, so a < c and c2 - a2 is a positive number which we denote by b2, 

b2 = c2 - a2. (5) 

This enables us to write (4) as 

x2 y2 
a2 - b2 = I , (6) 

which is the standard form of the equation of the hyperbola shown in Fig. 1 5.25. 
We now turn to a careful consideration of equation (6) and the light it sheds 

on the nature of the hyperbola it represents. Our discussion will reveal several 
additional features of this curve that are not obvious from the definition and that 
are indicated in greater detail in Fig. 1 5 .26. 
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HYPERBOLAS 

Figure 1 5.25 A hyperbola. 
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Figure 1 5.26 Features of a hyperbola. 
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Conjugate 
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Principal 
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I 

Since the equation contains only even powers of x and y, the hyperbola is sym
metric with respect to both coordinate axes. They are therefore called the axes 
of the curve, and their intersection is called the center. The left-right, up-down 
symmetry is perhaps the only feature of the hyperbola that is easy to see directly 
from the definition. 

When y = 0, the equation gives x = ±a, but when x = 0, y is imaginary. There
fore the axis through the foci, called the principal axis, intersects the curve at 
two points called the vertices, which are located at a d istance a on each side of 
the center; but the other axis, called the conjugate axis, does not intersect the 
curve at all. The hyperbola thus consists of two separate parts, its symmetrical 
branches, on opposite sides of the conjugate axis. 

These facts are easier to see if equation (6) is solved for y, 

y = ±!!_ Yx2 - a2. a (7) 

This formula shows that there are no points of the graph in the vertical strip -a < 
x < a, because for these x's the quantity inside the radical is negative. When x = 
±a, (7) yields y = O; these two points are the vertices .  And now, as x increases 
from a or decreases from -a, we get two distinct values of y that increase nu
merically as x moves farther to the right or left; this behavior produces the up
per and lower arms of each branch of the curve. 

A very significant feature of the graph can be observed by writing (7) in the 
form 

b R2 y =  ±-x  1 - -z. a x (8) 

When x is numerically large, the quantity inside the radical in (8) is nearly 1 ,  
and for this reason i t  appears that the hyperbola i s  very close to the pair o f  straight 
lines 

b y = ±-x. a (9) 
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We can verify this guess as follows .  In the first quadrant, if x is large, then the 
vertical distance from the hyperbola up to the corresponding line is 

!!._ x - !!._ V x2 - a2 = !!_ (x - V x2 - a2) a a a 

!!_ (x - �)(x + �) 
a x + Vx2 - a2 

ab 
x + Vx2 - a2

. 

This clearly approaches zero as x -7 oo. The lines (9) are therefore called the 
asymptotes of the hyperbola. The asymptotes provide a convenient guide for 
sketching a hyperbola whose equation is given: Simply plot the vertices, draw 
the asymptotes, and fill in the two branches of the curve in a reasonable way, as 
suggested by the figure. 

The triangle shown in the first quadrant of Fig. 1 5  .26 is a convenient mnemonic 
device for remembering the main geometric features of a hyperbola. Its base a 
is the distance from the center to the vertex on the right; its height b is the dis
tance from this vertex up to the asymptote in the first quadrant, whose slope is 
bla; and since (5) tells us that 

c2 = a2 + b2, 

the hypotenuse c of this triangle is also the distance from the center to a focus. 
The ratio c/a is called the eccentricity of the hyperbola, and is denoted by e: 

e = � = � = J1 + (�)2. 
It is clear that e > 1 .  When e is near 1 ,  then b is small compared with a, and the 
hyperbola lies in a small angle between the asymptotes. When e is large, then b 
is large compared with a, the angle between the asymptotes is large, and the hy
perbola is rather flat at the vertices. 

To understand the significance of the eccentricity, we consider again formulas 
(2) and (3) for the right and left focal radii PF and PF' . These formulas can be 
written as 

PF = ± (ex - a) = ±e [x - �] ( 10) 

and 

PF' = ±(ex + a) = ± e (x + �) = ±e [x - (-�)J ( 1 1 ) 

where the plus signs apply to the right branch of the curve (see Fig. 1 5 .27) and 
the minus signs to the left branch .  If P lies on the right branch, as shown in the 
figure, then the quantities in brackets can be interpreted as the distances PD and 
PD' from P to the lines x = ale and x = -ale, respectively. The same statement 
is true if P lies on the left branch, if the effect of the minus signs is properly 
taken into account. Therefore, in all cases formulas ( 1 0) and ( 1 1 )  can be written 
in the form 

and PF ' 
PD' = e. ( 1 2) 
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Figure 1 5.27 

CONIC SECTIONS 

a 
x = -

e 
a 

x =e 

Each of the lines x = ale and x = -ale is called a directrix of the hyperbola. 
Equations ( 12) show that a hyperbola can be characterized as the locus of a point 
that moves in such a way that the ratio of its distance from a fixed point (a fo
cus) to its distance from a fixed line (the corresponding directrix) equals a con
stant e > 1 .  Just as in the case of ellipses, this way of characterizing hyperbolas 
will be needed in our future work. 

By interchanging the roles of x and y in the preceding discussion, we find that 
the equation 

y2 x2 
- - - = I a2 b2 ( 1 3) 

represents a hyperbola with vertical principal axis, vertices at (0, ±a), and foci 
at (0, ±c) ,  where c2 = a2 + b2. This time the asymptotes are the lines 

- + !:. y - - b X, 
as we easily see by writing ( 1 3) in a form solved for y, 

Notice that the axis containing the foci of a hyperbola is not determined by the 
relative size of a and b, as it was in the case of an ellipse, but rather by which 
term is subtracted from which in the standard form of the equation. The num
bers a and b can therefore be of any relative size. In particular they can be equal, 
in which case the asymptotes are perpendicular to each other and the hyperbola 
is called rectangular. The equations 

x2 _ y2 = a2 and y2 _ x2 = a2 

represent rectangular hyperbolas. 

Example 1 Find the equation of the hyperbola with foci (±6, 0) and the lines 
Sy = ±2Vs x as asymptotes. 
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Solution First, the location of the foci tells us that the principal axis is the 
x-axis. We see that c = 6 and b/a = %\/5, so a = (Vs/2)b. Since a2 + b2 = c2, 
we have tb2 + b2 = 36, so b2 = % · 36 = 1 6  and a2 = tb2 = % · 1 6  = 20. This 
shows that 

is the equation of the hyperbola. 

Example 2 Determine the principal axis of the hyperbola 6y2 - 9x2 = 36 and 
find its vertices, foci, and asymptotes. 

Solution The equation can be put in the standard form 

y2 x2 
6 - 4 = l , 

so the principal axis is the y-axis, a2 = 6, b2 = 4, and c2 = a2 + b2 = 10. Hence 
the vertices are (0, ±\/6), the foci are (0, ±VlO), and the asymptotes are y = 
±(V6/2)x. 

Just as in the case of the ellipse, we can easily write the equation of a hyper
bola with center (h, k) and principal axis parallel to one of the coordinate axes. 
The equation is 

(x - h)2 (y - k)2 
a2 - b2 = 1 or (y - k)2 (x - h)2 a2 - b2 = 1 ,  

according as the principal axis is horizontal or vertical. This suggests that we 
consider equations of the form 

Ax2 + By2 + Cx + Dy + E = 0, 

where A and B have opposite signs. Such an equation will usually represent a 
hyperbola, but in certain special cases it may represent a pair of intersecting 
straight lines. The next example illustrates these possibilities. 

Example 3 Identify the graph of 

1 6x2 - 9y2 - 64x - 1 8y + E = 0 

for various values of E. 

Solution The procedure is to complete the square on the x and y terms, which 
yields 

1 6(x2 - 4x) - 9(y2 + 2 y) = -E 

and 
1 6(x - 2)2 - 9(y + 1 )2 = 55 - E. 

There are now three cases. 

CASE 1 55 - E > O; for example, E = -89, so that 55 - E = 1 44. In this case 
we have 
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Figure 15.28 The reflection property. 

CONIC SECTIONS 

(x - 2)2 (y + 1 )2 
9 - 1 6  = l , 

which is a hyperbola with center (2, - 1 ) and horizontal principal axis. 

CASE 2 55  - E < O; for example, E = 1 99, so that 55 - E = - 144. Here we 
have 

(y + 1)2 (x - 2)2 
16 - 9 = I , 

which is a hyperbola with center (2, - 1 ) and vertical principal axis. 

CASE 3 55  - E = 0; E = 55. This time our equation becomes 

1 6(x - 2)2 - 9( y + 1 )2 = 0  

or 

4(x - 2) = ±3 (y  + I) .  

This represents the two lines 

y + I = ±t(x - 2), 

which are the asymptotes in the first two cases. 

Remark I Hyperbolas have the following reflection property: The tangent line 
at any point P on a hyperbola bisects the angle between the focal radii PF and 
PF' . This means that a =  f3 in the notation of Fig. 1 5 .28 (see Problem 2 1 ). As 
a consequence of this, if the hyperbola is revolved about its principal axis to form 
a surface of revolution, and if the convex sides of each part are silvered to make 
them reflecting surfaces, then any ray of light that approaches a convex side along 
a line pointing toward a focus (Fig. 1 5 .28, right) is reflected toward the other fo
cus. 

This property of hyperbolas is the essential principle in the design of reflect
ing telescopes of the Cassegrain type (Fig. 1 5 .29). As the figure shows, one fo
cus of the hyperbolic mirror is at the focus of the parabolic mirror and the other 
is at the vertex of the parabolic mirror, where an eyepiece or camera is located. 



1 5 .4 HYPERBOLAS 549 

Ray of light 

Focus of parabolic 
- r----------.J. Other focus 

mirror; also one ..- - - of hyperbolic 
focus of hyperbolic mirror 
mirror 

mirror 
Parabolic 
mirror Figure 15.29 Design of Cassegrain 

telescope. 

Faint parallel rays of starlight are therefore reflected off the parabolic mirror to
ward its focus, then are intercepted by the hyperbolic mirror and reflected back 
toward the eyepiece or camera. 

Remark 2 There are two kinds of comets. Some are permanent members of the 
solar system, like Halley 's Comet described in Section 1 5 .3, and travel forever 
around the sun in elliptical orbits with the sun at one focus. Others enter the 
solar system at high speeds from outer space, swing around the sun in hyper
bolic orbits with the sun at one focus, and then escape into outer space again. 
The crucial factor is the total energy E of the comet itself, which is the sum of 
the kinetic energy due to its motion and the potential energy due to the gravita
tional attraction of the sun. It turns out that if E < 0, the orbit is an ellipse, and 
if E > 0, the orbit is a hyperbola. (The case E = 0 corresponds to a parabolic 
orbit, but this is exceedingly unlikely.) 

PROBLEMS 

In Problems 1-8, sketch the graph of the given hyperbola and 
find the vertices, foci , asymptotes, eccentricity, and directri
ces. 

1 

3 

5 
7 

x2 y2 
- - - = 1 4 9 . 

y2 x2 4 - 9 = 1 . 
4y2 - x2 = 16. 
y2 - x2 = 1 .  

2 

4 

6 

8 

y2 x2 
36 - 16 = 1. 
x2 y2 
25 - 16 = 1 .  
x2 - 3y2 = 12 .  
x2 - 9y2 = 1 .  

In Problems 9-16, find the equation of the hyperbola deter
mined by the given conditions. 
9 Foci (0, ±5), vertex (0, 3). 

1 0  Vertices (±3, 0), focus (5, 0). 
1 1  Vertices (±3, 0), asymptote y = 2x. 
1 2  Foci (- 1 ,  8 )  and (- 1 ,  -2), vertex (- 1 ,  7). 
13 Foci (± 8, 0), e = f. 
1 4  Vertices (0, ±5), e = 2 .  
1 5  Vertices (±6, 0), directrix x = 4. 
1 6  Foci ( 1 , 1 )  and ( - 1 ,  - 1 ), difference of  focal radii ±2. 

In Problems 1 7-20, identify the graph of the given equation 
as in the discussion of Example 3. 

17  16x2 - 3y2 - 32x - 12y - 44 = 0. 
1 8  9y2 - 7x2 + 72y - ?Ox - 94 = 0. 
1 9  36x2 - 25y2 + 1 44x - 50y + 1 19 = 0. 
20 l ly2 - 12x2 + 88y + 72x + 300 = 0. 
2 1  Show that a = f3 in Fig. 1 5 .26. 
22 Let F be a point which is outside a given circle. Con

sider a point P that moves in such a way as to be equidis
tant from F and the circle. Show that the path of P is one 
branch of a hyperbola. 

23 Suppose that an ellipse and a hyperbola are confocal, that 
is, have the same foci F and F' .  Use the reflection prop
erties of the two curves to give a purely geometric proof 
that they are perpendicular to each other at every point 
P of intersection. 

24 (a) Show that 
x2 y2 -- + -- = l 

25 - k 1 6  - k 

represents an ellipse if k < 1 6  and a hyperbola if 
1 6  < k < 25, and that all these curves are confocal. 

(b) Find the first-quadrant point of intersection of the 
curves given by k = 0 and k = 20, and find the tan
gent line to each curve at this point. 
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(c) Show that the tangent lines in part (b) are perpen
dicular to each other by showing that the product of 
their slopes is - 1 .  

25 Consider two hyperbolas with the same eccentricity e, 

both centered at the origin and both with principal axis 
on the x-axis. Suppose that their equations are 

and 

Show that these hyperbolas are similar in the sense that 
(a) there exists a constant k such that 

El = .!!J_ = .£)_ = k· a2 b2 c2 ' 
(b) if a half-line from the origin 0 intersects the first hy

perbola at P1 and the second at P2, then 
OP1 = k OP2 . 

26 Find the locus of the centers of all circles that are tan
gent to the y-axis and cut off a segment of length 2a on 
the x-axis. 

27 Let F and F' be two points on a sheet of paper whose 
distance apart is 2c. Take a piece of string and tie a knot 
K in it so that the difference between the lengths of the 
two parts into which K divides the string is 2a, where 
0 < a < c. Tie the ends of the string to two tacks placed 
at F and F' ,  and loop the string around the point of a 
pencil, as shown in Fig. 1 5 .30. If the string is held taut 
and the knot K is carefully pulled, show that the pencil 
at P draws one branch of a hyperbola. 

K 
Figure 15.30 

28 If two hyperbolas x2/a2 - y2!b2 = 1 and y2!A2 -x2!B2 = 1 have the same asymptotes, show that their ec
centricities e and E are related by the equation 

1 1 
� + E2 = 1 . 

29 Show that the line tangent to the hyperbola x2/a2 -
y2!b2 = 1 at the point P1 = (xi ,  Y 1 ) is 

XX1 - YYI = I a2 b2 . 
30 If tangent lines to the hyperbola x2/25 - y2/ 1 6 = 1 in

tersect the y-axis at (0, 8), find the points of tangency. 
31 If tangent lines to the hyperbola x2/a2 - y2Jb2 = 1 in

tersect the y-axis at (0, d), find the points of tangency. 
32 A line through a point P on a hyperbola and parallel to 

the nearest asymptote intersects the nearest directrix at 
Q. If F is the corresponding focus, show that PQ = PF. 

33 Let C1 and C2 be circles in the same plane with differ
ent radii r1 and r2. Assume that C1 and C2 do not inter
sect and that neither surrounds the other. Show that the 
centers of all circles that are outside both, do not sur
round either, and are tangent to both, lie on one branch 
of a hyperbola whose foci are the centers of C1 and C2 
(Fig. 15 .3 1 ). 

Figure 15.31 

1 5 . 5 
THE FOCUS-DIRECTRIX

ECCENTRIC ITY 
DEFINITIONS 

Students have already seen that there are several distinct but equivalent ways of 
defining the conic sections, each with its own merits. We began with the defini
tion by means of a given cone and a slicing plane that cuts through the cone more 
or less steeply, yielding our three types of curves by varying the degree of steep
ness. This three-dimensional approach is vivid and geometric, and provides a 
clear visual impression of what the curves look like. However, for the purpose 
of obtaining Cartesian equations for use in precise quantitative studies, we needed 



1 5 .5 THE FOCUS-DIRECTRIX-ECCENTRICITY DEFINITIONS 

two-dimensional characterizations, and for this the focal properties discussed at 
the end of Section 1 5  . 1  turned out to be convenient. The concepts of eccentric
ity and directrix emerged in the course of our detailed work on ellipses and hy
perbolas, and we saw that each of these curves can be given yet another two
dimensional characterization by means of a focus, a directrix, and an eccentricity. 
Our purpose in this brief section is to show that all three of the conic sections
parabolas, ellipses, and hyperbolas-can in  this way be  given unified definitions 
that depend directly on our original concept of these curves as sections of a cone.* 

Our discussion is based on Fig. 1 5 .32, which shows a cone with vertex angle 
a and a slicing plane with tilting angle {3. This tilting angle can be defined as 
the angle between the axis of the cone and a normal line to the plane, but it plays 
its main role in our argument as the indicated acute angle of the right triangle 
PQD. The figure is drawn to illustrate the case of an ellipse, but the argument is 
valid for the other cases as well. 

We begin at the beginning. Let there be inscribed in the cone a sphere which 
is tangent to the slicing plane at a point F, and tangent to the cone along a cir
cle C. If d is the line in which the slicing plane intersects the plane of the circle 
C, we shall prove that the conic section has F as its focus and d as its directrix ,  
and the facts about the eccentricity will emerge in the course of our discussion. 

To this end, let P be a point on the conic section, let Q be the point where the 
line through P and parallel to the axis of the cone intersects the plane of C, let 
R be the point where the generator through P intersects C, and let D be the foot 
of the perpendicular from P to the line d. Then PR and PF are two segments 
which are tangent to the sphere from the same point P, and therefore have the 
same length, 

PR = PF. ( 1 )  

*For reasons that will soon be clear, circles must be excluded from this discussion, because the nec
essary geometric constructions are not possible when the slicing plane is perpendicular to the axis of 
the cone. 

I 
I 

ex I 

5 5 1 

Figure 15.32 
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Also, from the right triangle PQR we have 

PQ = PR cos a; 

and from the right triangle PQD we have 

It follows that 

so 

In view of ( 1 )  this means that 

PQ = PD sin {3. 

PR cos a = PD sin {3, 

PR sin f3 
PD cos a 

PF sin f3 
PD cos a 

This can be written in the slightly more convenient form 

PF 
= 

cos y 
PD cos a ' (2) 

where y is the other acute angle in the right triangle PQD. If we now define the 
eccentricity e by 

e = cos y 
cos a ' 

then this number is constant for a given cone and a given slicing plane, and (2) 
becomes 

PF = e 1: � PD > l 

for an ellipse, 
for a parabola, 
for a hyperbola, 

where the statements on the right are easily verified by inspecting the figure. 
Thus, for a parabola, we see that PD is parallel to a generator of the cone, so 
y = a and e = 1 ;  for an ellipse, we have y > a, so cos y < cos a and e < 1 ;  and 
for a hyperbola, we have y < a, so cos y > cos a and e > 1 .  

The words "parabola," "ellipse," and "hyperbola" come from three Greek 
words meaning "a comparison," "a deficiency," and "an excess," referring to the 
fact that for the corresponding curves we have e = 1 ,  e < I ,  and e > 1 .  One 
should also compare these words with the words "parable," "ellipsis," and "hy
perbole" in modem English. 

The general equation of the second degree in x and y is 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, ( I )  

where at least one of the coefficients A ,  B ,  C i s  different from zero. The latter 
requirement, of course, guarantees that the degree of the equation really is 2, 
rather than 1 or 0. In the preceding sections we have found that circles, parabo-
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las, ellipses, and hyperbolas are all curves whose equations are special cases of 
( 1 ). Thus, for example, the circle 

(x - h)2 + (y - k)2 = r2 
can be obtained from ( 1 )  by taking 

A =  C = I , B = 0, D = -2h, 
F = h2 + k2 - r2, 

and the parabola 
x2 = 4py 

by taking 

E = -2k, 

A =  I ,  E = -4p, B = C = D = F = 0. 

In addition to the conic sections mentioned here, we have also noted various "ex
ceptional cases" that can arise as graphs of ( 1 )  from special choices of the co
efficients. Thus, the graph of 

x2 + y2 = 0 

is a point, and the graph of 
x2 + y2 + 1 = 0 

is the empty set. Further, the graph of 

x2 = 0 

is a single line, namely, the y-axis, and the graph of 

x2 - y2 = 0, or equivalently (x + y)(x - y) = 0, 

is a pair of lines, namely, x + y = 0 and x - y = 0. Our purpose in this section 
is to investigate the full range of possibilities of the curves represented by ( 1 ) . 
Briefly, we shall find that the eight graphs we have just listed exhaust all possi
bilities: 

The graph of every second-degree equation of the form ( I )  is a circle, a parabola, an 
ellipse, a hyperbola, a point, the empty set, a single line, or a pair of lines. 
The main problem before us is posed by the so-called mixed term Bxy in ( 1 ), 

because when this term is present we have no idea how to identify the graph. No 
such terms have arisen in our previous work on the conic sections. The reason 
for this is that in every case we have been careful to choose the coordinate axes 
in a simple and natural position, so that at least one axis is parallel to an axis of 
symmetry of the curve under discussion. In order to see what can happen when 
a curve is placed in a skew position relative to the axes, let us find the equation 
of the hyperbola (see Fig. 1 5 .33) with foci F = (2, 2) and F' = ( -2, -2), where 
PF' - PF = ±4. We have 

Y(x + 2)2 + (y + 2)2 - Y(x - 2)2 + (y - 2)2 = ±4, 

and when we move the second radical to the right side, square, solve for the rad
ical that still remains, and square again, this reduces to 

xy = 2. (2) 
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Figure 1 5.34 Rotation of axes. 

x 

CONIC SECTIONS 

This is really a very simple equation, but nevertheless it does provide a special 
case of ( 1 )  in which the mixed term is present. The asymptotes of the hyperbola 
(2) are evidently the x- and y-axes, and its principal axis is the line y = x, which 
makes a 45° angle with the x-axis. It will become clear that a mixed term is pre
sent only when a curve is "tilted" in this way with respect to the coordinate axes, 
and also that this term can be removed by rotating the axes to "untilt" the curve. 
In the case of (2), it is easy to see by looking at the figure that this curve can be 
untilted by rotating the axes through a 45° angle in the counterclockwise direc
tion. 

To construct the machinery that is necessary for carrying out an arbitrary ro
tation of axes, we start with the xy-system and rotate these axes counterclock
wise through an angle 8 to obtain the x 'y '  -system, as shown in Fig. 1 5.34. A 
point P in the plane will then have two pairs of rectangular coordinates, (x, y) 
and (x ' ,  y ' ) .  To see how these coordinates are related, we observe from the fig
ure that 

x = OR = OQ - RQ = OQ - ST 

= x ' cos (} - y' sin e 

and 

y = RP = RS + SP = QT + SP 

= x ' sin (} +  y' cos e. 

We write these equations together for convenient reference, 

x = x' cos (} - y' sin (}, 

y = x' sin (} + y '  cos 8; 
(3) 

they are called the equations for rotation of axes. For example, if 8 = 45°, then, 
since sin 45° = cos 45° = tv'2 = 1 /v2, we have 

x' - y' x = ---v'2 , 
x ' + y' y = -- . v'2 (4) 

And for another example, if 8 = 30°, then since sin 30° = I and cos 30° = 
tV3, we have 

V3x' - y' x = 
2 ' 

x ' + VJy' y = 
2 . (5) 

As a simple illustration of the use of these equations, we substitute (4) into 
(2) and obtain 

x'2 _ y '2 --�- = 2 
2 or 

This is immediately recognizable as a rectangular hyperbola whose principal axis 
is the x' -axis. Of course, we already knew this from the way (2) was obtained. 
However, if we had started with (2) without knowing anything about the nature 
of its graph, then this procedure for removing the mixed term would have en
abled us to identify the curve without difficulty. 

In the case of equation (2), the 45° rotation represented by equations (4) 
worked. But how could we have known this in advance? Can we be sure that a 
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suitable rotation will always remove the xy term if one is present? And if so, how 
do we find a suitable angle of rotation? 

To answer these questions we return to the general second-degree equation ( 1 ) , 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, 

and we apply the general rotation (3) through an unspecified angle e, which 
yields 

A(x' cos (} - y' sin (})2 + B(x ' cos (} - y' sin {})(x ' sin (} + y' cos (}) 
+ C(x ' sin (} + y' cos (})2 + D(x ' cos (} - y' sin (}) 

+ E(x ' sin (} +  y '  cos (}) + F = 0. 

When we collect coefficients for the various terms, we get a new equation of the 
same form, 

A'x'2 + B'x'y' + C'y'2 + D'x' + E'y' + F' = 0, 

with new coefficients related to the old ones by the following formulas: 

A' = A  cos2 (} + B sin (} cos (} +  C sin2 (}, 

B' = - 2A sin (} cos (} + B(cos2 (} - sin2 (}) + 2C sin (} cos (}, 

C' = A sin2 (} - B sin (} cos (} + C cos2 (}, 

D '  = D cos (} + E sin (}, 

E' = -D sin (} + E cos (}, 

F ' = F. 

(6) 

(7) 

We have written down all these formulas for future reference, but for the mo
ment we are only interested in B ' .  If we start out with a second-degree equation 
( 1 )  in which the mixed term is present, B * 0, then we can always find an angle 
e of rotation such that the new mixed term is eliminated. To find a suitable an
gle e, we simply put B' = 0 in (7) and solve for e. To do this most easily, we 
use the double-angle formulas 

sin 2(} = 2 sin (} cos (} 

and 

cos 2 (}  = cos2 (} - sin2 (} 

to write 

B' = B cos 2(} + (C - A) sin 2(}. 

Then B' = 0 if we choose 8 so that 

A - C  cot 2(} = -8-. (8) 

Since we are assuming that B * 0, it is clear that this is always possible, and fur
thermore that e can always be chosen in the first quadrant, 0 < e < 1T/2. 

Example 1 Determine the nature of the curve whose equation is 

4x2 + 2xy + 4y2 = 1 5 . (9) 
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Solution Here we have A = 4, B = 2, and C = 4. The mixed term will be re
moved by choosing () according to (8), which in this case gives 

cot 2IJ = 0, 28 = 90°, IJ = 45°. 

We therefore substitute equations (4) into (9) and obtain 

5x ' 2 + 3y' 2  = 15 or x' 2 y'2 
- + - = !  3 5 

after simplification. This is clearly an ellipse with its foci on the new y
' -axis. 

We observe that when B -:/=- 0 and A = C, a rotation through 45° is always ap
propriate. 

Example 2 Determine the nature of the curve whose equation is 

l Ix2 + J0\/3xy + y2 - 32 = 0. 

Solution Here we have 

cot 21J = .!.!...-=--!_ = -1-
IOV3 \13 '  2IJ = 60°, IJ = 30°. 

In this case we use equations (5), which transform (I 0) into 

16x ' 2 - 4y'2 - 32 = 0 or x'2 y '2 
- - - = l 
2 8 

( 10) 

after simplification. This is a hyperbola with its principal axis along the new 
x'-axis. 

We now return to our original problem of classifying all possible graphs of the 
second-degree equation ( 1 ) . Since the axes can always be rotated to eliminate the 
mixed term, there is no loss of generality in assuming that this has been done. 
We are therefore confronted by equation (6) with B' = 0, and we drop the primes 
to simplify the notation, 

Ax2 + Cy2 + Dx + Ey + F = 0. ( 1 1 ) 

Our experience in the preceding sections enables us to distinguish four cases and 
to be certain that there are no others. The graph of equation ( 1 1 ), with B = 0, is: 

A circle if A = C -:/=- 0. In special cases the graph can be a single point or the 
empty set. 

2 An ellipse if A and C are both positive or both negative and A -:/=- C. Again, 
in special cases the graph can be a single point or the empty set. 

3 A hyperbola if A and C have opposite signs. In special cases the graph can 
be a pair of intersecting straight lines. 

4 A parabola if either A = 0 or C = 0 (but not both). In special cases the graph 
can be one straight line, or two parallel lines, or the empty set. 
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In Chapter 16 we will meet many equations of the third degree, fourth degree, 
etc. The exhaustive list given here of possible graphs of second-degree equations 
is relatively simple and stands in sharp contrast to the wilderness of bizarre curves 
that awaits us in connection with these higher-degree equations. 

PROBLEMS 

In Problems 1-1 1 ,  determine and carry out a suitable rotation 
of axes to eliminate the mixed term, find the new equation, 
and identify the curve. 

1 5x2 - 6xy + 5y2 = 8. 
2 x2 - 2xy + y2 + x + y = Vz. 
3 2x2 + 4V3xy - 2y2 = 8. 
4 l lx2 + 4V3xy + 7y2 - 65 = 0. 
S x2 + 2xy + y2 + 8x - Sy = 0. 
6 x2 - 3xy + y2 = 10. 
7 3x2 + 2xy + 3y2 = 8. 
8 x2 + 2V3xy + 3y2 + 2V3x - 2y = 0. 
9 5x2 + 4V3xy + 9y2 = 33. 

10 3x2 + 4V3xy - y2 = 30. 
* 1 1  6x2 - 6xy + l4y2 = 5 . 

1 2  An ellipse has foci ( ! ,  0) and (0, V3) and passes 
through the point (- 1 ,  0). Use the focus definition to 
find its equation. Through what angle should the axes 
be rotated to eliminate the mixed term from this equa
tion? 

13 Use equations (7) to show that B2 - 4AC = B' 2 -
4A ' C'. For this reason, the number B2 - 4AC is said to 
be invariant under rotations. 

1 4  The number B 2  - 4AC i s  called the discriminant of 
equation ( ! ) . To understand why, rotate the axes to re
move the mixed term and use Problem 13 to show that [ < 0 

B2 - 4AC = 0 > 0  for circles and ellipses, 
for parabolas, 
for hyperbolas, 

where the various special cases are considered to be
long to the appropriate categories. 

15 Verify the statement in Problem 14 for Problems 1-1 1 .  

16  As a check on the equations for rotation of axes, show 
that the equation of a circle centered at the origin, x2 + 
y2 = r2, is unchanged in form when the axes are rotated 
through an arbitrary angle 8. 

1 7  If a rotation of axes through an angle 8 is followed by 
a rotation through an angle <f>, this obviously amounts 
to a rotation through the angle 8 + <f>. Use the formu
las 

and 

x = x ' cos 8 - y' sin 8 

y = x ' sin 8 + y' cos 8 

x' = x" cos </> - y" sin </> 

y' = x" sin <f> + y" cos <P 

to show that 

x = x" cos (8  + ¢) - y" sin ( 8  + ¢) 

y = x" sin ( 8  + ¢) + y" cos ( 8  + ¢). 

1 8  Show that a 45° rotation of axes transforms the equa
tion x4 + 6x2y2 + y4 = 32 into x '4 + y ' 4  = 1 6. Sketch 
the curve and both sets of axes. 

CHAPTER 15 REVIEW: DEFINITIONS, PROPERTIES 

Think through the following. 

1 Conic sections from a cone. 
2 Parabola, focus, directrix, axis, vertex. 
3 Equation of parabola-standard form. 
4 Reflection property of parabolas. 
s Ellipse, foci , major and minor axes, eccentricity. 

6 Equation of ellipse-standard form. 
7 Reflection property of ellipses. 
8 Hyperbola, foci, principal axis, asymptotes, eccentricity. 
9 Equation of hyperbola-standard form. 

10 Reflection property of hyperbolas. 
1 1  Focus-directrix-eccentricity definitions. 
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ADDITIONAL PROBLEMS FOR CHAPTER 15 

SECTION I 5.2 
I The chord of a parabola through the focus and perpen

dicular to the axis is called the Latus rectum. If (as usual) p is the distance between the vertex and the focus, find 
the length of the latus rectum. 

2 Find the equation of the circle tangent to the directrix of 
the parabola x2 = 4py with the focus of the parabola as 
its center. What are the points of intersection of the 
parabola and the circle? 

3 Show that every upward-opening parabola with focus at 
the origin has an equation of the form x2 = 4p(y + p), 
and every downward-opening parabola with focus at the 
origin has an equation of the form x2 = -4p(y - p), 
where p and p are positive constants. 

4 Show that every upward-opening parabola with focus at 
the origin intersects at right angles every downward
opening parabola with focus at the origin. 

5 Let P be a point on the parabola x2 = 4py other than the 
vertex. If Q and R are the points at which the tangent and 
normal at P intersect the axis of the parabola, and if S is 
the foot of the perpendicular from P to this axis, then the 
segments QS and RS are called the subtangent and subnormal. 
(a) Show that the vertex V bisects the subtangent. 
(b) Show that the subnormal has constant length 2p. 
(c) Show that P and R are the same distance from the 

focus F. 
(d) Show that P and Q are the same distance from the 

focus F, so that F bisects the segment QR. 
(e) If the tangent at P intersects the directrix at a point 

T, show that PFT is a right angle. 
(f) If the tangent at P intersects the tangent at V (the 

x-axis) at a point U, show that PUF is a right angle. 
6 Show that the reflection property of parabolas follows 

easily (without calculation) from part (d) of Problem 5 .  
7 Show that the vertex is the point on a parabola that is 

closest to the focus. 

SECTION I 5 .3 
8 The reflection property of ellipses is an easy consequence 

(without calculation) of the following geometric prop
erty of ellipses. In Fig. 1 5 .35, let the line T be tangent at 
P to the ellipse with foci F and F'. Let G and G' be the 
reflections in T of F and F', so that T is the perpendic
ular bisector of the segments FG and F' G ' .  Then, as sug
gested by the figure, the segments FG' and F'G inter
sect at P. To prove this, let Q be any point on T different 
from P and verify that 
(a) FP + PF' < FQ + QF' ;  
(b) FP + PG' < FQ + QG'; 
(c) P lies on the segment FG' .  

T 

Figure 1 5.35 

1it 
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Similarly, P lies on the segment F'G, so it i s the point 
of intersection of these segments. Finally, use this fact to 
infer that the angles FPH and F' PH' are equal. 

9 A barrel has the shape of a prolate spheroid with its ends 
cut off by planes through the foci. If the barrel is 4 ft 
high and the diameter of its top (and bottom) is 2 ft, find 
the volume. 

I O  A Latus rectum of an ellipse is a chord through a focus 
and perpendicular to the major axis. If the equation of 
the ellipse is x2/a2 + y2tb2 = I with a > b, show that 
(a) the length of a latus rectum is 2b2/a; 
(b) the slope of the tangent line at the upper end of the 

latus rectum to the right of the y-axis is -e; 
( c) the tangent line in part (b) intersects the corre

sponding directrix on the x-axis. 
1 1  Show that every parabola of the form y = Ax2 intersects 

every ellipse of the form x2 + 2y2 = B at right angles. 
12 Suppose that the tangent to an ellipse at a point P inter

sects a directrix at a point Q. If F is the corresponding 
focus, show that PFQ is a right angle. 

13 Let P be a point on the ellipse x2/a2 + y2!b2 = 1 and let 
Q be the point where the tangent at P intersects the line 
x = -a. If A is the point (a, 0), show that AP is parallel 
to OQ. 

14 Show that the product of the distances from the foci of 
an ellipse to a tangent has the same value for all tangents. 
Hint: Use Additional Problem 2 1  in Chapter I .  

SECTION 1 5 .4 
15 Show that the product of the distances from the foci of 

a hyperbola to a tangent has the same value for all tan
gents. 
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16 Show that the product of the distances from a point P on 
a hyperbola to the asymptotes has the same value for all 
P's. 

17 Just as for an ellipse, a latus rectum of a hyperbola x2/a2 - y2!b2 = 1 is a chord through a focus and per
pendicular to the line on which the foci lie. Show that 
(a) the length of a latus rectum is 2b2/a; 
(b) the slope of the tangent line at the upper end of the 

latus rectum to the right of the origin is e; 
( c) the tangent line in (b) intersects the corresponding 

directrix on the x-axis. 
18 Suppose that the tangent to a hyperbola at a point P in

tersects the nearest directrix at a point Q. If F is the cor
responding focus, show that PFQ is a right angle. 

19 Show that the distance from either focus of the hyper
bola x2/a2 - y2!b2 = 1 to either asymptote is b. 

20 Sketch the graphs of the equations 

x2 y2 -;;: - b2 = ± !  

on a single coordinate system. These two hyperbolas have 
the same asymptotes, and their four branches "enclose" 

a region that stretches out to infinity in four directions. 
Determine whether the area of this region is finite or in
finite. 

21  Let c be a given positive number. 
(a) Show that for all positive values of h the ellipses 

x2 y2 c2 + h + h = 1 

have the same foci (±c, 0). 
(b) Show that for all positive values of k < c2 the hy

perbolas 

x2 y2 
-- - - = 1 c2 - k k 

have the same foci as the ellipses in part (a). 
(c) If P1 = (xi . y 1 ) is a point of intersection of one of 

the ellipses in (a) with one of the hyperbolas in (b), 
show that the tangents to the two curves at this point 
are perpendicular. 

22 Show that a line through a focus of a hyperbola and per
pendicular to an asymptote intersects the asymptote on 
the corresponding directrix. 
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THE POLAR 

COORDINATE SYSTEM 
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x 

Figure 16. 1  Polar coordinates. 

1f 
P = (3, 4), etc. 

Figure 16.2 

POLAR 
COORDINATES 

As we know, a coordinate system in the plane allows us to associate an ordered 
pair of numbers with each point in the plane. This simple but powerful idea en
ables us to study many problems of geometry-especially the properties of curves 
-by the methods of algebra and calculus. Up to this stage of our work we have 
considered only the rectangular (or Cartesian) coordinate system, in which the 
emphasis is placed on the distances of a point from two perpendicular axes. How
ever, it often happens that a curve appears to have a special affinity for the ori
gin, like the path of a planet whose journey around its orbit is determined by the 
central attracting force of the sun. Such a curve is often best described as the 
path of a moving point whose position is specified by its direction from the ori
gin and its distance out from the origin. This is exactly what polar coordinates 
do, as we now explain. 

A point is located by means of its distance and direction from the origin, as 
shown in Fig. 1 6. 1 .  Direction is specified by an angle () (in radians), measured 
from the positive x-axis. This angle is understood to be described in the coun
terclockwise sense if () is positive and in the clockwise sense if 8 is negative, just 
as in trigonometry. Distance is given by the directed distance r, measured out 
from the origin along the terminal side of the angle e. The two numbers r and 
(), written in this order as an ordered pair (r, 8), are called polar coordinates of 
the point. The direction 8 = 0 (the positive x-axis) is called the polar axis. 

Every point has many pairs of polar coordinates. For instance, the point P in 
Fig. 16.2 has polar coordinates (3, 7T/4), but it also has polar coordinates (3 ,  7T/4 + 
27T), (3, 7T/4 - 47T), etc. Any multiple of 27T  added to or subtracted from the 
(}-coordinate of a point yields another angle with the same terminal side, and 
therefore another 8-coordinate of the same point. 

The term "directed distance" is intended to suggest that we often meet situa
tions in which r is negative. In this case it is understood that instead of moving 
out from the origin in the direction indicated by the terminal side of 8, we move 
back through the origin a distance -r in the opposite direction . Thus, another 
pair of polar coordinates for the point P in  Fig. 16.2 is (-3 ,  7T/4 + 7T). In Fig. 
16.3 we plot the two points Q = (2, 7T/6) and R = (-2, 7T/6). 

The value r = 0 specifies the origin, regardless of the value of 8. For instance, 
the pairs (0, 0), (0, 7T/2), (0, - 7T/4) are all polar coordinates of the origin. 
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The fact that a point does not determine a unique pair of polar coordinates is 
a nuisance, but only a minor nuisance. Nevertheless, it is true that when any par
ticular pair of polar coordinates is given, this pair determines the corresponding 
point without any ambiguity. 

Even though it is incorrect to speak of the polar coordinates of a point because 
they are not unique, this error of usage is very common and is tolerated for the 
sake of euphony. 

It is important to know the connection between rectangular and polar coordi
nates. Figure 16. 1  shows at once that 

x = r cos 6 and y = r sin 6. ( I )  

When r and 8 are known, these equations tell us how t o  find x and y. We also Figure 16.3 

have the equations 

r2 = x2 + y2 and tan 6 = l'.. x ' (2) 

which enable us to find r and 8 when x and y are known. In using these equa
tions, it is necessary to take a little care to make sure that the sign of r and the 
choice of 8 are consistent with the quadrant in which the given point (x, y) lies. 

Example l The rectangular coordinates of a point are ( - 1 , \/3). Find a pair of 
polar coordinates for this point. 

Solution We have 

r = ±Vi+3" = ±2  and tan 6 = - \/3. 
Since the point is in the second quadrant, we can use our knowledge of trigonom
etry to choose r =  2 and 8 = 27T/3, so one pair of polar coordinates for the point 
is (2, 27T/3). Another acceptable pair with a negative value of r is (-2 ,  - 7T/3). 
Students should plot the point and have a clear visual understanding of each of 
these statements, as suggested by Fig. 1 6.4. 

Just as in the case of rectangular coordinates, the graph of a polar equation 

F(r, 6) = 0 (3) 

is the set of all points P = (r, 8) whose polar coordinates satisfy the equation. 
Since the point P has many different pairs of coordinates, it is necessary to state 
explicitly that P lies on the graph if any one of its many different pairs of coor
dinates satisfies the equation. 

Example 2 Show that the points ( 1 ,  7T/2) and (0, 'TT/2) both lie on the graph of 
r = sin2 8. 

Solution The point ( 1 ,  'TT/2) lies on the graph because the given coordinates sat
isfy the equation: 1 = sin2 7T/2. On the other hand, the point (0, 7T/2) lies on the 
graph even though 0 -:fo sin2 7T/2. The reason for this seemingly strange behavior 
is that (0, 0) is also a pair of coordinates for the same point, and 0 = sin2 0. 

(- ! ,  yi3) 
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Figure 16.5 

Figure 16.6 

Figure 1 6.7 

POLAR COORDINATES 

In most of the situations we will encounter, equation (3) can be solved for r 
and takes the form 

r = f(O). (4) 

If the function f ( 0) is reasonably simple, the graph is  fairly easy to sketch. We 
merely choose a convenient sequence of values for e, each determining its own 
direction from the origin, and compute the corresponding values of r that tell us 
how far out to go in each of these directions. We begin by discussing the sim
plest possible equations. 

Example 3 The equation e = a, where a is a constant, has as its graph the line 
through the origin that makes an angle a with the positive x-axis (Fig. 1 6.5). 

Example 4 The equation r = a ,  where a is a positive constant, has as its graph 
the circle with center at the origin and radius a (Fig. 1 6.6). 

Our next example is more complicated, and serves to introduce several im
portant methods .  

Example 5 The graph of r = 2 cos e is another circle, but this is not obvious. 
One way to try to get an idea of the shape of an unknown polar graph is to com
pute a short table of selected values and plot the corresponding points, as shown 
in Fig. 1 6.7. 

A better procedure than computing values and plotting points is to sketch the 
graph as the path of a moving point, by direct analysis of the polar equation, as 
follows. When e = 0, r = 2 cos 0 = 2. As e increases through the first quadrant, 
from 0 to 'TTl2, 2 cos e decreases from 2 to 0, and we obtain the upper part of 
the curve shown in Fig. 1 6.7. As e increases from TTl2 to 'TT, 2 cos e decreases 
from 0 to -2, and the lower part of the curve is traced out. As e increases from 
'TT to 3'TTl2, the upper part of the curve is retraced, and as e increases from 37T/2 

to 2'TT, the lower part is retraced. 

0 r � 
2 

0 2 
n/6 J3 
n/4 -12 511' 

n/3 I 6 

n/2 0 8 = 0, 
2n/3 - I  r = 2 
3n/4 - -12  8 = 11' 

5n/6 - J3  
TC -2  
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It is clear that the resulting graph is some kind of oval, perhaps even a circle. 
To verify that it really is a circle, we find and recognize the rectangular equation 
of the curve. To accomplish this, we multiply the given equation r = 2 cos () by 
r and use the change-of-variable equations ( 1 )  and (2) to write 

r2 = 2r cos 8, 

x2 + y2 = 2x, 

x2 - 2x + y2 = 0, 

(x - 1 )2 + y2 = I .  

This last equation tells us that the graph is a circle with center ( 1 ,  0) and radius 
1 .  It should be pointed out that multiplying the given equation by r introduces 
the origin as a point on the graph; however, since this point is already on the 
graph, nothing is changed. 

The method illustrated here, sketching a polar graph by direct examination of 
the polar equation r = f ( ()), will often be important in our future work. Briefly, 
the process is this: We imagine a radius swinging around the origin in the coun
terclockwise direction, with our curve being traced out by a point attached to this 
turning radius which is free to move toward the origin or away from it in accor
dance with the behavior of the functionf(()). In many of our examples and prob
lems, f(()) will be a simple expression involving the trigonometric functions 
sin () or cos (). In these circumstances it will clearly be very useful to have a solid 
grasp of the way these functions vary as the radius makes one complete revolu
tion, that is, as () increases from 0 to 1T!2, then from 1Tl2 to 1T, 1T to 31Tl2, and 
3 7T/2 to 2 7T. 

PROBLEMS 
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Find the rectangular coordinates of the points with the 
given polar coordinates, and plot the points: 

one vertex on the positive x-axis. Find the polar coordi
nates of all the vertices. 

(a) (2, 1Tl4) ;  (b) (4, -1Tl3); 
(c) (0, - 1T) ;  (d ) ( - 1 ,  71T/6); 
(e) (2, - 1Tl2); (f) (4, 37r/4); 
(g) (3, 1T); (h) ( -6, -1Tl4); 
(i) ( I ,  0); ( j) (0, 1 ); 
(k) (2, -51T/3); (I) ( 1 3, tan- 1 Jt-); 
(m) (-4, l 1 7r/6); (n) (3, -37T/2). 

2 Find two pairs of polar coordinates, with r's having op
posite signs, for the points with the following rectangular 
coordinates: 
(a) (-2, 2); 
(c) (2v'3, 2); 
(e) (v'3, 1 ) ;  
(g) (-3 ,  - 3); 
(i) (0, -2) ;  
(k) (5, - 12) ;  
(m) (- 1 ,  0); 

(b) (4, O); 
(d ) (2, 2VJ); 
(f) (0, 4); 
(h) (5, 5); 
( j )  (-VJ, 1) ; 
(I) (-3, 4); 
(n) ( I ,  2). 

3 A regular pentagon is inscribed in the circle r = I with 

4 Show that the point (3, 37T/4) lies on the curve r = 
3 sin 28. 

5 Show that the point (3, 37T/2) lies on the curve r2 = 
9 sin 8. 

6 Sketch each of the following curves and show that each 
is a circle by finding the equivalent rectangular equation: 
(a) r = 6 sin 8; 
(b) r = -8 cos 8; 
(c) r = -4 sin 8. 

7 Sketch the curve r = 4 (sin (J + cos 8), and identify it by 
finding the equivalent rectangular equation. 

8 Show that the graph of r = 2a cos 8 + 2b sin (J is either 
a single point or a circle through the origin. Find the cen
ter and radius of the circle. 

9 Sketch and identify each of the following graphs: 
(a) r = 2 csc 8; (b) r = 4 sec 8; 
(c) r = -3 csc 8; (d) r = -2  sec 8. 
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1 6 . 2  
MORE GRAPHS OF 

POLAR EQUATIONS 

Figure 16.8 A cardioid. 

8 
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1T 
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= 41T 3 

Figure 16.9 A lima�on. 

r = 2a 

r = 3a 

POLAR COORDINATES 

We continue our program of getting better acquainted with polar graphs. In this 
section we concentrate particularly on sketching polar equations r = f ( 8) of the 
type mentioned earlier, where f ( 8) involves sin (} or cos (} in some simple way. 

We again emphasize the change in point of view that is necessary for sketch
ing polar equations. With rectangular coordinates and y = f(x), we are accus
tomed to the idea of a point x moving along the horizontal axis and y as the di
rected distance measured up or down to the corresponding point (x, y) in the 
plane. We think in terms of "left-right" and "up-down." 

With polar coordinates and r = /((}), however, we must think of the angle (} 
swinging around like the hand of a clock turning in the wrong direction. For each 
(} we measure out from the origin a directed distance/( 8), and our moving point 
is farther out or closer in according as f ( (}) is larger or smaller. We must think 
in terms of "around and around" and "in and out." 

Example 1 The curve r = a( 1 + cos (}) with a > 0 is called a cardioid. When 
(} = 0, cos (} = 1 and r = 2a. As (} increases from 0 to 7T/2 and on to 1T, cos (} 
decreases from 1 to 0 to - 1 ,  so r decreases steadily from 2a to a to 0. This is 
shown in the upper half of Fig. 1 6.8. As (} continues to increase through the third 
and fourth quadrants, we see that cos (}, and with it r, retraces  its values in re
verse order, reaching cos (} = 1 and r = 2a at (} = 27T. Since cos (} is periodic 
with period 21T, values of (} less than 0 or greater than 27T give points already 
sketched. The complete cardioid shown in the figure is evidently symmetric about 
the x-axis. The strange name this curve bears is accounted for by its fancied re
semblance to a heart. 

When facing a polar equation, it is a natural temptation to try to return to fa
miliar ground by converting immediately to rectangular coordinates. This is ac
complished by using the transformation equations mentioned in Section 1 6. 1 ,  

r2 = x2 + y2, sin e =  z, r 
cos e = .:£, 

r 
tan e = Z. x 

In the case of the cardioid discussed in Example 1 ,  its equation r = a(l + cos (}) 
becomes 

r2 = a(r + x), x2 + y2 - ax = ar, 

and finally, 

(x2 + y2 _ ax)2 = a2(x2 + y2). 
This rectangular equation of the cardioid doesn' t  really tell us much. Clearly, it 
is better in this case to think exclusively in the language of polar coordinates . 
Nevertheless, there is a certain interest in seeing that the cardioid is a fourth
degree curve, in contrast to the second-degree curves discussed in Chapter 1 5 .  

Example 2 The curve r = a( I + 2 cos (}) with a > 0 is called a lima�on (French 
for "snail"). When (} = 0, r = 3a. As (} increases, r decreases, becoming 0 when 
2 cos (} = - 1 , that is, when (} = 27T/3. As (} continues increasing to 7T, r contin
ues to decrease through negative values from 0 to -a, and the point whose move
ment we are following traces the lower half of the inner loop shown in Fig. 1 6.9. 
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Just as in Example 1, as 8 continues to increase through the third and fourth 
quadrants, r retraces its values in reverse order; the inner loop is completed at 
8 = 41T/3, and the outer loop is completed at 8 = 27T. 

The curves in Examples 1 and 2 are both symmetric about the x-axis. We al
ways have this kind of symmetry when r is a function only of cos 8, because of 
the identity cos ( - 8) = cos 8. Similarly, if r is a function only of sin 8, then the 
curve is symmetric about the y-axis, because of the identity sin ( 1T - (}) = sin 8. 

We sometimes encounter curves whose equations have the form r2 = /(8) .  In 
this case, if (} is an angle for which f ( 8) < 0, then there is no corresponding 
point on the graph, because we must have r2 2:: 0. But if 8 is an angle for which 
/(8) > 0, then there are two corresponding points on the graph, with r = ±Vf(i;. 
These points are equally far from the origin in opposite directions, so the graph 
of r2 = f ( (}) is always symmetric with respect to the origin. 

Example 3 The curve r2 = 2a2 cos 28 is called a lemniscate. For each 8 there 
are two r's, 

r = ±Vza V cos 28. ( 1 )  

As  8 increases from 0 to 7T/4, 28 increases from 0 to 7T/2 and cos 2 8  decreases 
from 1 to 0. Accordingly, the two r's in ( 1 )  simultaneously trace out the two parts 
of the curve shown on the left in Fig. 1 6. 1 0. As 8 continues to increase through 
the second half of the first quadrant and the first half of the second quadrant, 28  
varies through the second and third quadrants and cos 28 i s  negative, so there is 
no graph for these 8's. Through the second half of the second quadrant, cos 2 8  
i s  positive again, and the two r's given b y  ( 1 )  simultaneously complete the two 
loops begun on the left in the figure. Further investigation reveals that no addi
tional points are obtained, and the complete lemniscate is shown on the right. 
The name of this curve comes from the Latin word lemniscus, meaning a ribbon 
tied into a bow in the form of a figure eight.* 

*The lemniscate was introduced by James Bernoulli in 1 694. It played a considerable role in some 
of the early work of Gauss (in 1 797) and Abel (in 1 826) on elliptic functions and ruler-and-compass 
constructions in geometry. See M. Rosen, "Abel's Theorem on the Lemniscate," Amer. Math. Monthly, 
88 ( 1 981 ), pp. 387-395. 
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Figure 16.10 A Jemniscate. 
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Figure 1 6. l l  A four-leaved rose. 

POLAR COORDINATES 

Example 4 The curve r = a sin 20 with a >  0 is called a/our-leaved rose, for 
reasons that will become clear. To sketch it, we observe that as () increases from 
0 to Tr/4, 2 ()  increases from 0 to Tr/2 and r increases from 0 to a; and as () in
creases from Tr/4 to Trl2, 2 ()  increases from Trl2 to Tr and r decreases from a to 
0. This gives the leaf in the first quadrant (Fig. 1 6. 1 1 ) .  Values of () between Tr/2 
and Tr (2() between Tr and 2Tr) yield negative r's which trace out the leaf in the 
fourth quadrant; those between Tr and 3Tr/2 (2() between 2Tr and 37r) yield pos
itive r's which trace out the leaf in the third quadrant; and those between 3Tr/2 
and 2Tr (2() between 3Tr and 4Tr) produce negative r's and the leaf in the second 
quadrant. 

We sometimes need to find the points of intersection of two curves that are 
defined by polar equations. It is natural to try to do this by solving the equations 
simultaneously. Unfortunately, this may not give all the points of intersection. 
The reason for this is that a point can lie on each of two curves and yet not have 
a pair of polar coordinates that satisfies both equations simultaneously. An ex
treme example of this behavior is provided by the two equations 

r = I + cos2 e and r = - 1  - cos2 e. 

whose graphs are identical. In this case there are no simultaneous solutions be
cause all the first r's are positive and all the second r's are negative, and yet there 
are infinitely many points of intersection. 

What can be done about finding intersections? The most sensible approach is 
to depend on drawing good enough graphs of both equations on a single figure 
to see whether there are any points of intersection. When there are, it is usually 
possible to find the polar coordinates of these points either by solving simulta
neous equations or else by observing where the points are by direct inspection 
of the figure. 

Remark People who enjoy geometry in school usually take special pleasure in 
construction problems. As students will perhaps recall, the Greek mathematicians 
of antiquity learned how to perform a great variety of intricate constructions with 
only ruler and compass allowed as tools for drawing straight lines and circles: 
For instance, an angle can be bisected; a segment can be trisected; the perpen
dicular bisector of a segment can be drawn; regular polygons with n sides, where 
n = 3, 4, 5 ,  6, can be constructed; etc. All of these constructions and many more 
have been known since the time of Euclid and Archimedes, and the details form 
an important part of the study of plane geometry.* 

The creation of geometric constructions with ruler and compass alone, when 
considered as an intellectual game played according to clearly understood rules, 
was certainly one of the most fascinating and enduring games ever invented. The 
complicated constructions that turn out to be possible must be seen to be be
lieved. Nevertheless, after ingenious and persistent efforts extending over more 
than 2000 years, there were three classical Greek construction problems that still 
remained unsolved at the beginning of the nineteenth century. These problems 
were: 

•see Chapters III, V, and IX of H. Tietze, Famous Problems of Mathematics (Gray lock Press, 1965). 
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1 To trisect an angle, that is, to divide a given angle into three equal parts 
2 To double a cube, that is, to construct the edge of a cube with twice the vol

ume of a given cube 
3 To square a circle, that is, to construct a square whose area equals that of a 

given circle 

In the course of the nineteenth century all three constructions were conclusively 
proved to be impossible under the stated conditions. 

The traditional restriction to the use of ruler and compass alone seems to have 
originated with the ancient Greek philosophers, but the Greek mathematicians 
themselves did not hesitate to use other tools. In particular, they invented vari
ous bizarre curves for the specific purpose of solving one or another of the clas
sical construction problems. Some of these curves are described in the problems 
that follow. 

PROBLEMS 

1 The following curves are also called cardioids. Sketch 
them, observing the way the position of the curve 
changes as the form of the equation changes.• 
(a) r = a( I - cos (}). (b) r = a( l  + sin (}). 
(c) r = a( I  - sin (}). 

2 All curves of the form r = a ::+:: b cos (} or r = a ::+:: 
b sin (} with a, b > 0 are called limarons. If a > b, the 
graph is a single loop. If a < b, the graph consists of a 
smaller loop inside a larger one, as in Fig. 1 6.9. Sketch 
the following lima9ons: 
(a) r = 3 + 2 cos (} ;  (b) r = 1 + 2 sin (}; 
(c) r = 1 - \/2 cos (} ;  (d) r = 5 - 3 sin e. 

3 Sketch the lemniscate r2 = 2a2 sin 2(}. 
4 Sketch the graphs of the following polar equations: 

(a) r = 2a cos (}; (b) r = 2a sin (}; 
(c) r = 2 - cos (}; (d )  r = 2 + cos (} ;  
(e) r 2  = cos (}; (f) r = 4 sin2 (}; 
(g) r = cos 2(}; (h) r = I + sin 2(}; 
( i) r = 2 + sin 2(}; (j) r = cos ±e; 
(k) r = sin ±e; (I) r = 2 sin2 ±e; 
(m) r = I + 2 sin (} ;  (n )  r = tan (} ;  
(o) r = cot (}; (p) r = sin 3(}; 
(q) r = cos 3!:J. 

5 Transform the given rectangular equation into an equiv
alent polar equation: 
(a) x = 5 ;  
(c) x2 + y2 = 9 ;  
(e) y = x2; 

(g) y2 = x(x2 - y2); 

(b) y = -3; 
(d ) x2 - y2 = 9; 
(f) xy = l ;  

(h) y2 = x2 -- . ( 2 + x ) 2 - x 

*Unless the contrary is explicitly stated, it is customary to assume 
that the constant a that occurs in polar equations like these is a pos
itive number. 

6 Transform the given polar equation into an equivalent 
rectangular equation: 
(a) r = 2; (b) (} = TT/4; 
(c) r cos (} = 3 ;  (d )  r = 4 sin (}; 
(e) the lima9on of Example 2, r = a( l  + 2 cos(}); 
(f) the lemniscate of Example 3, r2 = 2a2 cos 2(}; 
(g) the rose of Example 4, r = a sin 2(}; 
(h) r = tan (}; (i) r2 = cos 4(}. 

7 Let a be a positive number and consider the points 
F = (a, 0) and F' = (-a, 0). The lemniscate r2 = 
2a2 cos 2(} has the following simple geometric prop
erty: It is the set of all points P such that the product 
of the distances PF and PF' equals a2. Prove this by 
first finding the rectangular equation of the curve and 
then transforming this equation into its polar form r2 = 
2a2 cos 2(}. 

8 Use the formula y = r sin (} to find the largest value of 
y on 
(a) the cardioid r = 2( 1 + cos (}); 
(b) the lemniscate r2 = 8 cos 2(}. 

9 Use the formula x = r cos (} to find the polar coordi
nates of the points on the cardioid r = 2( 1 + cos (}) with 
the smallest x-coordinate. What is this smallest x-coor
dinate? 

10  Find all points of intersection of each pair of curves: 
(a) r = 4 cos (}, r = 4v'3 sin (}; 
(b) r = v'2 sin (}, r2 = cos 2(}; 
(c) r2 = 4 cos 2(}, r2 = 4 sin 2(}; 
( d) r = 1 - cos (}, r = cos (}; 
(e) r = a, r = 3a sin (}; 
(f) r = a, r2 = 2a2 sin 2(}. 

1 1  A line segment of length 2a slides in such a way that 
one end is always on the x-axis and the other end is al
ways on the y-axis. Find the polar equation of the lo-
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cus of the point P in which a line from the origin per
pendicular to the moving segment intersects the seg
ment. 

*1 2  Consider a circle of diameter 2a that i s  tangent to the 
y-axis at the origin (Fig. 16 . 12). Let OA be the diame
ter that lies along the x-axis, AB a segment tangent to 
the circle at A, and C the point at which OB intersects 
the circle. If P = (r, 8) lies on OB in such a position 
that OP = CB, find the polar equation of the locus of 
P. This curve is called a cissoid, meaning "ivy-shaped" 
-or, more precisely, the cissoid of Diocles (Greek, sec
ond century B .C.).t 

B 

Figure 16. 12 A cissoid. 

13 Find the rectangular equation of the cissoid in Problem 
12. 

14 Show that the line x = 2a is an asymptote of the cis
soid in Problem 12. 

tin the Additional Problems we explain how the cissoid can be used 
to solve the problem of doubling a cube. 

1 5  Let a and b be given positive numbers and consider the 
line whose rectangular equation is x = a and whose po
lar equation is r cos 8 = a  or r = a  sec 8 (Fig. 16 . 1 3) . 
The line OA in the figure intersects the line x = a at the 
point A, and P is a distance b beyond A. The locus of 
P is called a conchoid, meaning "shell-shaped" -or, 
more precisely, the conchoid of Nicomedes (Greek, third 
century B.C.). The polar equation of the conchoid is 
clearly r = a sec 8 + b. Find its rectangular equation.* 

A 

0 a b 

Figure 16. 13 A conchoid. 

16  I f  a rotation of  the polar axis through a specified angle 
transforms one polar equation into another, then their 
graphs are clearly congruent. Show that a counter
clockwise rotation of the polar axis through an angle a 
can be accomplished by replacing 8 by 8 + a. Use this 
method with suitable choices of a to show that 
(a) the cardioids in Problem I are congruent to the car

dioid r = a( l + cos 8) discussed in Example l ;  
(b) the lima9on r = a ± b sin 8 in Problem 2 is con

gruent to the l imac,:on r = a ± b cos 8; 
(c) the lemniscate r2 = 2a2 sin 28 in Problem 3 is con

gruent to the lemniscate r2 = 2a2 cos 2(} discussed 
in Example 3 .  

tin the Additional Problems we  explain how the conchoid can be used 
to solve the problem of trisecting an angle. 
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(a, 0) 0 

We have already had considerable experience in transforming the rectangular 
equation of a given curve into an equivalent polar equation for the same curve. 
Our basic tools for this procedure are the transformation equations listed in Sec
tion 1 6.2. 

Consider, for example, the circle (Fig. 16. 14, left) with center (a, 0) and ra
dius a :  

(x - a)2 + y2 = a2 or x2 + y2 = 2ax. 

Since x2 + y2 = r2 and x = r cos e, this equation becomes 

r2 = 2ar cos (}, 

which is equivalent to 

r = 2a cos (} 

because the origin r = 0 lies on the graph of (2). 

( I )  

(2) 

This example illustrates one way to find the polar equation of a curve, namely, 
transform its rectangular equation into polar coordinates. Another method that is 
better whenever it is feasible is to obtain the polar equation directly from some 
characteristic geometric property of the curve. In the case of the circle just dis
cussed, we use the fact that the angle OPA in the figure on the right is a right 
angle. Since OPA is a right triangle with r the adjacent side to the acute angle {), 
we clearly have 

r = 2a cos (}, 

which of course is the same equation previously obtained, but derived in a very 
different way. 

We shall use this second and more natural method to find the polar equations 
of various curves in the following examples. 

Example 1 Find the polar equation of the circle with radius a and center at the 
point C with polar coordinates (b, a), where b is assumed to be positive. 

Solution Let P = (r, {)) be any point on the circle, as shown in Fig. 16 . 15 ,  and 
apply the law of cosines to the triangle OPC to obtain 

a2 = r2 + b2 - 2br cos ((} - a). 

5 69 

Figure 16.14 
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P = (r, 8)  

0 

Figure 16. 1 5  
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Figure 16.16 

F2 = (-a, 0) 
Figure 16. 17  

A 

0 

P = (r, e )  

0 F1 = (a, 0) 

POLAR COORDINATES 

This is the polar equation of the circle. For circles that pass through the origin 
we have b = a, and the equation can be written as 

r = 2a cos (fl - a). (3) 

In particular, when a = 0, then (3) reduces to (2), and when a = 7T/2, so that the 
center lies on the y-axis, then cos ( 8 - 7T/2) = sin 8, and (3) reduces to 

r = 2a sin fl. (4) 

In this case the right triangle OPA in Fig. 16. 1 6  provides a more direct geomet
ric way of obtaining ( 4 ), since here r is the opposite side to the acute angle 8. 

Example 2 Let F1 and F2 be the two points whose rectangular coordinates are 
(a, 0) and (-a, 0), as shown in Fig. 16. 17 .  If b is a positive constant, find the 
polar equation of the locus of a point P that moves in such a way that the prod
uct of its distances from F1 and F2 is b2. 

Solution If P = (r, 8) is an arbitrary point on the curve, then the defining con
dition is 

or 

where d1 = PF1 and d2 = PF2• We apply the law of cosines twice, first to the 
triangle OPF1 , 

d12 = r2 + a2 - 2ar cos fl, (5) 

and then to the triangle OPF2, 

dl = r2 + a2 - 2ar cos (7r - fl). (6) 

Since cos ( 1T - 8) = -cos 8, we can write (6) as 

dl = r2 + a2 + 2ar cos fl, (7) 

and by multiplying (5) and (7) we obtain 

d12d22 = (r2 + a2)2 - (2ar cos fl)2 

or 

b4 = r4 + a4 + 2a2r2( 1 - 2 cos2 fl). 

The trigonometric identity 2 cos2 8 = 1 + cos 28 permits us to write this equa
tion as 

b4 = r4 + a4 - 2a2r2 cos 2fl. (8) 

In the special case b = a, the curve passes through the origin, and the equation 
takes the much simpler form 

r2 = 2a2 cos 2fl. (9) 

We recognize this as the equation of the lemniscate discussed in Example 3 of 
Section 16.2 .  When b > a, the curve consists of a single loop, but when b < a  
it breaks into two separate loops. The cases b < a and b = a are illustrated in 
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Fig. 16 .  18, along with two cases of b > a. Collectively, these curves are called 
the ovals of Cassini. * 

Polar coordinates are particularly well suited to working with conic sections, 
as we see in the next example. 

Example 3 Find the polar equation of the conic section with eccentricity e if 
the focus is at the origin and the corresponding directrix is the line x = -p to 
the left of the origin. 

Solution With the notation of Fig. 16 . 19, the focus-directrix-eccentricity char
acterization of the conic section is 

PF 
PD = e or PF = e · PD. ( 10) 

We recall that the curve is an ellipse, a parabola, or a hyperbola according as e < 
1 ,  e = 1 ,  or e >  1 .  By examining the figure, we see that PF = r and 

PD = QR = QF + FR 

= p + r cos a, 

so ( 10) is 

r = e(p + r cos (}). 

This is easily solved for r, which gives 

r = ep 
1 - e cos (} 

as the polar equation of our conic section. 

We give two concrete illustrations of the ideas in Example 3. 

( 1 1 )  

Example 4 Find the polar equation of  the conic with eccentricity t ,  focus at the 
origin, and directrix x = -4. 

Solution We merely substitute e = t and p = 4 in equation ( 1 1 ) ,  which yields 

tC4) 4 r = ----
1 - t cos (} 3 - cos (} . 

The curve is an ellipse. Observe that the denominator here is never zero, so r is 
bounded for all O's .  

•rhe Italian astronomer Giovanni Domenico Cassini thought o f  these ovals i n  I 6 8 0  i n  connection 
with his efforts to understand the relative motions of the earth and the sun. He proposed them as al
ternatives to Kepler's ellipses before Newton settled the matter with his theory of the solar system 
in 1 687. Cassini discovered several of the satellites of Saturn, and also the so-called Cassini division 
in Saturn's ring, thereby showing that this ring consists of more than one piece. 

57 1 

Figure 16.18 The ovals of Cassini. 
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Figure 16.20 

Figure 1 6.21 The spiral of 

Archimedes. 

Y = a 

Figure 16.22 A hyperbolic spiral. 

POLAR COORDINATES 

Example 5 Given the conic with equation 

25 
r = _4 ___ 5_c_o_s -() ' 

find the eccentricity, locate the directrix, and identify the curve. 

Solution We begin by dividing numerator and denominator by 4 to put the equa
tion in the exact form of ( 1 1 ), 

25 4 
r = ----

1 - t cos ()
. 

This tells us that e = %- and ep = ¥, so p = 5. The directrix is the line x = - 5, 
and the curve is a hyperbola. Observe that the denominator here is zero when 
cos e = t, so r becomes infinite near these directions. 

In connection with Example 3, it is worth pointing out that if the directrix is 
the line x = p to the right of the origin, as in Fig. 1 6 .20, then PD = p -

r cos 8. The equation PF = e · PD now has the form 

and instead of ( 1 1 )  we have 

r = e(p - r cos 8), 

r = ep 
I + e cos e ·  

Polar coordinates are very convenient for describing certain spirals .  

Example 6 The spiral of Archimedes (Fig .  1 6.21)  can be defined as the locus of 
a point P that starts at the origin and moves outward at a constant speed along a 
radius which, in turn, i s  rotating counterclockwise at a constant speed from its 
initial position along the polar axis, where both motions start at the same time.* 
Since both r and e are proportional to the time t measured from the beginning 
of the motions, r is proportional to e and the polar equation of the spiral is r = 
a8, where a is a positive constant. In the figure, it is assumed that 8 starts at zero 
and increases into positive values, as implied by the definition. However, if we 
wish to allow 8 to be negative, then there is another part to the spiral which we 
have deliberately not sketched for the sake of keeping the figure uncluttered. 

Example 7 In the spiral discussed in Example 6, r is directly proportional to 8, 
r = ae. We now consider the case in which r is inversely proportional to 8, 

a 
r = -

() or r() = a, ( 1 2) 

where a is a positive constant. For positive values of 8, the graph is the curve 
shown in Fig. 16.22; it is called a hyperbolic spiral because of the resemblance 
of r8 = a to the equation .xy = a, which represents a hyperbola in rectangular co
ordinates. 

*These are almost the same words which Archimedes himself uses to define his spiral. See his trea
tise "On Spirals" in The Works of Archimedes, T. L. Heath, ed. (Dover, n.d.), especially p. 1 54 . 
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The essential features of the graph are easy to see by considering r = ale. 
When e = 0, there is no r; when e is small and positive, r is large and positive; 
and as e increases to oo, r decreases to 0. This tells us that a variable point P on 
the graph comes in from infinity and winds around the origin in the counter
clockwise direction in an infinite number of shrinking coils as e increases in
definitely. To understand the behavior of this curve for small positive O's, we 
need to think about what happens to 

We know that 

and therefore 

. sin (} y = r sm (} = a -(}-. 

I' sin (} _ 1 8� (} - ' 

I . 1. sin (} 1m y = 1m a -(}- = a. 8--->0 8--->0 
It follows that the line y = a is an asymptote of the curve, as shown in the fig
ure. 

If () is allowed to be negative, we get another part of the curve, which again 
we do not sketch in order to avoid cluttering up the figure. The nature of this 
other part is easily understood by observing that if r and e are replaced by - r 
and - e, then equation ( 1 2) is unaltered. This means that for every point (r, 0) 
on the curve, the point ( - r, - 0), which is symmetrically located with respect to 
the y-axis, is also on the curve. Thus, the other part is a second mirror-image spi
ral that winds in to the origin in the clockwise direction as e � - oo. 

PROBLEMS 

In Problems 1-6, find the polar equation of the circle deter
mined by the stated conditions. 

1 Center (4, 7T/6), radius 3 .  
2 Center (-3 ,  7T/3), radius 4. 
3 Center (5, 0), radius 5 .  
4 Center (3, 7T/2), radius 3 .  
5 Center on the line (} = 7T/3 and passing through (6, 7T/2) 

and (0, 0). 
6 Center (5, 7T/4) and passing through (8, 0). 
7 A line is drawn from the origin perpendicular to a tan

gent to the circle r = 2a cos (}, Find the equation of the 
locus of the point of intersection and sketch the curve. 

8 Find the rectangular equation of the ovals of Cassini 
(Example 2) by direct use of the condition d12d22 = b4. 

9 The largest and smallest values of r on the lemniscate 
(9) are clearly r = v2a and r = 0. Find the largest and 
smallest values of r on the ovals of Cassini (8) 
(a) in the one-loop case b = 2a; 
(b) in the two-loop case b = ta. 

IO  The equation r = 4/(3 - cos (}) in Example 4 represents 
an ellipse with one focus at the origin. Sketch the curve, 

find both of its directrices, and locate the center. 
1 1  If a conic section with eccentricity e has focus at the 

origin and directrix y = -p below the origin, show that 
its polar equation is r = ep/( l - e sin (}). What is the 
polar equation if the directrix is the line y = p above 
the origin? 

Find the eccentricity of each of the following conic sections 
(in Problems 1 2-1 5) and sketch the curve. 

6 12  r = ----
1 - cos (} '  

4 14 r = 2 + 4 cos e · 

1 0  1 3  r = ----2 - cos (} ' 
1 8  15 r = 6 + cos (} · 

16 One focus of a hyperbola with eccentricity e = � is at 
the origin, and the corresponding directrix is the line 
x = 7 (or r cos (} = 7). Find the polar equation and the 
polar coordinates of the second focus and center, and 
sketch the curve. 

1 7  When e > 1 ,  the equation r = epl( l - e cos (}) repre
sents a hyperbola. Use this equation to determine the 
slopes of the asymptotes. 
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18 Transform the equation r = ep/(I - e cos (J) into rec
tangular coordinates. Use the facts established in Chap
ter 1 5  about the equations of conics in rectangular co
ordinates to show that the given equation represents a 
parabola if e = 1 ,  an ellipse if 0 < e < 1 ,  and a hyper
bola if e > 1 .  

19  I f  e < 1 ,  use calculus to  find the polar coordinates of 
the point on the ellipse r = epl( I - e cos (J) that is 
(a) farthest from the origin; 
(b) closest to the origin. 

20 Find the length of the major axis of the ellipse in Prob
lem 19 .  Also find the polar coordinates of its center. 

'''2 1 In his attempts to trisect an angle, Hippias of Elis, a 
leading sophist of the time of Socrates, invented a new 
curve, as follows. Consider a square OABC of side a lo
cated in the first quadrant of the .xy-plane (Fig. 16.23). 
Let OA rotate clockwise about 0 at a constant speed to 
the position OC. In the same time, let AB move down
ward at a constant speed to the position OC. The 
quadratrix APG is the locus of the point P of intersec
tion of the turning radius OD and the moving segment 
EF.t 

a 

Fij.\urc 16.23 The quadratrix. 

(a) Find the rectangular equation of the quadratrix 
[hint: y/a = (J/( -rr/2); why?] . 

(b) Find the polar equation of the quadratrix. 
( c) Use part (b) to show that OG = 2a/ -rr. 
(d ) Pappus of Alexandria ( fourth century A.D.) proved 

geometrically that ADC/OC = OC/OG. Show that 
this is equivalent to the result stated in part (c). 

(e) Verify the validity of the following procedure for 
using the quadratrix as a tool for trisecting an arbi
trary acute angle (J: Construct the point E' that tri
sects OE, so that OE' = toE; draw E' F' parallel to 
OC, and let P' be the point where this line inter
sects the quadratrix; draw OP' and conclude that 
L COP' = te.* [Part (e) requires that the segment 

tThe point G is not defined as part of the quadratrix because OA 
reaches OC at the same moment AB reaches OC, so there is no point 
of intersection. However, G is the limiting position of the points on 
the quadratrix that approach the x-axis. 

*22 

OE be trisected by the point E' . Figure 16.24 shows 
how this point can be produced by a Euclidean 
(ruler-and-compass) construction: Measure off any 
length b three times in any direction OQ, join R to 
E, and draw the line parallel to RE through the first 
point of division, intersecting OE at E' .] 

Q #'-��--������-.1 E' E 
Figure 16.24 Trisection of 

segment OE. 

In Problem 2 1 ,  let a = -rr/2, so that the rectangular equa
tion of the quadratrix is x = y cot y. Interchange x and y 
so that the equation becomes y = x cot x, and use divi
sion of power series to obtain Newton's result that the area 
under the quadratrix y = x cot x from 0 to x s -rr/2 is 

X - tx3 - 2�sX5 - 6;1sX7 - ' ' ' 
23 Verify the validity of the following method for trisect

ing an angle AOB by using the spiral of Archimedes, 
r = a(J (Fig. 16.25): 

A 

Figure 1 6.25 Trisection of angle AOB. 

(a) let OB intersect the spiral at P, and construct the 
point Q that trisects OP, so that OQ = toP; 

(b) construct the circle with center 0 and radius OQ, 
and let this circle intersect the spiral at R; 

(c) draw OR and conclude that LAOR = tLAOB.§ 

�In the Additional Problems we show how the quadratrix can also be 
used to square a circle. 

§Jn the Additional Problems we show how the spiral of Archimedes 
can also be used to square a circle. 
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Consider a curve whose polar equation is r =/(0), and let s denote arc length 
measured along the curve from a specified point in a specified direction (Fig. 
16 .26). By Section 7.5 we know that the differential element of arc length ds is 
given by the formula 

ds2 = dx2 + dy2. 

But x = r cos e and y = r sin e, and by differentiating with respect to e by the 
product rule, we obtain 

dx . 6 6 dr 
d(J = -r sm + cos dB and 

or equivalently, in the notation of differentials, 

dx = -r sin 8 d8 + cos 8 dr 

It follows from these formulas that 

ds2 = dx2 + dy2 

and 

dy . dr 
dB = r cos (} + sm 8 dB , 

dy = r cos 8 d8 + sin 8 dr. 

= r2 sin2 8 d82 - 2r sin (} cos (} dr d8 + cos2 8 dr2 

( I )  

+ r 2  cos2 8 d(J2 + 2r sin 8 cos 8 dr d8 + sin2 8 dr2 
= r2 d82 + dr2. 

Thus, we have 

ds2 = r2 d82 + dr2 (2) 
or 

ds = Vr2 d82 + dr2 = r2 + - d82 ( dr2 ) 
d82 

_ J 2 ( dr )2 - r + dB d8. 

This formula enables us to compute arc lengths of polar curves by integration, 
as suggested by the figure: 

arc length from 8 = a to (} = f3 equals J ds = J: J r2 + ( :� )2 d(J. 

Example 1 Find the total length of the cardioid r = a(l - cos 0). 

Solution This curve is quite familiar to us and is shown in Fig. 1 6.29. From the 
equation of the curve, we have dr = a sin e de, so formula (2) gives 

Therefore 

ds2 = a2(1 - cos 8)2 d82 + a2 sin2 8 d82 
= a2[( 1 - cos 8)2 + sin2 6] d82 
= 2a2(1 - cos 8) d82. 

ds = v'2aV1 - cos 8 d8 

= 2alsin f 81 d(J, 

since 1 - cos e = 2 sin2 te. We know that sin te � 0 for 0 :5 e :5 2rr, so we 

1 6 . 4  
ARC LENGTH AND 
TANGENT LINES 

Figure 16.26 
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Figure 16.27 

POLAR COORDINATES 

can drop the absolute value signs and write 

f (27T 1 s = ds = Jo 2a sin 2() df) 
= -4a cos I eJ:7T = 4a - (-4a) = Sa. 

The symmetry of this curve about the horizontal axis tells us that we can also 
obtain the total length by integrating from 0 to 7T and multiplying by 2, 

(7T I I ]7T s = 2 Jo 2a sin 2() df) = -Sa cos 2() 0 
= 0 - (-Sa) = Sa. 

As a matter of routine, we should accustom ourselves to simplifying the calcu
lation of integrals as much as possible by exploiting whatever symmetry is avail
able. 

The above formula for ds in polar coordinates can also be used to find areas 
of surfaces of revolution, as explained in Section 7 .6. 

Example 2 Find the area of the surface generated when the lemniscate r2 = 
2a2 cos 28  is revolved about the x-axis. 

Solution An element of arc length ds (Fig. 1 6.27) generates an element of sur
face area 

where 

so 

dA = 277)' ds, 

y = r sin () and ds = Yr2 d02 + dr2, 

dA = 27Tr sin eV r2 d02 + dr2 = 27r sin eV r4 d02 + r2 dr2. (3) 

From the equation of the curve we have 

so 

and (3) becomes 

r dr = -2a2 sin 20 dO, 

r4 df)2 + r2 dr2 = (4a4 cos2 20 + 4a4 sin2 20) df)2 
= 4a4 d02 

dA = 47ra2 sin () dO. 
The total surface area is twice the area of the right half, which is generated as 
ds moves along the part of the lemniscate in the first quadrant, that is, as e in
creases from 0 to 7r/4. We therefore have 

( 7Tl4 ]7T/4 A = 2 Jo 47ra2 sin () df) = -S7ra2 cos () 0 

= -S7ra2 (� - I ) = 47ra2(2 - Yl). 
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When working with rectangular coordinates, we specify the direction of a curve 
y = f (x) at a point by the angle a from the positive x-axis to the tangent line. 
However, in the case of a polar curve r = f ( 8), it is easier to work with the an
gle if; (psi) from the radius vector to the tangent line, as shown in Fig. 1 6.28. We 
see from the figure that a = 8 + if;, so if; =  a - 8; and since tan a = dy/dx and 
tan 8 = y/x, the subtraction formula for the tangent gives 

tan if! = tan (a - ll) 
tan a - tan () 
I + tan a tan () 

dy/dx - y/x 
I + (dyldx) · ( ylx) 

_ x dy - y dx - x dx + y dy · (4) 

The reason why if; is a convenient angle to use with polar coordinates is that (4) 
can be put into a very simple form. First, the fact that x2 + y2 = r2 tells us that 
x dx + y dy = r dr. Next, from ( 1 )  we obtain 

x dy - y dx = r2 cos2 () di) +  r sin () cos () dr + r2 sin2 () di) - r sin () cos () dr 
= r2 dll. 

By substituting these expressions into (4), we find that 

r di) r tan «/! = dr = dr/d() . 

This formula is the basic tool for working with tangent lines to polar curves. 

Example 3 Find the angle if; for the cardioid r = a ( l  - cos 8). 

(5) 

Solution This curve is shown in Fig. 1 6.29. The equation of the curve gives 

so 

dr . () di) = a sm , 

tan «/! = _r_ = 
a( 1 - cos ll) 

dr/d() a sin () 
2 sin2 te 

2 s in te cos te 
1 

= tan 21). 

We therefore have if; = t8, and as 8 increases from 0 to 2 7T, if; increases from 0 
to 1T, as indicated in the figure. 
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Figure 16.28 



578 

Figure 16.29 

Figure 16.30 The equiangular spiral. 

Figure 16.31 

POLAR COORDINATES 

As another example of the use of the formula for tan l/J, we consider an inter
esting curve called the exponential spiral. 

Example 4 Find the angle if! for the curve r = aeb9, where a > 0 and b * 0. 

Solution If b > 0, we see that r increases as e increases, as shown in Fig. 1 6.30. 
Further, it is clear that r -+  oo as e -+  oo and r-+ 0 as e -+  - oo. The distinctive 
feature of this curve is that if! is constant, because 

r aebe I tan i/I = 
dr/d(} 

= abebe = [;· 

This enables us to find ljJ in the form ljJ = tan- 1 ( l ib). If b < 0, the curve spirals 
in to the origin instead of outward as e increases. The curve r = aebe is some
times called the equiangular spiral because of the constancy of if!. 

The two main facts of this section, formulas (2) and (5), are easy to re
member by using Fig. 16 .3 1  as a mnemonic device. In this figure we have an 
arc of length ds joining two points with polar coordinates r, e and r + dr, e + 
de. The outer part of the figure is approximately a rectangle, and the "differen
tial triangle" on the right is approximately a right triangle with hypotenuse 
ds and with r de and dr as the legs opposite and adjacent to the angle l/J. The 
formulas 

and 

ds2 = r2 d(}2 + dr2 

r d(} 
tan ijJ = dr 

are now self-evident from this triangle, by the theorem of Pythagoras and the 
right triangle definition of the tangent. Needless to say, this way of reasoning 
is not a proof, but it is very useful nevertheless. It is also a good example of 
the true Leibnizian spirit in calculus, in the sense repeatedly explained in 
Chapter 7. 
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PROBLEMS 

For the spiral of Archimedes r = a8 (8 :2:: 0), show that 
If; =  45° when 8 = 1 radian, and also that If; �  90° as 
the spiral winds on around the origin in the counter
clockwise direction. Sketch the curve and show the an
gle If; for the direction 8 = 1 radian. 

2 If two curves r = /1 ( 8) and r = Ji( 8) intersect at a point 
other than the origin for a common value of 8, show by 
examining a figure that the angle y between their tan
gents can be found from the formula 

tan 1/12 - tan 1/1 1 tan y = 1 + tan 1/12 tan 1/11 
• 

Under what circumstances will the two curves intersect 
orthogonally (at right angles)? 

3 Sketch each of the following pairs of curves on a sin
gle figure and use the result of Problem 2 to show that 
they intersect orthogonally: 
(a) r = 2a sin 8, r = 2b cos 8; 
(b) r = a( I + cos 8), r = b( I - cos 8), except at the 

origin; 
(c) r = a/( l - cos 8), r = b/( l + cos 8); 
(d) r = al( I - cos 8), r = a( I - cos 8); 
(e) r2 = 2a2 cos 28, r2 = 2b2 sin 28, except at the ori

gin. 
4 Show that the spirals r = 8 and r = 118 intersect or

thogonally at 8 = 1 .  
s Find the area of the surface generated by revolving the 

cardioid r = a(I - cos 8) about the x-axis. 
6 The lemniscate r2 = 2a2 cos 28 is revolved about the 

y-axis. Find the area of the surface of revolution gen
erated in this way. 

7 Consider the tangent at a point P on the spiral r = a8 
( 8 :2:: 0), and let the line OT which is perpendicular to 
OP at the origin 0 meet this tangent at T (Fig. 1 6.32). 
Show that the segment OT equals the circular arc ASP 
with center 0 which is drawn from the polar axis to the 
point P. 

8 At what angle does the lemniscate r2 = 2a2 cos 28 in
tersect the circle r = a? 

A 

Figure 16.32 

9 On the upper half of the parabola r = a/( l - cos 8), 
show that tan If; =  -tan t8, and conclude that If; =  
71' - t8. Show that this establishes the following re
flection property: The tangent at any point on the 
parabola makes equal angles with the horizontal 
through that point and the line from the origin through 
the point. 

10 Show that the part of the hyperbolic spiral r8 = 1 from 
8 = 71'12 to 8 = oo has infinite length. 

1 1  Find the surface area generated by revolving the circle 
r = 2a cos 8 about the line 
(a) 8 = O; 
(b) 8 = 71'/2. 

1 2  Find the length of one tum of the spiral r = 8, from 8 = 
0 to 8 = 271'. 

13 If a curve r = f ( 8) has the property that If; is a constant 
=!- 71'!2, show that the curve must be the exponential spi
ral r = aeh8. 

14 Use integration to find the circumference of the circle 
r = 2a cos 8. 

15  Show that if a point moves at constant speed along the 
exponential spiral r = aeh8, then the radius r changes 
at a constant rate. 

* 16  If  a curve r = f ( 8) has the property that If; = t8, show 
that the curve must be the cardioid r = a(I - cos 8). 

1 7  Find the length of the exponential spiral r = e-8 from 
r = 1 to the origin. 

1 8  Sketch the exponential spiral r = aeh8 for the case i n  
which a i s  positive and b i s  negative, and show that the 
arc length from 8 = 0 to 8 = oo is equal to the length 
of the part of the tangent at 8 = 0 that is cut off by the 
x- and y-axes. 

*19 Show that the length L of the right loop of the lemni
scate r2 = 2a2 cos 28 can be expressed in the form . ;;:; f"/4 d8 L =  V .!.a 

-"14 \/cos 2 8  

= Via f "14 d8 . -TT14 Y 1 - 2 sin2 8 
Introduce the new variable u = tan 8 and show that 

u2 sin2 8 =  ---1 + u2 
and that therefore 

and du d8 = 1 + u2 ' 

L = Via J' du t 
- 1 � · 

fTuis is a special elliptic integral that played a large part in the in
vestigations of Gauss mentioned in a footnote of Section 16.2. See 
also Problem 16 in Appendix A.9. 
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16 . 5 
AREAS IN POLAR 

COORDINATES 

Figure 16.33 

8 = :_ , so area =+ rs 
r 

...__ s_.-/ 
Figure 16.34 

2a 

Figure 16.35 

POLAR COORDINATES 

Our problem here is to find the area A of the region bounded by a polar curve 
r = j(()) and two half-lines () = a and () = {3, as shown in Fig. 1 6.33. Our ap
proach is modeled on the "differential element of area" idea of Section 7. 1 .  

In working with areas in rectangular coordinates, we use thin rectangular strips 
and rely on the fact that the area of a rectangle equals length times width. Here 
we need the fact (Fig. 1 6.34) that the area of a sector of a circle of radius r and 
central angle () (measured in radians) is tr28. In Fig. 16.33 our element of area 
dA is the area of the very thin sector with radius r and central angle d(), so 

dA = tr2 df). ( 1 )  

In the manner of Section 7 .  I ,  we think of the total area A as the result of adding 
up these elements of area dA as our thin sector sweeps across the region, that is, 
as () increases from a to {3: 

A = J dA = J: t r2 dB. (2) 

Again, the essence of the process of integration is that we calculate the whole of 
a quantity by cutting it up into a great many convenient small pieces and then 
adding up these pieces. 

We shall give a more mathematically sophisticated approach to formula (2) in 
Remark 2 .  First, however, we illustrate its use in several examples. As students 
will observe in these examples, it is always essential in solving area problems to 
have a good idea of what the curve looks like, because the correct limits of in
tegration will be determined from the figure. 

Example 1 Use integration to find the area of the circle r = 2a cos fJ. 

Solution The complete circle (Fig. 1 6.35) is swept out as () increases from 
-7T/2 to TTl2 .  By symmetry we can integrate from 0 to TT/2 and multiply by 2, 

l7T/2 1 17T/2 1 A = 2 - r2 dB = 2 - · 4a2 cos2 B dB 0 2 0 2 

(7Tl2 1 = 4a2 Jo 2 ( I  + cos 28) df) 

( 1 )]7T/2 = 2a2 B + 2 sin 2B 0 
= 7Ta2 . 

Naturally, we expected this answer because our circle has radius a, but it is re
assuring to obtain a familiar result by a new method. 

Example 2 Find the total area enclosed by the lemniscate r2 = 2a2 cos 2() (Fig. 
16.36). 

Solution By symmetry, we calculate the area of the first quadrant part and mul
tiply by 4: 

A = 4 - r2 df) = 4 - · 2a2 cos 2B dB l7Tt4 I l7Tt4 I 
0 2 0 2 

(7Tl4 ]7T/4 = 4a2 Jo cos 2 8  dB = 2a2 sin 2B 0 = 2a2. 
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This problem provides a good illustration of the value of exploiting symmetry; 
for if we carelessly integrate all the way around from 0 to 27T, forgetting that r2 
is sometimes positive and sometimes negative, then our final answer turns out to 
be 0, which is obviously wrong. 

Example 3 Find the area inside the circle r = 6a cos 8 and outside the cardioid 
r = 2a( l + cos 8). 

Solution By equating the r's and solving for 8, we see that the curves intersect 
in the first quadrant at 8 = 7T/3 , as shown in Fig. 1 6.37. The indicated element 
of area is Figure 16.36 

dA = f(rcircJe)2 d() - f(rcardioict)2 d() 

= f[36a2 cos2 () - 4a2(1 + cos 0)2] d() 

= 2a2(8 cos2 () - I - 2 cos ()) d(). 

By symmetry, the area we seek is double the first quadrant area, so 

(7Tl3 
A = 2 Jo 2a2(8 cos2 () - I - 2 cos ()) d() 

(7T13 
= 4a2 Jo [4( 1 + cos 2()) - I - 2 cos ()] d() 

[ ]7T/3 = 4a2 3 ()  + 2 sin 2() - 2 sin () 0 = 47Ta2. 

Remark 1 The ideas of this section have an important application to the as
tronomy of the solar system. Consider a point P moving along a polar curve 
r = f(8). We can think of P as a planet moving along its orbit, with the sun at 
the origin. If A is the area swept out by the radius OP from a fixed direction a 
to a variable direction 8, as shown in Fig. 16.38, then we have 

dA = fr2 d(). 

If both A and e are thought of as functions of time t, then we see that 

dA _ _!_ 2 d() 
dt - 2 r dt · 

The derivative d.A!dt is, of course, the rate of change of the area A. Kepler's sec
ond law of planetary motion states that a planet moves in such a way that the ra
dius joining the planet to the sun sweeps out area at a constant rate. This means 
that dA!dt is constant, which in turn means that 

d() r2 dt = a constant (3) 

for any given planet. Thus, for example, if a planet's orbit takes it in twice as 
close to the origin, then its angular velocity d8/dt must increase by a factor of 4. 

Figure 16.37 

0 

Figure 16.38 
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This fact has far-reaching implications which we shall examine more thoroughly 
in the last section of the next chapter. 

Remark 2 We briefly reconsider formula (2) for the area A shown in Fig. 1 6.33 .  
Our purpose is to remind students of the point of view developed in Section 6 .4, 
namely, that a definite integral is defined to be a limit of approximating sums. 
As usual, we begin with a subdivision of the interval of integration [a, .BJ :  

a = fio < e ,  < . . .  < fin = {3. 

For each k = 1 ,  2, . . . , n, let mk and Mk be the minimum and maximum values 
of f ( ()) on the kth subinterval [ Ok- t. ()k] of length A ()k = ()k - ()k- I · Also, let 
AAk be the area within the curve r = f ( ()) corresponding to this subinterval. In 
Fig. 1 6.39 we show the area AAk squeezed between the areas of the inscribed 
sector with radius r = mk and the circumscribed sector with radius r = Mk. We 
therefore have 

By adding these inequalities from k = 1 to k = n, we obtain 

Figure 1 6.39 

because A is the sum of the AAk's. We now vary the subdivision in the manner 
described in Section 6.4, so that max A ()k � 0. Then each of these sums ap
proaches the definite integral 

(.B _!_ f( fi)2 d(} J,, 2 

for any continuous function r = f(O), and since the area A is squeezed between 
the sums, we legitimately conclude that 

which is (2). 

PROBLEMS 

1 Find the area enclosed by the cardioid r = a(l + cos fl). 
2 Find the area between the parabola r = 8/( 1 - cos fl) and 

the y-axis. 

3 Show that the area inside the first tum of the spiral r = 
a8, that is, for 0 :S (} :S 27T, equals one-third the area of 
the circle that passes through the endpoint of this tum 
and has center at the origin ." 

4 Find the total area inside the rose r = sin 28. 

s Find the total area inside the rose r = sin 3 fl. 

6 Find the area inside the smaller loop of the lima9on r = 
1 + 2 cos fl. 

*This statement and the result of Problem 7 in Section 1 6.4 are the 
main theorems proved by Archimedes in his treatise On Spirals 
(Propositions 20 and 24). 

A = (.B 1_ f(fl)2 d(} = (.B 1_ r2 dfi, J,, 2 J,, 2 

7 Find the area between the two loops of the lima9on r = 
I + 2 cos fl. 

8 Find the area between the circle r = 2a cos (} and the line 
y = x 
(a) by integration; 
(b) by elementary geometry. 

9 Find the area that lies inside both curves r = a cos (} and 
r = a( l - cos fl). 

10 Find the area that lies inside both curves r = a and r2  = 
2a2 cos 2fl. 

1 1  Use integration i n  polar coordinates to show that the area 
of the rectangle bounded by x = 0, y = 0, x = a, y = b 
is ab. 

12 Find the area common to the two circles r = 2a cos (} 
and r = 2b sin 8. 
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13 Show that the area between the cissoid r = 2a (sec (} -
cos (}) and its asymptote x = 2a (see Problem 1 2  in Sec
tion 1 6.2) is 3 times the area of the generating circle. 

14 In equation (3), show that the value of the constant is 

2A,IT, where A, is the area of the elliptical orbit and T is the 
time required for the planet to go once around its orbit. 

CHAPTER 16 REVIEW: CONCEPTS, FORMULAS 

Think through the following. 

1 Equations connecting rectangular and polar coordinates. 
2 Graphs of polar equations: circles, cardioids, lemniscates, 

spirals. 

ADDITIONAL PROBLEMS FOR CHAPTER 16 

SECTION 16.2 
1 Transform the given rectangular equation into an equiv

alent polar equation: 
(a) y = 4x; 
(b) 4x2 + 9y2 = 36; 
(c) x2 + y2 - 2x + 4y = O; 
(d) 2x - Sy = 3 ;  
(e) y2 = 4x; 
(f) x2 + y2 _ 4y = y' x2 + y2; 
(g) x3 + y3 = 1 2.xy. 

2 Transform the given polar equation into an equivalent 
rectangular equation: 
(a) r =  -3 ;  
(c) r sin (} =  - 5 ; 
(e) r2 = sin 2e;  
(g) r = sin 3(} ;  
(i) r2  = sin2 (} tan e. 

(b) (} = 37r/4; 
(d) r = 2 sec (}; 
(f) r = cos 2(}; 
(h) r = cos 3(};  

3 Find all points of intersection of each pair of curves: 
(a) r sin (} = a, r cos (} = a; 
(b) r = a(l + cos (}), r = a(l - sin (}); 
(c) r = a cos 2(}, 4r cos (} = v'3a; 
(d) r sin (} = 3, r = 6 sin (}; 
( e) r = 1 + cos (}, r2 = t cos (}; 
(f) r = a, r2 = 2a2 cos 2(}; 
(g) r = a( l + sin (}), r = 2a cos (}; 
(h) r cos (} = 2, r sin (} + 2v'3 = O; 
(i) r = 2 sin2 (}, r = -2; 
(j) r cos (} = 1, r = 2 cos (} + 1 ;  
(k) r = 1 + cos (}, r = 3 cos (}; 
(I) r = a( l + cos (}), r = a( I + sin (}); 
(m) r = a sin 2e, r = a(l - cos 2e). 

4 Diodes invented his cissoid to solve the classical Greek 
problem of doubling a cube, that is, constructing a sec
ond cube whose volume is twice that of a given cube. 
If OA in Problem 1 2  of Section 1 6.2 is the edge of the 
given cube, then the edge of the second cube must have 
length V2 OA. Verify that the following construction 
produces such a length. Let D be a point on the posi-

3 Arc length formula: ds2 = r2 d(}2 + dr2. 
4 Tangent line formula: tan t/; = r d(}/dr. 
5 Area formula: dA = tr2 d(}. 

tive y-axis such that OD = 20A, let AD intersect the cissoid 
at E, and extend OE to intersect the asymptote x = 2a at E. 
Then (AF)3 = 2(0A)3, so AF is the required length.* Hint: If 
E = (x, y), show that y3 = 2x3. 

5 Verify that the following construction, using the con
choid discussed in Problem 1 5  of Section 1 6.2, trisects 
the given angle BOP (Fig. I 6.40). Draw any line x = 
a, and let A be the point where it intersects OP. Form 

Figure 16.40 

*Hippocrates of Chios (see Section 6.2) reduced the problem of dou
bling a cube of edge a to the problem of constructing two mean pro
portionals x and y between a and 2a: 

E.. = � = L 
x y 2a · 

From these equations we have x2 = ay and xy = 2a2, and eliminat
ing y we find that x3 = 2a3. Thus x is the edge of a cube that has 
twice the volume of the first cube. This value is the x-coordinate of 
the point of intersection of the parabola x2 = ay and the hyperbola 
xy = 2a2, so the problem of doubling a cube is solved if we allow 
ourselves to use these curves as tools. Historians of mathematics be
lieve that the conic sections may have arisen in just this way. 
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the conchoid determined by the numbers a and b, where 
b = 20A. If C is the point where the horizontal line 
through A intersects this conchoid, let D be the point 
where OC intersects the line x = a, so that DC = b = 
20A. Let a be the angle POC and f3 the angle BOC, so 
that the given angle BOP is a + {3. Then by the law of 
sines we have 

so 

OA AC 
sin f3 sin a ' 

OA 2 OA cos {3 
sin f3 sin a 

and sin a = 2 sin f3 cos f3 = sin 2{3. Therefore a = 2{3 
and LBOP = 3{3, so f3 = tLBOP and the line OC 
trisects the given angle. 

6 A general conchoid can be defined as follows. Let 0 be 
a fixed point and C a  given curve. On the line OA from 
0 to a point A on C, continue to a point P, where AP 
is a positive constant b. Then the locus of P is called 
the conchoid of C with pole 0 and constant b. If C is 
a straight line and 0 is any point not on C, we get the 
conchoid of Nicomedes (Problem 1 5  in Section 16.2) 
as a special case. Show that a conchoid of a circle r = 
a cos I} with pole 0 at the origin and constant b is the 
limac,:on r = a cos I} +  b, so that conchoids include li
mac,:ons-and therefore cardioids-as special cases. t 

SECTION 1 6.3 
7 Verify the validity of the following procedure for squar

ing a circle of a radius a by using the quadratrix de
fined in Problem 21 of Section 16. 3 :  
(a) By part (d ) of the problem just mentioned, 

OG OC 
OC ADC' 

so a segment whose length is -;\- the circumference 
of our circle can be constructed as the third pro
portional to the segments OG and OC. (In an equa
tion of the form c/d = d/x, x is called the third pro
portional to the given segments of lengths c and d, 
and x can be constructed by ruler and compass as 
indicated in Fig. 16.4 l .) 

tThe limac;:on appears to have been named by the French mathemati
cian Roberval, who used it as an example in one of his writings in 
the 1 630s and called it the "limac;:on de monsieur Pascal." This refers 
to Etienne Pascal, father of the famous Blaise Pascal. Etienne was a 
friend and correspondent of Mersenne, which made it easy for his son 
to enter the elite intellectual circles of France at an early age. 

c \ 
\ 

d 

' 

d 

Figure 16.41 

' 
\ \ 

x 

' 
\ \ 

\ 

(b) By part (a), a segment can be constructed whose 
length b is t the circumference of our circle, with 
ab the area of the circle. The side s of a square 
whose area is ab can now be constructed as the 
mean proportional to a and b. (In an equation of the 
form a/s = slb, s is called the mean proportional to 
a and b, and can be constructed by ruler and com
pass as indicated in Fig. 16.42.) 

Figure 16.42 

8 Verify the validity of the following procedure for squar
ing a circle of radius a by using the spiral of 
Archimedes: 
(a) draw the circle with center 0 and radius a, and su

perimpose the spiral r = al} with constant of pro
portionality equal to the radius of this circle (Fig. 
1 6.43); 

Figure 16.43 
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(b) since OP and the arc AB both have length a8  and 
are therefore equal, it follows that the radius OQ for 
8 = n/2 is a segment whose length is ± the cir
cumference of our circle; 

(c) the squaring of the circle is now completed exactly 
as in part (b) of Problem 7. 

SECTION 1 6.4 
9 For the hyperbolic spiral r8 = a ( 8 > 0), show that l/J = 

1 35° when 8 = 1 radian, and also that if!� 90° as the 
spiral winds on around the origin in the counter clock
wise direction. Sketch the curve and show the angle l/J 
for the direction 8 = 1 radian. 

10 If a point moves along a polar curve r = f(8) at a con
stant speed, and is also moving away from the origin at 
a constant speed, show that the curve must be the ex
ponential spiral r = aebe. 

* I I Show that the arc length of one leaf of each of the fol
lowing roses equals the total arc length of the corre
sponding ellipse (but do not try to evaluate the integrals 
involved, because it cannot be done): 
(a) r = 2 sin 28, x2 + 4y2 = 1 ;  
(b) r = 6 cos 38, x2 + 9y2 = 9. 

q1 The distances r1 and r2 from the foci to any point on 
an ellipse satisfy the equation 

r1 + r2 = a constant. 

By differentiating both sides of this equation with re
spect to arc length s and interpreting the result in terms 
of differentials, show that the tangent at any point on 
the ellipse makes equal angles with the lines to the foci. 

1 3  Establish the reflection property of parabolas by an 
adaptation of the argument used in Problem 1 2. 

1 4  Consider the part of  the lemniscate r2 = 2a2 cos 2 8  that 
lies in the first quadrant, and show that at any point on 
this curve the angle between the radial direction and the 
outward normal is 2(}. 

1 5  Find the angle at which the circles r = a and r = 
2a cos (} intersect. 

1 6  Show that the length of an arc o f  the exponential spiral 
r = aeb8 is proportional to the difference of the radii at 
its ends. 

I 7 Find the length of the spiral r = a82 from (} = 0 to 8 = 
21T. Sketch the curve. 

1 8  Find the length o f  the curve r = a sin3 t e  from 8 = 0 
to (} = 37T/2. What is the total length of this curve? 

SECTION 1 6 .5 
':' 19 Suppose that a polar curve r = r( 8), a ::S 8 ::S {3, also 

has a representation as a rectangular curve y = y(x), a ::S 
x ::S b, as shown in Fig. 1 6.44. (It is convenient here to 

0 

D 
1 ' 

I I 
1 I 

I I I I I t .-- C 
I I ,.,, ,..... I 

/ !.-_..,...... I 
1 � .... .... .... , I 

�.... DI I A 1 B  
a b 

Figure I 6.44 

denote each function and its dependent variable by the 
same letter.) From the point of view of rectangular co
ordinates, the area of the region OCD is 

Aocn = AoAD + AAscn - Aase 

l lb = 2r2(f3) sin /3 cos /3 + a y dx 

- tr2(a) sin a cos a 

= ±[r2( (}) sin 2 8  J: 
+ J; r( 8) sin 8[r'( (}) cos 8 - r( 8) sin (}] d8. 

By  integrating by parts at the right moment, show that 
this formula reduces to 

f,/3 1 2 Aocn = a 2 r d8. 

20 Find the area inside the circle r = a and outside the car
dioid r = a(l - cos 8). 

21  Find the area outside the circle r = 4 cos 8 and inside 
the limac;on r = 1 + 2 cos (}. 

22 Find the area outside the circle r = a and inside the cir
cle r = 2a cos 8. 

23 Show that the area inside the first turn of the exponen
tial spiral r = aeb8 is (r22 - r1 2)14b, where r1 is the ini
tial radius and r2 is the terminal radius. 

24 Find the area inside one loop of the curve r2 = 
a2 sin 8. 

25 Find the total area outside the circle r = a and inside 
the lemniscate r2 = 2a2 cos 2(}. 
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PARAMETRIC 

EQUATIONS OF 
CURVES 

x y 
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-2 4 - 8  

PARAMETRIC 
EQUATIONS . 

VECTORS IN THE 
PLANE 

When we  think of a curve as the path o f  a moving point, i t  i s  often more con
venient to study the curve by using two simple equations for x and y in terms of 
a third independent variable t, 

x = f(t) and y = g(t), 

than by using a single more complicated equation of the form 

F(x, y) = 0. 

( 1 )  

(2) 

In physical problems we often consider a moving point, and t is understood to 
be the time measured from the moment at which the motion begins. The point P 
whose coordinates are x and y then traces out the curve as t traverses some def
inite interval, say t1 ::5 t ::5 t2. This provides not only a description of the path on 
which the point moves, but also information about the direction of its motion and 
its location on the path for various values of t, as suggested in Fig. 1 7  . 1 . The 
third variable in terms of which x and y are expressed is called a parameter (from 
the Greek para, meaning "together," and meter, meaning "measure"), and equa
tions ( 1 )  are called parametric equations of the curve. If we want the rectangu
lar equation of the curve in the form (2), we must eliminate the parameter from 
equations ( 1 ) . 

Example 1 Sketch the curve x = t2, y = t3 and find its rectangular equation. 

Solution We can plot a few points by calculating x and y for several values of 
t, as indicated by the table in Fig. 17 .2. A few calculations are worthwhile to give 
us something concrete to start with. However, it is more profitable to study how 
x and y vary as t varies, instead of merely plotting points. Here we see that as t 
increases from 0 to =, x and y both start at 0 and increase into positive values, 
but y increases faster than x. This means that for large t's the point P = (x, y) 
moves away from the x-axis faster than from the y-axis, as shown. For negative 
t's x is still positive, but y is negative, so this part of the curve is a reflection 
about the x-axis of the upper part which we have just described. The general 
shape of the curve can be discovered from the behavior of the slope of the 
tangent dy/dx, which can easily be calculated as a function of t by dividing 
dy = 3t2 dt by dx = 2t dt: 

586 
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as t�  0, 
as t� =, as t�  -=. 

Finally, we notice from the parametric equations that the square of y equals the 
cube of x, so 

y2 = x3 or y = x312 
is the rectangular equation of the curve. 

As we remarked earlier, the use of parametric equations is very natural if we 
think of a curve as the path of a moving point whose position depends on the 
time t measured from some convenient initial moment. 

Example 2 Let a projectile be fired from the origin at time t = 0 with an initial 
velocity of magnitude v0 ft/s (or mis) and direction given by the angle of eleva
tion a (Fig. 1 7.3), and assume that the only force acting on the projectile is the 
force of gravity. Discuss the subsequent motion. 

Solution We consider the x- and y-components of the acceleration separately. 
Since the force of gravity acts downward, we have 

a = dvx = O x dt and 

where g = 32 ft/s2 (or 9.80 m/s2) is the acceleration due to gravity. Therefore 

and vy = -gt + c2 
for certain constants c1 and c2. But when t = 0, we have Vx = v0 cos a and Vy = 
1.-0 sin a, and consequently 

dx 
Vx = dt = Vo cos a 

Another integration yields 

X = (1{) COS a)t + C3 

and 

and 

dy . 
Vy = dt = -gt + v0 sm a. 

y = -fgt2 + (1-0 sin a)t + c4. 

But x = y = 0 when t = 0, so c3 = c4 = 0 and 

x = ( v0 cos a)t, y = -fgt2 + (vo sin a)t. (3) 

These are parametric equations for the path of the projectile. We can use equa
tions (3) to show that the projectile follows a parabolic path. To do this, we elim
inate the parameter by solving the first equation for t and substituting in the sec
ond: 

x t = --
Vo cos a '  

1 x2 x y = --g · + (1-0 sin a) · ---2 v02 cos2 a Vo cos a 

2 2 
g 

2 x2 + (tan a) x. v0 cos a 

587 
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Figure 1 7.3 
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Figure 1 7.4 

PARAMETRIC EQUATIONS. VECTORS JN THE PLANE 

The fact that y is a quadratic function of x shows that the point (x, y) moves on 
a parabola. Further properties of this motion are developed in Problem 1 3 . 

In any motion problem like that discussed in Example 2, it is natural to use 
the time t as the parameter. However, in problems that are more concerned with 
geometry than with physics, the most convenient parameter is likely to have some 
geometric significance. In Example 1 ,  for instance, it is perfectly possible to think 
of the parameter t as a pure variable, without any connotation at all. On the other 
hand, in this example we have y/x = t3!t2 = t, so we can also think of t as the 
slope of the radial line from the origin to a variable point on the curve, and this 
certainly lends additional vividness to our conception of the way the curve is 
traced out as the parameter varies. Needless to say, there is nothing sacred about 
the letter t, and we are always free to use any letter we wish as a parameter. 

Example 3 Consider the circle shown in Fig. 17 .4, with radius a and center at 
the origin. It is easy to see that 

x = a  cos (}, y = a  sin (} (4) 

are parametric equations for this circle, where e is the indicated central angle. 
As e varies from 0 to 27T, the point P = (x, y) starts at (a, 0) and moves once 
around the circle in the counterclockwise direction. If we didn't already know 
the rectangular equation of this circle, we could obtain it from the identity 
cos2 e + sin2 e = 1 ,  which yields 

x2 y2 
- + - = I a2 a2 or x2 + y2 = a2 . (5) 

But students should notice that this equation is a static thing, and in passing from 
(4) to (5) we lose our sense of the circle as a curve traversed by a moving point. 

Example 4 The ellipse 

shown in Fig. 17 .5 can be parametrized as follows. Since 

(�r + (tr = I , 
there exists an angle e such that cos e = xla and sin e = ylb, so 

x = a cos (}, y = b sin e. 

As e varies from 0 to 27T, the point P = (x, y) starts at (a, 0) and moves once 
around the ellipse in the counterclockwise direction. Observe from the figure that 
e is not the central angle of the point P = (x, y); instead, it is the central angle 
of the points A and B on the two circles, one circumscribed about the ellipse and 
the other inscribed in the ellipse, and P is the intersection of the vertical line 
through A and the horizontal line through B. 
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A 

Example S The parabola x2 = 4py (Fig. 1 7  .6) can be parametrized in many ways. 
One method is to use the slope of the tangent at (x, y) as parameter, 

Since 

dy 2x = 4p 
dx 

t = dy 
dx' 

or 
dy x 
dx 2p ' 

the parametric equations in this case are 

x = 2pt, y = pt2. 
Another method is to use as parameter the number 

m = l._  x ' 

which is the slope of the radial line to (x, y). Here we have 

y = mx and x2 = 4py = 4pmx, 
so 

x = 4pm, y = 4pm2 
are the parametric equations. In each case the entire parabola is traced out as the 
parameter increases from - oo to oo. 

Our next example illustrates the fact that a parametric curve is often only a 
part of the corresponding rectangular curve. 

Example 6 Sketch the curve x = cos2 ( 7T/2)t, y = sin2 ( 7T/2)t and find its rec
tangular equation. 

Solution Since cos2 ( 7T/2)t + sin2 ( nl2)t = 1 ,  the point P = (x, y) moves on the 
straight line x + y = 1 (Fig. 1 7.7) . But neither x nor y can be negative, so the 

Figure 1 7.5 

Figure 17.6 

,, ' B = (0, I ) 

point is confined to that portion of this line that lies in the first quadrant. It is Figure 17.7 

5 8 9  

t =  dy 
dx 

A = ( ! ,  0) ', ' 
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easy to see that the point is at A = ( 1 ,  0) when t = O; that it moves to B = 

(0, l )  as t increases from 0 to 1 ;  that it moves back to A as t increases from 1 to 
2; and so on. 

Example 7 In Example 6 we discussed a parametric curve consisting of only 
part of a straight line. We now show that the parametric equations 

x = t - l ,  y = 2 t  + 3 (6) 

represent all of a straight line. By eliminating t from these equations, that is, by 
multiplying the first by 2 and subtracting the second, we obtain 

2x - y = - 5 . (7) 

Thus all points (x, y) satisfying (6) also satisfy (7), which is the equation of a 
straight line. Conversely, given a point (x, y) satisfying (7), let t = 1 + x [we ob
tain this by solving the first equation in (6) for t] . Then 

x = t - 1 ,  
and from (7) we have 

y = 2x  + 5 = 2(t - I )  + 5 = 2t + 3, 

so the point (x, y) lies on the parametric curve (6), as we wished to show. 

Our previous ways of representing curves, by rectangular coordinates and by 
polar coordinates, are easy to fit into our present system of parametric represen
tation. Thus, if we have a curve y = f (x), then we can write 

y = f(x) and x = x, 

so that x itself is used as the parameter. Also, a curve that is given in polar co
ordinates by the polar equation r = F( 8) can be viewed as a parametric curve 
with parameter 8. To see this, we use the transformation equations x = r cos 8 
and y = r sin 8 to write 

x = F(8) cos 8, y = F(8) sin 8. 

For example, the spiral of Archimedes r = a 8 becomes 

x = ae cos e, y = a8 sin 8; 
and the cardioid r = a(l + cos 8) can be expressed as 

x = a(cos e + cos2 8), y = a(sin e + sin e cos 8). 

PROBLEMS 

In each case, sketch the curve represented by the given 
parametric equations, describe the way the point (x, y) 
moves as t varies from large negative to large positive 
values, and find the rectangular equation: 
(a) x = 1 + t, y = 1 - t; 
(b) x = - 1 + 2t, y = 2 + 4t. 

2 If x and y are linear functions of t, 
x = x0 + at, y = Yo + bt, 

show that the graph is always a complete straight line 
unless both a = 0 and b = 0. Can every straight line be 
represented in this way? 

3 Sketch the graph of x = I - t2 , y = 2 + t2. Describe 
the way the point (x, y) moves as t varies from large 
negative to large positive values, and find the rectan
gular equation of the curve. 

For each of the following pairs of parametric equations (in 
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Problems 4-9), sketch the curve and find its rectangular equa
tion. 

4 
s 
6 
7 
8 
9 

I O 

x = 3 cos t, y = 2 sin t. 
x = 1 + t2, y = 3 - t. 
x = sin t, y = - 3 + 2 cos t. 
x = sec t, y = tan t. 
x = t3, y = 1 - t2 . 
x = sin t, y = cos 2t. 
Sketch the graph represented by 

1 x = t + t , 
1 y = t - -t 

and find its rectangular equation. Hint: Square and sub
tract. 

1 1  Are the parametric curves 

1 2  

and 

1 
x = t + t , 1 y = t - -t 

y = e' - e-' 

identical? Explain. 
We know by Example 3 that the unit circle x2 + y2 = 
1 (Fig. 1 7.8) can be parametrized by the equations 

x = cos (}, 

(- 1 ,  0) 

Figure 17.8 

y = sin(}, 0 :::;; (} :5': 271'. 

(x, y) 
/ ,,, / I / I 

I/ I y 
I I 

o I 
x 

A very different parametrization can be obtained by us
ing as the parameter the tangent of the angle te shown 
in the figure, 

t = -Y-. 
1 + x 

(a) By first eliminating y from this equation and x2 + 
y2 = 1 ,  show that the equations 

2t y = 1 + t2 ' -oo < t < oo, 

parametrize the entire circle except for the point 
( - 1 ,  0). 

(b) A point (x, y) in the plane such that both x and y 
are rational numbers is called a rational point. Show 
that for rational values of t the equations in (a) give 
all rational points on the unit circle, except the point 
(- 1 , 0).* 

13 Consider the motion of the projectile described in Ex
ample 2. 
(a) Show that the maximum height of the projectile is 

1-02 sin2 a Ymax = 2g 
(b) Show that the range R of the projectile, i.e., the dis

tance from the origin to the point where the pro
jectile reaches the x-axis on its descent, is given by 
the formula 

1-02 
R =  - sin 2a. g 

(c) What angle of elevation a produces the maximum 
range? 

(d) Show that doubling the magnitude of the initial ve
locity multiplies both the maximum height and the 
range by a factor of 4. 

14 The witch is a bell-shaped curve that can be defined as 
follows. Consider the circle of radius a which is tan
gent to the x-axis at the origin (Fig. 17 .9). The variable 
line OA through the origin intersects the line y = 2a at 
the point A and the circle at the point B. The point P is 
the intersection of the vertical line through A and the 
horizontal line through B, and the witch is the locus of 
P as OA varies. Find parametric equations for this curve 

0 

Figure 17.9 The witch. 

A 

•1n general it is very difficult to find rational points on curves, and it 
is quite remarkable that we are able to do so for the case of the unit 
circle. For instance, it has been asserted that if n is any integer > 2, 
the only rational points on the curve x" + y" = I are those for which 
x = 0 or y = 0. This statement is called Fermat 's last theorem. It has 
been proved for many particular values of n over the past 350 years, 
but in its full generality it remains to this day one of the most famous 
(and intractable) unsolved problems of mathematics. See the last foot
note in Section 1 .4. 
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by using as parameter the angle (} from the positive 
x-axis to the line OA. Also find its rectangular equa
tion.t 

1 5  The inwlute of  a circle i s  the curve traced out by  the 
point at the end of a thread as the thread is held taut 
and unwound from a fixed spool, as shown in Fig. 17 . 10. 
If the center of the spool is placed at the origin and its 
radius is a, and if the thread begins to unwind at the 
point A = (a, 0), find parametric equations for the in
volute by using the angle AOT shown in the figure as 
the parameter e. 

* 16  The folium of Descartes, shown in Fig 1 7  . 1 1 , is the 
graph of the equation x3 + y3 = 3axy.t 
(a) Introduce the parameter t = y/x and find paramet

ric equations for the curve. 
(b) Use the equations found in (a) to show that the line 

x + y + a = 0 is an asymptote, by showing that x + 
y ---> -a as t ---> - 1 .  

(c) The folium is clearly symmetric about the line y = 
x, because interchanging x and y leaves the equa
tion unaltered. Use this, together with the geomet
ric meaning of t and the results of (a) and (b ), to 
verify as much as possible of the general nature of 

tThe witch is sometimes called the witch of Agnesi after the Italian 
mathematician Maria Agnesi ( 1 7 1 8- 1 799), who referred to it in her 
book on calculus published in 1 748. This curve had previously been 
called the versoria, a Latin word meaning "a guy rope attached to a 
sail," but she apparently confused this word with a different Latin 
word, versiera, meaning a "witch," and the name has stuck. 
+The word folium means "leaf" in Latin. This curve was originally 
used by Descartes as a challenge to Fermat to find its tangent line at 
an arbitrary point. Fermat succeeded immediately, much to Descartes's 
dismay. 

Figure 1 7. 10 The involute of a circle. 

the curve as suggested by the figure. In particular, 
decide how various parts of the curve are traced out 
as t varies over various ranges of values. 

Figure 1 7. 1 1  The folium of Descartes. 

1 7 . 2  
THE CYCLOID AND 

OTHER SIMILAR 
CURVES 

The cycloid is the curve traced out by a point on the circumference of a circle 
when the circle rolls along a straight line in its own plane, as shown in Fig. 17 . 1 2. 
We shall see that this curve has many remarkable geometric and physical prop
erties. 

The only convenient way of representing a cycloid is by means of parametric 
equations. We assume that the rolling circle has radius a and that it rolls along 
the x-axis, starting from a position in which the center of the circle i s  on the pos
itive y-axis. The curve is the locus of the point P on the circle which is located 
at the origin 0 when the center C is on the y-axis. The angle 8 in the figure is 
the angle through which the radius CP turns as the circle rolls to a new position. 
If x and y are the coordinates of P, then the rolling of the circle implies that OB = 
arc BP = a8, so x = OB - AB =  OB - PQ = a 8  - a sin 8 = a(8 - sin 8). 
Also, y = BC - QC = a - a cos 8 = a( l - cos 8). The cycloid therefore has the 
parametric representation 

x = a((} - sin 8), y = a(I - cos 8). ( 1 )  
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(rra, 2a) 

B 

It is clear from Fig. 1 7  . 1 2  that y is a function of x, but it is also clear from equa
tions ( 1 )  that it is not possible to find a simple formula for this function. The cy
cloid is one of many curves for which the parametric equations are much sim
pler and easier to work with than the rectangular equation. 

From equations ( 1 )  we have 

, dy a sin (} d(} y -
dx 

-
a( I - cos (}) d(} 

sin (} 
1 - cos (} 

2 sin f e cos +e ----1--- = cot fe. 
2 sin2 2e (2) 

We observe that the derivative y' is not defined for (} = 0, ±27T, ±47T, etc. These 
values of (} correspond to the points where the cycloid touches the x-axis ;  these 
points are called cusps. The tangent to the cycloid is vertical at the cusps. 

In the following examples we establish the main geometric properties of the 
cycloid. 

Example 1 Show that the area under one arch of the cycloid is three times the 
area of the rolling circle (Torricelli 's Theorem). 

Solution One arch is traced out as the circle turns through one complete revo
lution. The usual area integral can therefore be written as follows, using the pa
rameter (} as the variable of integration: 

J27T
a 

J27T dx J27T A = y dx = y d(} d(} = a(l - cos (})a( l - cos (}) d(} 0 0 0 

L
2
7T L

2
7T = a2 ( 1  - cos (})2 d(} = a2 ( 1  - 2 cos (} + cos2 (}) d(} 0 0 

L
2
7T J27T L

2
7T = a2 0 ( 1  + cos2 (}) d(} = a2 0 d(} + a2 

0 
f( l + cos 2(}) d(} = 37Ta2. 

Example 2 Show that the length of one arch of the cycloid is four times the di
ameter of the rolling circle (Wren 's Theorem). 

Solution Since dx = a( I  - cos (}) d(} and dy = a sin (} d(}, the element of arc 
length ds is given by 
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Figure 17 .12 The cycloid. 
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ds2 = d.x2 + dy2 = a2[( 1  - cos 8)2 + sin2 8] d82 
= 2a2[ 1 - cos 8] d82 = 4a2 sin2 t8 d82, 

so 

ds = 2a sin t8 d8. 
The length of one arch is therefore 

f L21T ]21T L = ds = 2a sin t8 d8 = -4a cos t8 = 8a. 
0 0 

Example 3 Show that the tangent to the cycloid at the point P in Fig. 17 . 12 
passes through the top of the rolling circle. 

Solution The point at the top of the circle has coordinates (aO, 2a). The slope 
of the tangent at P is given by (2). The equation of the tangent at P is therefore 

sin 8 . y - a( I - cos 8) = 1 8 (x - a8 + a sm 8). - cos 
We substitute x = aO  in this equation and solve for y, which gives 

_ ( I _ 8) sin 8 . . 8 _ a( l - cos 8)2 + a  sin2 8 = 2a. y - a cos + 1 8 a sm - 1 8 - cos - cos 
This shows that the tangent at P does indeed pass through the point (aO, 2a) at 
the top of the circle. 

Galileo seems to have been the first to notice the cycloid and investigate its 
properties, in the early 1 600s. He didn't actually discover any of these proper
ties, but he gave the curve its name and recommended its study to his friends, 
including Mersenne in Paris. Mersenne informed Descartes and others about it, 
and in 1638 Descartes found a construction for the tangent which is equivalent 
to the property given in Example 3. In 1644 Galileo's disciple Torricelli (who in
vented the barometer) published his discovery of the area under one arch. The 
length of one arch was discovered in 1658 by the great English architect Christo
pher Wren.* The list of famous men who have worked on the cycloid will be 
continued, but first we consider some other related curves. 

If a circle rolls on the inside of a fixed circle, the locus of a point on the rolling 
circle is called a hypocycloid. If a circle rolls on the outside of a fixed circle, the 
locus of a point on the rolling circle is called an epicycloid. t 

We show how to represent a hypocycloid parametrically. Let the fixed circle 
have radius a and the rolling circle radius b, where b < a. Let the fixed circle 
have its center at the origin (Fig. 17 . 1 3), and let the smaller rolling circle start 
in a position internally tangent to the fixed circle at the point A on the positive 

•wren was an astronomer and a mathematician-in fact, Savilian Professor of Astronomy at Ox
ford-before the Great Fire of London in 1 666 gave him his opportunity to build St. Paul's Cathe
dral, as well as dozens of smaller churches throughout the city. 
tThe distinction between these words is easy to remember because the Greek prefix hypo means un
der or beneath, as in "hypodermic," and epi means on or above, as in "epicenter." 
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x-axis. We consider the point P on the rolling circle that was initially at A. With 
8 and </> as shown in the figure, the rolling of the small circle implies that the 
arcs AB and BP are equal: a 8  = b<f>. We can then see that the coordinates of P 
are 

x = (a - b) cos 8 + b cos (</> - 8), 
y = (a - b) sin 8 - b sin (</> - 8). 

But </> - 8 = [(a - b)lb] 8, so the parametric equations of the hypocycloid are 

a - b  
x = (a - b) cos 8 + b cos -

b
- 8, 

( b 
. . a - b  y = a - ) Sm 8 - b SID -

b
- 8. 

(3) 

The arc length along the fixed circle between successive cusps of the hypocy
cloid is 27Tb. If 27Ta is an integral multiple of 27Tb, so that alb is an integer n, 

then the hypocycloid has n cusps and the point P returns to A after the smaller 
circle rolls off its circumference n times on the fixed circle. We leave it to stu
dents to decide when P will return to A if alb is a rational number but not an in
teger, for example, if alb = %. A discussion of the case in which alb is irrational 
is beyond the scope of this book; it suffices to say that as the smaller circle rolls 
around and around indefinitely, the cusps of the resulting hypocycloid are evenly 
and densely distributed on the fixed circle.* 

The parametric equations of a hypocycloid of four cusps can be written in a 
very simple form by using some trigonometric identities. If a = 4b, equations 
(3) become 

x = 3b cos 8 + b cos 38, y = 3b sin 8 - b sin 3 8. 

*The curious reader will find additional information in Theorem 439 of G. H. Hardy and E. M. 
Wright, Introduction to the Theory of Numbers (Oxford, 1 954); or in Theorem 6.3 of I. Niven, Irra
tional Numbers (Wiley, 1 956). 
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Figure 17.13 The hypocycloid. 



596 

(0, a) 

(a, 0) 

Figure 1 7. 14  The astroid. 

x 

Figure 1 7.15 
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But cos 38 = cos (28 + 8) = cos 2(} cos (} - sin 28 sin (} 
= (2 cos2 (} - I )  cos (} - 2 sin2 (} cos (} 
= (2 cos2 (} - I - 2(1  - cos2 8)] cos (} 
= 4 cos3 (} - 3 cos 8, 

and a similar calculation yields 

sin 38 = 3 sin (} - 4 sin3 8. 
Our parametric equations therefore become 

x = 4b cos3 (} = a cos3 8, y = 4b sin3 (} = a sin3 8. (4) 
From these equations it is easy to obtain the corresponding rectangular equation, 

x213 + y213 = a213. (5) 
Because of its appearance (Fig. 17 . 1 4  ), a hypocycloid of four cusps is often called 
an astroid. 

Example 4 Consider the tangent to the astroid at a point P in the first quadrant. 
Show that the part of this tangent which is cut off by the coordinate axes has 
constant length, independent of the position of P 

Solution By equations (4), the slope of the tangent is 

Y
' = dy = 3a sin2 (} cos (} d(} 

dx 3 2 (} . (} d(} = -tan (}, - a cos sm 
so the equation of the tangent is 

y - a sin3 (} = -tan (} (x - a cos3 8). 

We find the x-intercept by putting y = 0 and solving for x, 

x = a cos3 (} + a sin2 (} cos (} = a cos 8. 
Similarly, the y-intercept is y = a sin 8. The length of the part of the tangent cut 
off by the axes is therefore 

Y a2 cos2 (} + a2 sin2 (} = a, 
which is constant. 

We now return to the cycloid discussed earlier, and reflect both it and the 
y-axis about the x-axis, as shown in Fig. 1 7  . 1 5 .  The parametric equations ( 1 )  are 
still valid, and the resulting curve has several interesting physical properties, 
which we now describe and analyze. 

In 1 696 John Bernoulli conceived and solved the now famous brachistochrone 
problem. He published the problem (but not the solution) as a challenge to other 
mathematicians of the time. The problem is this: Among all smooth curves in a 
vertical plane that join a given point Po to a given lower point P1 not directly be
low it, find that particular curve along which a particle will slide down from Po 
to P1 in the shortest possible time.* We can think of the particle as a bead of 

'The word "brachistochrone" comes from two Greek words meaning "shortest time." 
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mass m sliding down an ideal frictionless wire, with the downward force of grav
ity mg as the only force acting on the bead. 

If we assume that the points Po and Pi lie at the origin and at (x 1 ,  y 1 )  in the 
first quadrant, as shown in Fig. 1 7. 1 6, then Bernoulli 's problem can be stated in 
mathematical language as follows. The bead is released from rest at P0, so its 
initial velocity and initial kinetic energy are zero. The work done by gravity in 
pulling it down from the origin to an arbitrary point P = (x, y) is mgy. This must 
equal the increase in the kinetic energy of the bead as it slides down the wire to 
this point, so 

tmv2 = mgy, 

and therefore 

This can be written as 

dt = .-..!!!__ = Y dx2 + dy2 = YI + (dyldx)2 dx
. 

Y28Y v'2gy v'2gy 

(6) 

(7) 

The total time Ti required for the bead to slide down the wire from Po to Pi will 
depend on the shape of the wire as specified by its equation y = f(x); it is given 
by 

T1 = f dt = fx' {l+(j)2 dx. o v� (8) 

The brachistochrone problem therefore amounts to this: to find the particular 
curve y = f(x) that passes through Po and Pi and minimizes the value of the in
tegral (8). 

Since the straight line joining Po and Pi is clearly the shortest path, we might 
guess that this line also yields the shortest time. However, a moment's consider
ation of the possibilities will make us more skeptical about this conjecture. There 
might be an advantage in having the bead slide down more steeply at first, thereby 
increasing its speed more quickly at the beginning of the motion; for with a faster 
start, it is reasonable to suppose that the bead might reach Pi in a shorter time, 
even though it travels over a longer path. And this is the way it turns out: The 
brachistochrone curve is an arc of a cycloid through Po and Pi with a cusp at the 
origin. 

5 97 

Figure 17. 16 
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Figure 17 . 17 Beads released on the 
cycloidal wire at 0, A, C will reach B 
in the same amount of time. 

PARAMETRIC EQUATIONS. VECTORS IN THE PLANE 

Leibniz and Newton, as well as John Bernoulli and his older brother James, 
solved the problem.* John's solution, which is very ingenious but rather special
ized in the methods it uses, is given in the Appendix at the end of this chapter. 
The cycloid was well known to all these men through the earlier work of the 
great Dutch scientist Huygens on pendulum clocks (see below). When John found 
that the cycloid is also the solution of his brachistochrone problem, he was as
tounded and delighted. He wrote: "With justice we admire Huygens because he 
first discovered that a heavy particle slides down to the bottom of a cycloid in 
the same time, no matter where it starts. But you [his readers] will be petrified 
with astonishment when I say that this very same cycloid, the tautochrone of 
Huygens, is also the brachistochrone we are seeking."t 

Huygens was a profound student of the theory of the pendulum, and in fact 
was the inventor of the pendulum clock. He was very well aware of the theoret
ical flaw in such a clock, which is due to the fact that the period of oscillation 
of a pendulum is not strictly independent of the amplitude of the swing.+ We can 
express this flaw in another way by saying that if a bead is released on a fric
tionless circular wire in a vertical plane, then the time the bead takes to slide 
down to the bottom will depend on the height of the starting point. Huygens won
dered what would happen if the circular wire were replaced by one having the 
shape of an inverted cycloidal arch. But he did more than merely wonder, for he 
then went on to make the remarkable discovery referred to in the passage previ
ously quoted, that for a wire of this shape the bead will slide down from any 
point to the bottom in exactly the same time, no matter where it is released (Fig. 
17 . 17). This is the tautochrone ("equal time") property of the cycloid, and we 
now prove it by using the formulas given above. 

If we write (8) in the equivalent form - f Jd.x2 + dy2 
T1 - 2gy 

and substitute equations ( 1 )  into this, we obtain 

2a2( I - cos (}) d(J = (}1 fi._ 2ag( I - cos (}) Y g 
as the time required for the bead to slide down a cycloidal wire from Po to P1 •  
The time needed for the bead to reach the bottom of this wire i s  the value of T1 
when 01 = 1T, namely, 1T'\/;;ig. Huygens' tautochrone property amounts to the 
statement that the bead will reach the bottom in exactly the same time if it starts 
at any intermediate point (x0, y0). To prove this, we replace (6) by 

ds ----v = dt = Y2g( y - Yo). 

'Newton published his solution anonymously. When John Bernoulli saw it, he wryly remarked, "I 
recognize the lion by his track." 
tFor an English translation of Bernoulli's writings on this subject, see pp. 644-655 of D. E. Smith, 
A Source Book in Mathematics (Macmillan, 1929). Bernoulli 's vivid, enthusiastic, personal style is 
in sharp contrast to the dead, gray, impersonal style of most of the writing in scientific journals nowa
days. 
+see the remark about the "circular error" in Example 3 in Section 9.6. 
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The total time required for the bead to slide down to the bottom is therefore 

T = r llo 

2a2( I - cos B) 
dB _ fi__ f 'Tl'J 1 - cos B 

dB 
2ag(cos Bo - cos B) - Y g 110 cos 80 - cos B 

= 
f; r -;:==

si
=
n
=

2
=
1 B
=

d
=
B
== 

g 110 J cos2 iBo - cos2 tB
' (9) 

where the last step makes use of the trigonometric identities 2 sin2 8 = 1 
cos 28 and cos 28  = cos2 8 - sin2 8 = 2 cos2 8 - 1 .  If we now use the substi
tution 

cos tB 
u = --1 - , 

cos 2Bo 
1 sin tB de 

du = - - I , 
2 cos 2Bo 

then the integral (9) becomes 

T = - 2 
fa J0 du 

= 2 {i__ sin - I u] 1 = 7T {i__ . Yg I � Yg 0 Yg 
This shows that T has the same value as before and i s  therefore independent of 
the starting point, and the argument is complete. *  

Once Huygens established the tautochrone property of the cycloid, a further 
problem presented itself: How could he arrange for a pendulum in a clock to 
move along a cycloidal, rather than a circular, path? Here he made a further beau
tiful discovery. If we suspend from the point P at the cusp between two equal 
inverted cycloidal semiarches a flexible pendulum whose length equals the length 
of one of the serniarches (Fig. 1 7  . 1 8), then the bob will draw up as it swings to 
the side in such a way that its path is another cycloid. t 

*Instead of a "frictionless" bead sliding down a cycloidal wire, we can use a "frictionless" steel ball 
rolling down a cycloidal channel. A piece of eighteenth century furniture built to demonstrate this 
can be seen in the Science Museum in Florence, Italy. The fine woodworker John H. Lewis of Col
orado Springs has built a work of art based on this principle, with two parallel cycloidal channels 
for two balls; when released from different positions at the same moment, the balls roll to the bot
tom in the same time. 
tFor a proof of this statement, see Section B .23 of the author's Calculus Gems (McGraw-Hill, 1 992). 
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Figure 1 7. 18 A flexible pendulum 
constrained by cycloidal jaws swings 
along another cycloid. 

1 Find the rectangular equation of the cycloid by elimi
nating B from the parametric equations ( I ) .  Observe how 
hopeless it is to try to solve this for y as a simple func
tion of x. 

this conclusion from the result of Example 3 by using 
elementary geometry. 

2 Show that for the cycloid ( 1 )  the second derivative is 
given by y" = dy' /dx = -a!y2. Observe that this fact im
plies that the cycloid is concave down between the cusps, 
as shown in Fig. 17 . 12. 

3 Use the equation of the normal to the cycloid at P (in 
Fig. 1 7  . 1 2) to show that this normal passes through the 
point B at the bottom of the rolling circle. Also, obtain 

4 Assume that the circle in Fig. 1 7. 1 2  rolls to the right 
along the x-axis at a constant speed, with the center C 
moving at iu units per second. (a) Find the rates of change 
of the coordinates x and y of the point P. (b) What is the 
greatest rate of increase of x, and where is P when this 
is attained? (c) What is the greatest rate of increase of y, 
and for what value of B is this attained? 

5 If a polygon ABCD rolls (awkwardly) on a straight line 
A'D ', as shown in Fig. 17 . 19, then the point A will trace 
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out in succession several arcs of circles with centers B', 
C ', D'. The tangent to any such arc is evidently perpen
dicular to the line joining the point of tangency to the 
corresponding center. Therefore, if the rolling circle that 
generates a cycloid is thought of as a polygon with an 
infinite number of sides, then the tangent to the cycloid 
at any point is the line perpendicular to the line joining 
the point of tangency to the bottom of the rolling circle. 
This is Descartes's method for finding the tangent at any 
point of a cycloid. Verify that it is correct. 

9 Show that the hypocycloid of two cusps, with a = 2b, is 
simply the diameter of the fixed circle that lies along the 
x-axis. In this case, if the center C of the rolling circle 
moves around with constant angular velocity w, so that 
df)/dt = w, show that P moves back and forth on the 
x-axis with simple harmonic motion (Section 9.6) of pe
riod 27rlw and maximum speed aw. 

I O  If the astroid ( 4 )  i s  generated b y  the small circle rolling 
around counterclockwise with constant angular velocity 
w, find the position of the point P in the first quadrant 
for which y is increasing most rapidly. 

A' B' C' 

Figure 17.19 

D 

D' 

1 1  The hypocycloid of three cusps, with a = 3b, is called a 
deltoid. Sketch this curve, find its parametric equations, 
and find its total length. 

12 Find parametric equations for the epicycloid generated 
by a circle of radius b rolling on the outside of a fixed 
circle of radius a. Use a figure similar to Fig. 17 . 1 3 ,  
where the fixed circle has its center at the origin and the 
point P is initially at (a, 0). 

13  Show that the equations in Problem 12  can be obtained 
from equations (3) in the text by replacing b by -b. 

6 Find the area inside the astroid (5). 14 The epicycloid of two cusps, with a =  2b, is called a 
nephroid (meaning "kidney-shaped"). Sketch this curve, 
find its parametric equations, and calculate its total 
length. 

7 Find the total length of the astroid (5). 
8 Find the area of the surface generated by revolving the 

astroid (5) about the x-axis. 

1 7 . 3 
VECTOR ALGEBRA. 

THE UNIT VECTORS i 
AND j 

Figure 17.20 

A physical quantity such as mass, temperature, or kinetic energy is completely 
determined by a single real number that specifies its magnitude. These are called 
scalar quantities, or simply scalars. In contrast to this, other entities called vec
tor quantities, or vectors, possess both magnitude and direction. As examples we 
mention velocities, forces, and displacements. 

Example I Let us briefly consider the case of velocity. When we discuss a point 
moving along a straight line, we can specify its position by means of a coordi
nate, which may be positive or negative, and the velocity of the moving point is 
the derivative of this coordinate with respect to time, that is, the rate of change 
of position. Direction is certainly important in such a discussion, but in this sim
ple one-dimensional case all questions about direction are easy to handle by us
ing positive and negative numbers. 

However, to specify the velocity of a point moving along a curved path in the 
plane, it is essential to give both the speed of the point (the rate at which it tra
verses distance) and the direction of its motion. This combination of two ingre
dients is the velocity vector, or simply the velocity, of the moving point. It is nat
ural to represent this vector (see Fig. 1 7  . 20) by an arrow or directed line segment 
v whose tail is placed at the current position of the point, whose length is the 
speed in some agreed system of measurement, and whose direction is the direc
tion of motion. 
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Example 2 A force applied to an object is also a vector quantity, whose mag
nitude is the strength of the force and whose direction is the direction in which 
the force acts. For instance, the gravitational force F exerted by the earth on a 
circling artificial satellite (Fig. 1 7  .2 1 )  is directed toward the center of the earth 
and its magnitude is proportional to l lr2, where r is the distance from the satel
lite to the center of the earth. 

From the mathematical point of view, we don't merely represent a vector by 
a directed line segment; we say that a vector is a directed line segment. This frees 
us to develop the algebra of vectors independently of any particular physical in
terpretation. 

As we have indicated, vectors are often denoted in print by boldface type. A 
good substitute for this in the case of handwritten work is to use letters with ar-
rows over them. Thus, v and t denote the same vector. Also, if a vector extends 
from a point P to a point Q, we can place an arrowhead at Q and denote the vec-

� 
tor by PQ (Fig. 1 7.22). We then call P the tail or initial point and Q the head or 

� 
terminal point of the vector. The vector PQ can be thought of as representing the 
displacement of a point along the line segment from P to Q, that is, the path 
taken by a point as it moves from P to Q. Such vectors describe the relative po-

� 
sitions of points. The length or magnitude of a vector PQ is denoted by the sym

� 
bol IPQI ; this notation is used because the length of a vector is in many ways 
similar to the absolute value of a real number. 

� � � � 
Two vectors PQ and RS are said to be equal, and we write PQ = RS , if they 

have the same length and direction (Fig. 17 .22). This definition of equality en
ables us to move a vector from one position to another without changing it, as 
long as its length and direction are unaltered. Thus, the vectors shown in Fig. 
1 7  .23 are all equal to each other; in other words, they are the same vector in dif
ferent positions. The position vector of a point P in the coordinate plane is the 

� 
vector OP from the origin 0 to the point P (Fig. 1 7 .24). Such vectors describe 
the positions of points relative to the origin. As suggested in Fig. 1 7  .23, any vec
tor A can be placed with its tail at the origin, and thereby becomes the position 
vector of the point P that lies at its head. 

We shall discuss two algebraic operations on vectors. The first operation is 
that of adding two vectors to get another vector, and the second is that of mul
tiplying a vector by a number to get another vector. In any discussion involving 
vectors, it is customary to refer to numbers as scalars, and this second operation 
is usually called scalar multiplication. 

� 
First, addition. Suppose a vector A = PQ represents the displacement of a point 

along the line segment from P to Q. As shown in Fig. 1 7.25, when the dis-

R 

p 

0 

Figure 17.24 The position vector of P. Figure 1 7.25 Addition. 

Figure 1 7.21 

---> ----> 
Figure 1 7.22 PQ = RS 

60 1 

Figure 17.23 The same vector in 
different positions. 
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Figure 17.26 The commutative and 
associative laws. 

Figure 17.27 

Figure 17.28 

PARAMETRIC EQUATIONS. VECTORS IN THE PLANE 

A A + (B + C) = (A + B) + C 

� � 
placement A = PQ is followed by a displacement B = QR, the final result is 

� � 
equivalent to the single displacement PR. It is therefore natural to think of PR 

� � 
as the sum of PQ and QR, and to write 

----> ----> ----> PR = PQ + QR. 

This suggests the definition we adopt for vector addition: If A and B are any two 
vectors, we add them as shown in the figure, by placing the tail of B at the head 
of A ;  the vector from the tail of A to the head of B is then written A + B and 
called the sum of A and B. Figure 17 .26 shows that addition is commutative and 
associative, 

A + B = B + A and A + (B + C) = (A + B) + C. 

The associative law enables us to omit parentheses, writing A + B + C for A + 
(B + C). 

These ideas suggest another equivalent way to find the sum of two vectors A 
and B .  If we place their tails together, as in Fig. 1 7  .27, and form the parallelo
gram with A and B as adjacent sides, then A + B is the vector from the com
mon tail to the opposite vertex. This shows that our definition of addition is well 
suited to working with forces in physics; for if A and B are interpreted as two 
forces acting at their common tail, then it is known from experiment that A + B 
is the resultant force, that is, the single force that produces the same effect as the 
two combined forces. This is called the parallelogram rule, for the addition of 
forces and also for vector addition. 

Example 3 Velocities are also combined by the parallelogram rule. For instance, 
a man in a canoe wishes to paddle across a river to the point on the other bank 
directly opposite to his starting point (Fig. 17 .28). The river flows at 3 mi/h, and 
he can paddle at 6 mi/h. In what direction should he aim his canoe? 

Solution His actual velocity is the vector sum of the velocity of the water and 
his velocity relative to the water. For this sum to be perpendicular to the bank, 
he must aim his canoe upstream at an angle fJ for which sin fJ = t = t, so 
f) = 30°. 

Now for scalar multiplication. If we add a vector A to itself, we obtain a vec
tor in the same direction but twice as long, and it is natural to write this as A + 
A = 2A . By a natural extension, if c is any real number, then cA is defined to 
be the vector which is lc l  times as long as A, in the same direction as A if c is 
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positive and in the opposite direction if c is negative (Fig. 1 7 .29). A vector of 
zero length is denoted by 0 and called the zero vector; this vector has no direc
tion. Evidently 1 · A = A and 0 · A = 0. The properties 

c(dA) = (cd)A, 
(c + d)A = cA + dA, 
c(A + B) = cA + cB 

are valid and easy to establish, but we shall not pause to discuss them in detail. 
It is worth noting, however, that a proof of the last property for the case c > 0 
is implicit in Fig. 1 7  .30. Also, we agree that the factor c can be written on either 
side of the vector, cA = Ac; we will not employ this clumsy usage very often, 
but it is occasionally convenient. 

The vector ( - 1) · B is written -B; it is evidently a vector equal in length to 
B but having the opposite direction. Just as in elementary algebra, A + (- B) is 
written A - B. There is a simple geometric construction for A - B, resulting 
from the fact that A - B is what must be added to B to give A: When A and B 
are placed so that their tails coincide, then A - B is the vector from the head of 
B to the head of A (Fig. 17 .3 1 ) .  

Since the laws governing addition and scalar multiplication o f  vectors are iden
tical with those that we know from elementary algebra, we are justified in using 
the familiar rules of algebra to solve linear equations involving vectors. The fol
lowing examples illustrate the efficiency of these procedures for solving certain 
types of geometric problems. 

Example 4 In Fig. 17 .32, the ratio of the segment AP to the segment AB is t, 
where 0 < t < 1 . Express the vector R in terms of A, B, and t. 

Solution The vector AB is B - A, and the vector AP is t(B - A).  Since 
� 

R = A + AP, we have 

R = A + t(B - A) = ( 1 - t)A + tB. 
In particular, if P is the midpoint of AB so that t = t, then 

R = tA + tB = t<A + B). 

Example S Use vector methods to show that the three medians of any triangle 
intersect at a point which is two-thirds of the way from each vertex to the mid
point of the opposite side.* 

Solution Let A, B, C be the vertices of a triangle (Fig. 1 7  .33), and let A, B, C 
be the vectors from an outside point 0 to these vertices. If M is the midpoint of � I � � I BC, then OM = z(B + C), AM = OM - A = z(B + C) - A, and if P is the point 
two-thirds of the way from A to M, then we have 

� � 
OP = A + tAM = A + t[t(B + C) - A] 

= f A + f(B + C) = f(A + B + C). ( 1 )  

*Recall that a median of a triangle is a segment drawn from a vertex to the midpoint of the opposite 
side. 

Figure 1 7.29 

A 
Figure 17.30 

Figure 17.31 

0 
Figure 17.32 

A 

0 
Figure 17.33 
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0 

Figure 1 7.34 
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Similarly, if N is the midpoint of AC and Q is two-thirds of the way from B to 
N, then we see that 

� 2 � 2 � 
OQ = B + 3BN = B + 3(0N - B) 

= B + t[t(A + C) - B] = tCA + B + C) .  (2) 

Comparison of ( I )  and (2) shows that the two points P and Q coincide, and in the 
same way we obtain the same point yet again if we go two-thirds of the way from 
C to the midpoint of AB. This completes the proof. We can also draw our con
clusion more elegantly by observing that since ( 1 )  is symmetric in the three vectors 
A, B, C, we clearly get the same point no matter which midpoint we start with. 

A vector of length 1 is called a unit vector. It is easy to see that if we divide 
any nonzero vector A by its own length, we obtain a unit vector A/IAI in the same 
direction. This simple fact is surprisingly useful. 

When we are working with vectors in the coordinate plane, it is often conve
nient to use the standard unit vectors i and j ;  as shown in Fig. 17 .34, i points in 
the direction of the positive x-axis and j points in the direction of the positive 
y-axis .  We have seen that any vector A in the xy-plane can be placed with its tail 

� 
at the origin, and in this way becomes the position vector OP of the point P at 
its head. If P has coordinates a 1 and a2, then the vectors a 1 i and a2j run from the 
origin to the points a 1 and a2 on the axes, and by the parallelogram rule we have 

(3) 

The number a 1 in (3) is called the x-component or i-component of the vector A, 
and a2 is called its y-component or j-component. These components are scalars, 
and should be distinguished from the vector components a 1 i and a2j .  By the 
Pythagorean theorem, we clearly have 

IA I = Ya12 + al. 

Formula (3) tells us that every vector in the plane is a linear combination of 
i and j. The value of this formula is based on the fact that such linear combina
tions can be manipulated by the ordinary rules of algebra. Thus, if 

then 

Also, 

and 

A + B = (a 1 i  + a2j) + (b 1 i  + bzj) 

= (a1 + b1)i + (a2 + b2)j . 

Example 6 If A = 3i + 4j and B = 2i - Sj, find IAI and express 3A - 4B in 
terms of i and j. 

Solution Clearly, IAI = v9+l6 = 5 and 

3A  - 4B = 3(3i + 4j) - 4(2i - Sj) 

= i + 32j .  
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PROBLEMS 

For each of the following pairs of vectors A and B, find 
I A I , 3A - SB, and 6A + B: 
(a) A = i - 3j, B = -2i + Sj; 
(b) A =  -7i + 2j, B = 3i + 2j ; 
(c) A = -6j, B = -2i + 3j; 
(d) A =  3i + 5j, B = 2i - 8j. 

2 For each of the following pairs of points P and Q, find 
----> 

the vector PQ in terms of i and j :  
(a) P = (-S ,  0), Q = ( I ,  3); 
(b) p = (- 1 ,  -4), Q = (-2, 3); 
(c) P = ( 1 ,  -S), Q = (6, 4); 
(d ) p = (0, 2), Q = (3, -S). 

3 For any three points P, Q, R in the plane, we have 
----> ----> ----> 
PQ + QR + RP = 0. 

Why? Verify this for the special case P = (2, -4), Q = 
( - 3 , S), R = (-4, 0) by expressing each vector in terms 
i and j and carrying out the addition. 

4 Find a vector in the same direction as 6i - 2j that has 
(a) three times its length; (b) half its length. 

5 For each of the following vectors A,  find two unit vec
tors parallel to A:  
(a) A = 3 i  - 4j ; 
(b) A =  -Si + 12j ;  
(c) A = S i  - 7j; 
(d ) A =  24i - 7j. 

6 Find a vector of length 3 which has (a) the same direc
tion as Si - 2j; (b) the opposite direction to 4i + Sj. 

7 Find two vectors of length 26 and slope -fy. 

8 Find a unit vector which, if its tail is placed at the point 
(4, 4) on x2 = 4y, is normal to the curve and points to
ward the positive y-axis. 

9 If A is a nonzero vector, we know that A/IA I is a unit 
vector with the same direction as A. Use this fact to write 
down a vector that bisects the angle between two nonzero 
vectors A and B whose tails coincide. 

I 0 Three vectors are drawn from the vertices of a triangle 
to the midpoints of the opposite sides. Show that the sum 
of these vectors is zero. 

1 1  Use vector methods to show that the diagonals of a par
allelogram bisect each other. 

12 Use vector methods to show that a line from a vertex of 
a parallelogram to the midpoint of a nonadjacent side tri
sects a diagonal. 

13 Solve the canoe problem in Example 3 when the current 
and canoe speeds are 2 and 2\/2 = 2.8 mi/h, respec
tively. 

14 If the velocity of the wind is Vw and an airplane flies with 
velocity Va relative to the air, then the velocity of the 
plane relative to the ground is 

The vectors v a and v 8 are called the apparent velocity 
and the true velocity, respectively. 
(a) If the wind is blowing from the northeast at 60 mi/h 

and the pilot wishes to fly straight east at 600 mi/h, 
what should be the plane's apparent velocity? 

(b) Repeat part (a) if the pilot wishes to fly southeast at 
600 mi/h. 

In Section 17 .3 we became acquainted with the algebra of vectors. ln the rest of 
this chapter we shall be interested in problems of motion, and this requires us 
to work with the calculus of vectors. When vectors and calculus are allowed 
to interact with each other, the result is a mathematical discipline of great 
power and efficiency for studying multidimensional problems of geometry and 
physics. This vector calculus-usually called vector analysis-is one of the 
major topics of advanced courses in calculus. In this chapter we can only intro
duce the subject and discuss a few of the classic applications, culminating in a 
treatment of Kepler's laws of planetary motion and Newton's law of universal 
gravitation. 

1 7 . 4  
DERIVATIVES OF 
VECTOR FUNCTIONS. 
VELOCI1Y AND 
ACCELERATION 

We begin by pointing out the connection between vectors and the parametric 
equations of curves discussed in the first two sections of this chapter. 

Suppose a point P = (x, y) moves along a curve in the .xy-plane, and sup
pose further that we know its position at any time t (Fig. 1 7  .35). This means 
that the coordinates x and y are known as functions of the scalar variable t, 
so that 

x = x(t) and y = y(t). 
0 

Figure 17.35 
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These are parametric equations for the path in terms of the time parameter t. 
• 

A 
more concise description of the motion is obtained by using the position vector 
of the moving point, 

� 
R = OP = x(t)i + y(t)j . 

We can emphasize that R is a vector function of t by writing R = R(t). Thus the 
study of a pair of parametric equations is equivalent to the study of a single vec
tor function, and, as we shall see, the latter is often much more effective at re
vealing the essence of what is going on. 

Just as in ordinary calculus, R(t) is said to be continuous at t = to if 

lim R(t) = R(to), ( l )  
I-HQ 

which means that IR(t) - R(to)I can be made as small as we please by talcing t 
sufficiently close to t0. It follows easily from ( 1 )  that 

R(t) = x(t)i + y(t)j (2) 

is continuous if and only if x(t) and y(t) are both continuous. 
We define the derivative of the vector function R(t) exactly as might be ex

pected. When t changes to t + flt, the change in R is flR = R(t + flt) - R(t), 
and the derivative of R(t) with respect to t is defined as the limit 

dR . �R - = hm -. dt t.1->0 �t (3) 

That is, we divide the vector flR by flt and then find the limit of the new vector 
flR!flt as flt � 0. This vector will approach a limit if and only if its head ap
proaches a limiting position, and this happens if and only if each of its compo
nents approaches a limit. It is clear that in terms of components we have 

�R R(t + M - R(t) 
�t �t 

x(t + �t) - x(t) . y(t + M) - y(t) . = �t I + M J . 

Thus, if the definition (3) is applied to (2), we see at once that R(t) is differen
tiable if and only if x(t) and y(t) are, and in this case 

dR dx . dy . 
dt = dt I + dt J. (4) 

As in ordinary calculus, we often write R'(t) for dR!dt and R"(t) for d2Rldt2. 
Several familiar differentiation rules can now be extended to vector functions. 

One of the most important is this: If a vector function is multiplied by a scalar 
function, and if both can be differentiated, then their product can be differenti
ated according to the rule 

d dR du - (uR) = u - + R -. dt dt dt 

•in Section 1 7  . 1  we wrote the parametric equations of a curve as x = f(t), y = g(t). However, it is 
more direct and convenient to use the same letter for the function as for the dependent variable, as 
we do here. 
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This is proved in just the same way as the product rule for two scalar functions. 
Also, the rule for the sum of two vector functions is just what we expect, the de
rivative of a constant vector function is the vector 0, and the chain rule is valid. 

It is important to understand the meaning of the derivative dR!dt as a vector, 
and not merely in terms of its components as given by (4). To do this, we fol
low the geometric meaning of the various steps expressed in the definition (3). 
First, the change !:l.t of the independent variable t carries the position vector from 
R(t) to R(t + !:l.t), as shown in Fig. 1 7  .36. The vector !:l.R = R(t + M) - R(t) is 
directed along the chord from the head of R(t) to the head of R(t + !:l.t). Divid
ing !:l.R by the scalar !:l.t changes its length and produces another vector !:l.RJ!:l.t 
parallel to !:l.R. Since the limiting direction of the chord as !:l.t � 0 is the direc- P0 
tion of the tangent, the derivative dR!dt is tangent to the path at the head of R. Figure 1 7.36 
As we know, every vector can be thought of as having its tail at the origin, but 
in Fig. 17 .36 we place the tail of dR!dt at the head of R in order better to visu-
alize what is happening. 

To interpret the length of the vector dR!dt, let s be the length of the curve from 
a fixed point Po given by t = to to the variable point P given by t, where t :::: t0. 
By (4) we have 

I dR I = J( dx )2 + ( dy )2 = Y dx2 + dy2 = ds . dt dt dt dt dt (5) 

Since t is time in the present discussion, the derivative dsldt is the rate at which 
the moving point P traverses distance, that is, its speed. 

These observations tell us that the vector dR!dt has as its direction and length 
the direction and speed of our moving point. It is therefore natural to adopt the 
following formal definitions. Just as in the case of one-dimensional motion, we 
define the velocity v of a moving point as the rate of change of its position, 

dR 
v = -dt , 

and the speed v as the magnitude of the velocity, 

v = 1v1 = I �� I ·  
Example 1 I f  R = (4 cos 2t)i + ( 3  sin 2t)j, find the path of the moving point, 
the velocity v, and the points on the path where the speed v is greatest and least. 

Solution The curve has parametric equations x = 4 cos 2t, y = 3 sin 2t, so the 
path is the ellipse shown in Fig. 1 7.37, 

x2 y2 
16 + 9 = 1. 

The point P = (x, y) moves around this ellipse in the counterclockwise direction, 
as indicated by the arrows in the figure. The velocity is 

v = (-8 sin 2t)i + (6 cos 2t)j, (6) 

and the speed is 

v = lvl = (64 sin2 2t + 36 cos2 2t) 112 = (28 sin2 2t + 36) 112• Figure 1 7.37 

4 

dR 
dt 
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Figure 17.38 F = ma 

Figure 17.39 
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It is clear from this formula for v that the smallest speed is 6, and this occurs 
when sin 2t = 0, and by the given formula for R, this happens when P is at ei
ther end of the major axis. The greatest speed is 8, and this occurs when sin 2t = 

1 ,  so that cos 2t = 0, that is, at either end of the minor axis. 

Just as the velocity v of our moving point is the rate of change of its position, 
the acceleration a is the rate of change of its velocity, 

dv d2R 
a = dt = dt2 · 

Thus, our present concepts of velocity and acceleration are direct extensions of 
more limited versions of these concepts from our earlier studies of one-dimen
sional motion. 

If the moving point P is the location of a moving physical object, and can 
therefore be thought of as a particle of mass m moving under the action of an 
applied force F, then Newton 's second law of motion states that 

F = ma. (7) 

This vector form of Newton's law shows that the force and acceleration vectors 
both have the same direction. Since we visualize the force F as being applied to 
the particle, so that its tail is at P, it is customary also to place the tail of a at P, 
as shown in Fig. 1 7 . 38 .  Both F and a usually point toward the concave side of 
the curve, but in exceptional cases they may be tangent to the curve. 

Example 1 (continued) To find the acceleration a of the motion given by R = 

(4 cos 2t)i + (3 sin 2t)j, we have only to differentiate the velocity (6) with re
spect to t, 

a = 
dv 

= ( - 1 6  cos 2t)i + (- 1 2  sin 2t)j . dt 

Since this can be written in the form 

a =  -4[(4 cos 2t)i + (3 sin 2t)j ] 

= -4R, 

the acceleration vector is always directed toward the center of the elliptical path. 

A simple but important situation is that in which a particle travels at constant 
speed around a circular path. 

Example 2 Uniform circular motion. A particle of mass m moves counter
clockwise around the circle x2 + y2 = r2 with constant speed v. Find the accel
eration of the particle and the force needed to produce this motion. 

Solution By using the notation in Fig. 17.39, the path can be written as 

R = (r cos O)i + (r sin O)j, 

with (} as the parameter. Since s = r(}, we have 

ds dO 
v = dt = r dt, 

(8) 
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and therefore d()/dt = vlr. This enables us to find the velocity and acceleration 
from (8) by using the chain rule: 

and 

dR dR d8 
v = dt = de · dt 

= [ (-r sin 8)i + (r cos 8)j] · _!'.. r 

= v [(-sin 8)i + (cos 8)j] ;  

dv dv d8 a = - = - · -dt d8 dt 

= v[(-cos 8)i + (-sin 8)j] · _!'.. r 

= - v2 [(cos 8)i + (sin 8)j] .  r 

By multiplying and dividing by 1; it is easy to see that a = -(v2/r2)R. This tells 
us that the acceleration vector a points in toward the center of the circle and has 
magnitude 

v2 v2 
lal = - IRI = -. r2 r 

By Newton's Jaw (7), the force F needed to produce this motion must point to
ward the center of the circle and have constant magnitude mv2/r. Such a force is 
called a centripetal force. 

It is obvious by now that the time t is a parameter of fundamental importance 
for studying the motion of a point P along a curved path. Another important pa
rameter is the arc length s, measured along the curve from a fixed point Po to P, 
as shown in Fig. 17 .40. We now consider R as a function of s and examine the 
meaning of the derivative dR!ds. If P moves along the curve to Q when s changes 
to s + Lis, then 

AR
= 

PQ 
As Lis 

is a vector in the direction of the chord from P to Q whose length is 

PQ chord 
As arc 

When Lis � 0, the direction of the chord approaches the direction of the tangent 
and the ratio of the chord to the arc approaches 1 .  Therefore the vector T, which 
is defined by 

T = dR = l im AR 
ds Ll.s->0 As ' 

is a vector of unit length which is tangent to the curve at P and points in the di
rection of increasing s. T is called the unit tangent vector. 

To clarify our first use of T, we recall that the formulas for the velocity v and 
acceleration a in terms of their components are 

609 

Figure 17.40 
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PROBLEMS 
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dx . dy . v = - 1 + - J dt dt and (9) 

These formulas are convenient for calculation, but they don't contribute much to 
our intuitive understanding of the nature of the vectors v and a. However, the 
chain rule enables us to write the velocity v in the form 

v = dR = dR ds = T ds 
dt ds dt dt " ( 10) 

For the purpose of conveying insight, this formula is much superior to the first 
of formulas (9), because in ( 1 0) the direction of v is given by T and its magni
tude is given by ds/dt, and the meaning of each is visible at a glance. Our main 
aim in the next two sections is to obtain a corresponding formula for the accel
eration a. 

Remark In most of our work we restrict ourselves to parametrized curves R = 
R(t) that are smooth, in the sense that the derivative R' (t) is continuous and 
nonzero at every point. In principle, the continuity of R' (t) enables us to find s 
as a function of t from formula (5), 

And since 

s = t IR'(t)I dt = t J(�Y + (1r)
2 dt. 

�� = IR'(t)I > 0, 

the function s = s(t) is strictly increasing and therefore has an inverse function 
t = t(s). This permits us to introduce s as a parameter for the curve, 

R = R(t) = R[t(s)]. 
However, in most cases it is difficult or impossible to carry out these calcula
tions. The integral for s may be hard to evaluate; and even if s = s(t) is known 
explicitly, it may be hard to find the inverse function t = t(s). Fortunately these 
difficulties are not a serious obstacle, because there is seldom any real need to 
have R expressed explicitly as a function of s. It is the idea of using arc length 
as a parameter that is important for understanding motion along curves-as in 
the preceding paragraph- and not the actual act of doing so in specific prob
lems. 

1 Give a geometric description of the locus of the head of 
R if R = A + tB, where neither A nor B is 0 and B is 
not parallel to A. Draw a sketch. 

In Problems 5-9, R is the position of a moving point at time 
t. In each case compute the velocity, acceleration, and speed. 
5 R = (t2 + l )i + (t - l )j . 

2 What is the locus of the head of R if R = ati + b( 1 -
t)j, where a and b are nonzero constants? 

3 Show that the locus of the head of R = ti + (mt + b)j is 
the line y = m.x + b. 

4 What is the locus of the head of R = (t + l )i + (t2 + 
2t + 3)j? 

6 R = t2i + t3j. 
7 R = ti + (t3 - 3t)j. 
8 R = (cos 2t)i + (sin t)j. 
9 R = (tan t)i + (sec t)j . 

1 0  If the position vector of a moving particle is R = 
(a cos kt)i + (b sin kt)j, where a, b, k are positive con-
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stants, then the particle moves on the ellipse x2!a2 + 
y2!b2 = I .  Show that a = -k2R and describe the force F that produces such a motion. 

with respect to t and show that the path is a parabola, a 
straight line, or a single point. 

1 1  If  the acceleration of a moving particle is a = aj, where 
a is a constant, find R by two successive integrations 

12 If a moving particle is acted on by no force, so that a = 

0, show that the particle moves with constant speed along 
a straight line. This is Newton 's first law of motion. 

In Section 17 .4 we expressed the velocity v of our moving point P in terms of 
the unit tangent vector T shown in Fig. 17.4 1 ,  where T was obtained as the de
rivative of the position vector R with respect to arc length s, 

T = 
dR 
ds · 

As our first step toward the general acceleration formula derived in Section 17 .6, 
we must now analyze the derivative of T with respect to s, and this requires us 
to examine the purely geometric concept of the "curvature" of a curve. 

If we consult our intuitive feelings about the notion of curvature, most of us 
will agree that a straight line does not curve at all ;  that is, it has zero curvature. 
Also, a circle has the same curvature at every point, and a small circle has greater 
curvature than a large one, as suggested in Fig. 1 7 .42. In the case of a nonuni
form curve like the one on the right, the curvature ought to be smaller where the 
curve is relatively straight and larger where the curve bends more sharply. 

These opinions are based on the idea that curvature at a point ought to mea
sure how rapidly the direction of a curve is changing at that point with respect 
to distance along the curve. Since direction is specified by the angle <f> from the 
x-axis to the tangent line (Fig. 17 .41 ) , we consider this angle as a function of the 
arc length s and define the curwture k to be the rate of change of </> with respect 
to s, 

k = 
d</J ds · ( I ) 

The curvature can be either positive or negative, and it may be zero in certain 
cases. Since k > 0 means that <f> is increasing as s increases, it is clear that this 
means that the curve turns away to the left of the tangent as we move along the 
curve in the positive direction. Similarly, k < 0 means the curve turns away to 
the right of the tangent. 

It is obvious from the definition ( 1 )  that the curvature of a straight line is zero, 
since <f> does not change as we move along the line. In the case of a circle of ra
dius a (Fig. 1 7.43), we have 

Zero 
curvature 

Small curvature 

Large 
curvature 

Larger 

Even 
larger 

1 7 . 5 
CURVATURE AND THE 
UNIT NORMAL VECTOR 

Figure 17.4 1  

Figure 17.42 The meaning of 
curvature. 
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and by using the fact that 8 = s/a, we easily see that the curvature is 

k = def> = d(} = _!_ 
ds ds a ·  (2) 

Since the curvature of a circle is clearly constant, we can also obtain the result 
(2) by observing that a complete revolution amounts to a change in direction of 
27T radians over a curve of length 27Ta, so 

We note in passing that formula (2) shows that smaller circles have larger cur
vatures, as indicated in Fig. 17 .42. 

Apart from these very simple cases, the actual calculation of the curvature is 
carried out by various rather complicated formulas, depending on how the curve 
is defined. 

The simplest situation is that in which the curve is the graph of a function y = 

f(x). Since tan <P = dy/dx, we have 

and 
d2y/dx2 def> = 

1 + (dyldx)2 dx. 

Also, the expression ds = Y dx2 + dy2 for the differential of arc length gives 

(3) 

On dividing d<f> by ds, we see that in this case the curvature is given by the formula 

def> d2yldx2 
k = ds = [ I  + (dyldx)2]312 . (4) 

In Section 4.2 we used the sign of the second derivative d2y!dx2 to find out which 
direction the curve is bending, concave up or concave down. Formula (4) gives 
us this information and much more-it tells us precisely how much the curve is 
bending. 

Example 
vertex. 

Show that the curvature of the parabola y = x2 is greatest at the 

Sof11ti1111 We are familiar enough with the general shape of parabolas (Fig. 
1 7 .44) to accept this statement without difficulty, because the curve visibly flat
tens out as lxl � oo. To verify it by calculation, we use the fact that dy/dx = 2x 
and d2y!dx2 = 2 to write 

d2y/dx2 2 
k = [ l  + (dyldx)2]312 ( 1  + 4x2)312 . 

It is clear that this quantity has its greatest value when x = 0, which is at the ver
tex, and also that k � 0 as lxl � oo. To illustrate how quickly the curve flattens 
out as we move away from the vertex, we notice that at the point (2, 4)-which 
is fairly close to the vertex-we have 

2 2 1 
k = ( 1  + 1 6)312 < 16312 

= 32· 
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Thus, at this point the parabola is flatter than a circle of radius 32, which is quite 
surprising. 

If a curve is defined by parametric equations x = x(t) and y = y(t), then 
its curvature is computed from a slightly different formula. This time we start 
with 

and 

,/.. - - ]  dyldt '+' - tan dx/dt 

- J(dx )2 (dy )2 - [(dx )2 (dy )2] 1 /2 ds - - + - dt - - + - dt. dt dt dt dt 

(5) 

(6) 

The calculations leading to the curvature formula are a bit more complicated be
cause of the quotient in (5), and the result is 

d</> (dx/dt)(d2yldt2) - (dyldt)(d2xldt2) 
k = Ts = [(dx/dt)2 + (dy/dt)2]312 

x'y" - y'x' 
[(x' )2 + ( y')2]312 · (7) 

Students will notice that (7) includes (4) as a special case, when a curve y = f(x) 
is thought of as a parametric curve x = x, y = f(x), with x replacing t as the pa
rameter. 

There is a slight difficulty with signs that should be mentioned. By choosing 
the positive square root in both (3) and (6), we are assuming that the direction 
of increasing arc length s is the same as the direction in which the parameter in
creases. If this is not the case in applying ( 4) or (7) to a specific problem, then 
it is necessary to change the sign to get the actual curvature. 

Example 2 Show that a circle of radius a has curvature l la by using the para
metric equations x = a cos 8, y = a sin e. 

Solution We apply formula (7) with the understanding that primes denote de
rivatives with respect to 8. First we calculate 

Formula (7) now gives 

as expected. 

x' = -a  sin 8, y ' = a  cos 8, 

x' = -a cos 8, y" = -a sin 8. 

a2 sin2 8 + a2 cos2 8 k = ---------(a2 sin2 8 + a2 cos2 8)312 a 

Now that we understand the concept of curvature, we are ready to deal quickly 
with the main problem of this section, which is to analyze the derivative of the 
unit tangent vector T with respect to s. 

We begin by observing that in terms of the slope angle <P (Fig. 17 .45) we have 

T = i cos </> + j sin </>, 

6 1 3  
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so 

dT • . ,i. • ,i. 
d<f> = -1 Sin 'I' + J COS '!'· 

The derivative (8) is clearly a unit vector, because its length is 

I �� I = V sin2 <f> + cos2 <f> = I .  

Also, i t  i s  perpendicular t o  T ,  because its slope is 

cos </> = 
-sin </> tan <f>'  

(8) 

which is the negative reciprocal of the slope of T. In fact, the derivative (8) is 
the unit normal vector N shown in the figure, 

dT 
d<f> 

= N, (9) 

where N is obtained by rotating T through an angle TTl2 in the counterclockwise 
direction. This is established by comparing (8) with 

N = i cos ( </> + ;) + j sin ( </> + ;) = -i sin </> + j cos <f>. 

By using the chain rule together with ( 1 )  and (9), we now easily obtain the main 
result of this section, 

dT = dT d<f> = Nk. ds d<f> ds 

It should be clear at this stage why it was necessary to discuss curvature in 
analyzing the meaning of dT/ds: Since T has constant length, only its direction 
changes as s varies, and this is what brings us to the curvature. We also point out 
that regardless of whether k is positive or negative, Nk always points toward the 
concave side of the curve. 

Remark Let P be a point on a curve at which the curvature k is not zero, and 
draw the normal toward the concave side of the curve, as shown in Fig. 1 7.46. 
Every circle through P whose center lies on this normal will be tangent to the 
curve at P That particular circle whose curvature is equal to lkl is called the cir
cle of curvature. Also, the center C of this circle is called the center of curva
ture, and its radius r is called the radius of curvature. We know from (2) that in 
the case of a circle, the radius is the reciprocal of the curvature, so the radius of 
curvature is given by the formula 

I [ I  + (dyldx)2]312 r = lkf = 
ld2yldx2 1 ' 

if the curve is the graph of a function y = f(x). A similar formula holds for a 
parametric curve. As P moves along the given curve, the locus of the corre
sponding center of curvature C is called the evolute of the given curve.* 

'Some remarkable applications of the theory of evolutes to cycloids are given in Section B.23 of the 
author's Calculus Gems (McGraw-Hill, 1 992). 
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PROBLEMS 

1 Find the curvature of the given curve as a function of 
x or t: 
(a) y = Yx; 
(b) y = In sec x; 1 (c) y = x + -; 

x 
(d ) x = e' sin t, y = e' cos t; 
(e) x = t2, y = In t. 

2 Find the radius of curvature of the given curve at the 
given point: 
(a) x = t2, y = t3 at t = 2; 
(b) x = e', y = e -1 at t = O; 

1 
(c) y = - at ( I ,  I ); x 
(d ) x = tan t, y = cot t at t = 7T/4. 

3 In each case find the largest value (if any) of the cur
vature: 
(a) y = sin x; 
(b) y = +x3; 
(c) y = In x. 

4 Carry out the details of establishing the parametric cur
vature formula (7). 

5 Find the curvature of the circle x2 + y2 = a2 by apply
ing formula ( 4) separately to y = Y a2 - x2 and y = 
- V a2 - x2. What difficulty arises, and how can it be 
fixed? 

6 For the curve y = ex, find the radius of curvature and 
the equation of the circle of curvature at the point (0, 
1 ). Sketch the curve and this circle. Use the equation of 
the circle to calculate the values of dy/dx and d2y!dx2 
at the point (0, 1 ), and verify that these derivatives have 
the same values there as the corresponding derivatives 
of y = ex. 

7 At what point on the curve y = ex is the radius of cur
vature smallest? What is this smallest radius? 

8 We know that if y = f(x) is a straight line, then k = 0. 
Show, conversely, that if k = 0, then y = f(x) i s  a 
straight line. 

9 Find the largest value of the radius of curvature on the 
first quadrant part of the hypocycloid of four cusps x = a cos3 8, y = a sin3 8. Where does the radius have this 
largest value? 

IO  By Problem 1 5  in Section 17 . 1 ,  the equations 

x = cos e + e sin e, 
y = sin e - e cos e 

represent the involute of a circle of radius I .  Find the 
curvature at any point. 

1 1  Find the radius o f  curvature of the cycloid 

x = a(8 - sin 8), 
y = a( 1 - cos 8) 

at any point. 
12  (a) Sketch the ellipse x = a cos 8, y = b sin 8, where 

0 < b < a, and find its curvature k at an arbitrary 
point. 

(b) Without calculating dkld8, use the formula in (a) to 
show that k has its largest values at the ends of the 
major axis and its smallest values at the ends of the 
minor axis. Show that these values are a/b2 and b!a2, 
respectively. Notice that if b = a, then we have a 
circle, and both of these formulas give k = I la, as 
they should. t 

*13 Let a be a positive number and consider the curve y = 
xa for x > 0. Show that the curvature approaches a fi
nite limit as x � 0 if a :'.S t or a = 1 or a � 2, and only 
in these cases. 

tFor curves in general, a point where the curvature has a maximum 
or minimum value is called a vertex. By problem 1 2, an ellipse has 
four vertices. An ellipse is a special case of an oval, which is a con
vex closed curve whose parametric equations x = x(t), y = y(t) have 
continuous second derivatives. The famous four vertex theorem of dif
ferential geometry states that every oval has at least four vertices. 

Consider a moving particle whose position at time t is given by the parametric 
equations x = x(t) and y = y(t). The position vector of this particle is R = .xi + 
yj , and its velocity and acceleration are 1 7 . 6 

TANGENTIAL AND 
NORMAL COMPONENTS 
OF ACCELERATIO 

dR dx . dy . 
V 

= dt = dt I + dt J, ( 1 )  

Unfortunately, the i - and j-components o f  these vectors have no  physical mean
ing, because they depend on the coordinate system, and the choice of the coor
dinate system is arbitrary; it is not determined by the intrinsic nature of the mo
tion itself. However, we saw in Section 1 7.4 that the velocity can also be written 
as 
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or 

dR dR ds v = - = - -
dt ds dt 

ds v = T dr' 

v =  TE!_ dt 

(2) 

where T is the unit tangent vector (Fig. 1 7.4 7) .  This expression for the velocity 
does have physical meaning, because T gives the direction of the motion and 
ds/dt gives its magnitude, the speed. 

To obtain a similar revealing expression for the acceleration, we differentiate 
(2) with respect to t, 

a = dv 
= T d2s + ds dT 

dt dt2 dt dt . 

By Section 17 .5 we know that 

dT = dT ds = dT d<f> ds 
dt ds dt d</> ds dt 

= Nk ds 
dt ' 

(3) 

(4) 

where k is the curvature and N is the unit normal vector shown in Fig. 1 7.48. 
When (4) is substituted in (3) we get our fundamental result, 

= T d2s Nk (ds )2 a dt2 + dt · (5) 

This is an important equation in mechanics. The vectors T and N serve as refer
ence unit vectors much like i and j. They enable us to resolve the acceleration 
into two "natural" components, in the direction of the motion and normal to this 
direction, in contrast to the arbitrary components given by the second of equa
tions ( 1 ) . The tangential component, d2s!dt2, is simply the derivative of the speed 
v = dsldt of the particle along its path. The normal component, k(ds/dt)2 = kv2, 
has magnitude 

v2 
lkl v2 = -, r (6) 

where r is the radius of curvature. It is clear from (5) that when k -=F 0 and the 
particle is actually moving, the acceleration is always directed toward the con
cave side of the curve. 
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Of course, the great importance of the acceleration lies in the fact that when 
a particle of mass m is acted on by a force F, it moves in accordance with New
ton 's second law of motion F = ma. The vectors F and a therefore have the same 
direction, as shown in the figure, and this fits with our intuitive understanding 
that when a force changes the direction of a moving particle, it pulls the parti
cle away from the direction of the tangent toward the concave side of the path. 

Since the curvature k is available whenever the curve is given in parametric 
form, the tangential and normal components of acceleration can be calculated 
from (5). However, it is often more efficient to use the following procedure. The 
acceleration vector is the same whether it is expressed in terms of i- and j-com
ponents or tangential and normal components, so 

where the a's have the obvious meanings. This tells us that 

la12 = a 2 + a 2 = a 2 + a 2 x y t n ' 

so 

(7) 
where a, = d2s!dt2. 

Example 1 If a particle moves along the curve whose parametric equations are 

x = cos t + t sin t, y = sin t - t cos t, 

find the tangential and normal components of acceleration. 

Solution The position vector is 

so 

and 

R = (cos t + t sin t)i + (sin t - t cos t)j , 

dR 
v = -dt 

= (-sin t + t cos t +  sin t)i + (cos t +  t sin t - cos t)j 

= (t cos t)i + (t sin t)i 

dv ( . )" ( . ) " a =  dt = -t sm t + cos t 1 + t cos t +  sm t J .  

The speed v = ds/dt i s  given by 

�� = lv l = Y(t cos t)2 + (t sin t)2 = t, 

so the tangential component of acceleration is 

d2s d a, = dt2 = dt t = I . 
The normal component of acceleration can be computed directly, by finding k 
and using an = k(ds/dt)2• However, it is easier to use (7), which gives 

617 
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an = Yjaj2 - a,2 
= V ( - t  sin t + cos t)2 + (t cos t + sin t)2 - I = t. 

Example 2 If a particle of mass m moves around a circular path of radius r with 
constant speed v = dsldt, then d2sldt2 is zero. By equations (5) and (6), the ac
celeration is directed toward the center of the circle and has magnitude v21r. Fur
ther, the centripetal force acting on the particle has magnitude 

mv2 Fi = --. r (8) 

Thus, for an automobile going around a given unbanked curve, it takes four times 
as much normal force between the tires and the road to "hold the road" at 60 
mi/h as at 30 mi/h, and the required force is doubled again if the radius is halved. 
These are the results about uniform circular motion that we obtained in Exam
ple 2 of Section 17.4. 

Now suppose that our particle is an artificial satellite in a circular orbit around 
the earth, as shown in Fig. 17.49. If M is the mass of the earth, then Newton's 
law of gravitation tells us that the force of attraction which the earth exerts on 
the satellite has magnitude 

Mm F1 = G -2-, 
r 

(9) 

where r is the distance from the satellite to the center of the earth and G is a con
stant of proportionality called the constant of gravitation. We know that the weight 
of the satellite is the force which gravity exerts on it at the surface of the earth, 
and this is mg. Therefore, if R denotes the radius of the earth, then F2 = mg when 
r = R, so (9) tells us that 

Mm mg = G Rl  or GM = gR2. 

This enables us to write (9) in the more convenient form 

gR2m F2 = --2-· 
r 

( 10) 

For a satellite in stable circular orbit, the centripetal force is precisely equal to 
the gravitational force, so F1 = F2 and 

R2 v2 = L_  r ( 1 1 ) 

This formula gives the speed at which a satellite must move in order to maintain 
a circular orbit at a specified distance r from the center of the earth. 

We make two observations about formula ( 1 1) .  First, if our satellite is mov
ing in a circular orbit at a relatively low altitude above the surface of the earth, 

then r = R and v = vgR. This orbital speed is approximately 5 mils, which 

should be compared with the escape speed of V2"if? or 7 mils that we calculated 
in Example 3 of Section 5 .5 .  

Second, we consider a communications relay satellite that i s  placed in a cir
cular orbit around the earth and has a period of revolution of T = 24 hours. This 
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is a so-called synchronous orbit, in which the satellite moves with the turning 
earth and appears to hang motionless in the sky. If r is the radius of this orbit, 
then the orbital speed is v = 211r/T, and when this is substituted in ( 1 1 )  we find 
that 

With suitable adjustments applied to the values g = 32 ft/s2, R = 4000 mi, and 
T = 24 h, we easily find that r is approximately 26,000 mi, which means that 
the satellite must be about 22,000 mi above the surface of the earth. Such satel
lites were first conceived in 1945 by the famous science fiction writer Arthur C. 
Clarke, and are the crucial links in our present-day worldwide television com
munications. 

Of course, the ideas discussed in this example assume a circular path, which 
is approximately true for some satellites. We shall give a detailed treatment of 
elliptical orbits in Section 17 .7 . 

PROBLEMS 

6 1 9  

1 In Example I ,  find an the other way, by first calculating 10 Deduce from equation (5) that 
k and then using an = k(ds/d1)2. 

In Problems 2-7, find the velocity and acceleration vectors, 
then find the speed and the tangential and normal components 
of the acceleration. 
2 R = (21 - 5)i + (12 + 3)j. 
3 R = a cos wt i + a sin wt j, where a and w are positive 

constants. 
4 R = cos t2 i + sin t2 j .  
5 R = e' cos t i + e' sin t j. 
6 R = t cos t i + t sin 1 j .  
7 R = 2 ln (t2 + l )i + (2t - 4 tan- 1 1)j . 

In Problems 8 and 9, find the normal component of the ac
celeration for the given values of t. 
8 R = a cos t i + b sin t j; t = 0, 1112. 
9 R = t i  + sin t j ;  t = 0, 1112. 

(a) the path of a moving particle will be a straight line 
if the normal component of acceleration is zero; 

(b) if the speed of a moving particle is constant, then the 
force· is always directed along the normal; 

(c) if the force acting on a moving particle is always di
rected along the normal, then the speed is constant. 

11 A road has the shape of the parabola I 20y = x2. A truck 
is loaded in such a way that it will tip over if the normal 
component of its acceleration exceeds 30. What speeds 
will guarantee disaster for the truck as it swings around 
the vertex of the parabola? 

12 If a particle moves along a path whose curvature k is 
never zero, how must the speed be adjusted if the nor
mal component of the acceleration is to be held at a con
stant magnitude? 

As we know, Isaac Newton conceived the basic ideas of calculus in the years 
1 665 and 1666 (at age 22 and 23) for the purpose of helping him to understand 
the movements of the planets against the background of the fixed stars. In order 
to appreciate what was involved in this achievement, we briefly recall the main 
stages in the development of astronomical thinking up to his time. 

17 . 7 
KEPLER'S LAWS AND 
NEWTON'S LAW OF 
GRAVITATION 

The ancient Greeks constructed an elaborate mathematical model to account 
for the complicated movements of the sun, moon, and planets as viewed from 
the earth. A combination of uniform c ircular motions was used to describe the 
motion of each body about the earth. It was very natural for them- as it is for 
all people-to adopt the geocentric point of view that the earth is fixed at the 
center of the universe and everything else moves around it. Also, they were in-



620 

• 
E 

Figure 17.50 An epicycle. 

Figure 17.51 Kepler's second law. 

PARAMETRIC EQUATIONS. VECTORS IN THE PLANE 

fluenced by the semimystical Pythagorean belief that nothing but motion at con
stant speed in a perfect circle is worthy of a celestial body. 

In this Greek model, each planet P moves uniformly around a small circle 
(called an epicycle) with center C, and at the same time C moves uniformly 
around a larger circle centered at the earth E, as shown in Fig. 1 7  .50. The radius 
of each circle and the angular speeds of P and C around the centers C and E are 
chosen to match the observed motion of the planet as closely as possible. This 
theory of epicycles was given its definitive form in Ptolemy's massive treatise 
Almagest in the second century A.D., and the theory itself is called the Ptole
maic system. 

The next great step forward was taken by the Polish astronomer Copernicus. 
Shortly before his death in 1 543, when he was presumably almost beyond the 
reach of a wrathful Church, he at last allowed the publication of his heretical 
book, On the Revolution of the Celestial Spheres. This work changed the Ptole
maic point of view by placing the sun, instead of the earth, at the center of each 
primary circle. Nevertheless, this heliocentric system was of much greater cul
tural than scientific importance. It enlarged the consciousness of many educated 
Europeans by giving them a better understanding of their place in the scheme of 
things, but it also kept the clumsy machinery of Ptolemy's circles whose centers 
move around on other circles. 

It was Johannes Kepler ( 1 57 1-1630) who finally eliminated this jumble of cir
cles. Kepler was the assistant of the wealthy Danish astronomer Tycho Brahe, 
and when Brahe died in 1 60 1 ,  Kepler inherited the great masses of raw data they 
had accumulated on the positions of the planets at various times. Kepler worked 
incessantly on this material for 20 years, and at last succeeded in distilling from 
it his three beautifully simple laws of planetary motion, which were the climax 
of thousands of years of purely observational astronomy: 

1 The orbit of each planet is an ellipse with the sun at one focus. 
2 The line segment joining a planet to the sun sweeps out equal areas in equal 

times. See Fig. 17 .5 1 .  
3 The square of the period of revolution of a planet is proportional to the cube 

of the semimajor axis of the planet's elliptical orbit. That is, if T is the time 
required for a planet to make one complete revolution about the sun and a is 
the semimajor axis shown in the figure, then the ratio T2Ja3 is the same for 
all planets in the solar system. 

Planet at 
later time 
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From Kepler's point of view, these were empirical statements that fitted the data, 
and he had no idea of why they might be true or how they might be related to 
one another. In short, there was no theory to provide a context within which they 
could be understood. 

Newton created such a theory. In the 1660s he discovered how to derive the 
inverse square law from Kepler's laws by mathematical reasoning, and also how 
to derive Kepler's laws from the inverse square law. We recall that Newton 's in
verse square law of universal gravitation states that any two particles of matter 
in the universe attract each other with a force directed along the line between 
them and of magnitude 

G Mm 
2 ' r ( ! )  

where M and m are the masses of the particles, r is  the distance between them, 
and G is a constant of nature called the gravitational constant. With this simple, 
clean, clear law as the unifying principle of his thinking, Newton published his 
theory of gravitation in 1 687 in his Principia Mathematica. In this one book
perhaps the greatest of all scientific treatises- his success in using mathemati
cal methods to explain the most diverse natural phenomena was so profound and 
far-reaching that he essentially created the sciences of physics and astronomy 
where only a handful of disconnected observations and simple inferences had ex
isted before. These achievements launched the modem age of science and tech
nology and radically altered the direction of human history. 

We now derive Kepler's laws of planetary motion from Newton's law of grav
itation, and to this end we discuss the motion of a small particle of mass m (a 
planet) under the attraction of a fixed large particle of mass M (the sun). 

For problems involving a moving particle in which the force acting on it is al
ways directed along the line from the particle to a fixed point, it is usually sim
plest to resolve the velocity, acceleration, and force into components along and 
perpendicular to this line. We therefore place the fixed particle M at the origin 
of a polar coordinate system (Fig. 1 7  .52) and express the position vector of the 
moving particle m in the form 

(2) 

where u, is the unit vector in the direction of R. It is clear that 

u, = i cos (} + j sin (), (3) 
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and also that the corresponding unit vector u11, perpendicular to Ur in the direc
tion of increasing e, is given by 

Ue = - j sin e + j COS e. 

It is easy to see by componentwise differentiation that 

dur 
do = Ue and 

due 
do = -ur. 

(4) 

(5) 

Thus, differentiating Ur and u11 with respect to e has the effect of rotating these 
vectors 90° in the counterclockwise direction. We shall need the derivatives of 
u,. and u11 with respect to the time t. By means of the chain rule we at once ob
tain the formulas 

du, dur de de 
di = de di = Ue dt and 

due due de de - = -- = -u -dt de dt r dt ' (6) 

which are essential for computing the velocity and acceleration vectors v and a. 
Direct calculation from (2) now yields 

and 

dR dur dr de dr 
v = -;Lt = r di + u,. dt = r dt ue + dt u, 

dv dr de d2e de du0 d2r dr dur 
a = - = --u  + r- u  + r-- + - u + --· 

dt dt dt e dt2 O dt dt dt2 r dt dt ' 

(7) 

and by keeping formulas (6) in mind and rearranging, the latter equation can be 
written in the form 

( d2e dr de) [d2r ( de)2] a = r dt2 + 2 dt dt uo + d(2 - r di Ur-

If the force F acting on m is written as 

F = Feuo + FrUn 

then, from (8) and (9) and Newton's second law of motion ma = F, we get 

( d2(} dr d(J) m r--;Jj2 + 2 dt dt = Fe and 
[d2r ( de)2] m dt2 - r dt = F,. 

(8) 

(9) 

( 1 0) 

These differential equations govern the motion of the particle m and are called 
the equations of motion; they are valid regardless of the nature of the force F. 
Our next task is  to extract the desired conclusions from these equations by mak
ing suitable assumptions about the direction and magnitude of F. 

CENTRAL FORCES AND KEPLER'S SECOND LAW 

F is called a central force if it has no component perpendicular to R, that is, if 
Fe = 0. Under this assumption the first of equations ( 1 0) becomes 

r d2e + 2 dr de 
= 

0 
dt2 dt dt . 

On multiplying through by r, we obtain 

r2 d2(J + 2r dr d(J = 0 dt2 dt dt 
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or 

so 

!!._ (r2 dB) = 0 
dt dt ' 

r2 dB = h dt ( 1 1 ) 

for some constant h. We shall assume that h is positive, or equivalently that d()/dt 
is positive, which evidently means that m is  moving around the origin in a coun
terclockwise direction. 

If A = A(t) is the area swept out by R from some fixed position of reference 
so that dA = tr2 d(), then ( 1 1 ) implies that 

I ( 2 dB) 1 dA = 2 r dt dt = 2h dt. 

On integrating this from t1 to t2, we get 

A(t2) - A(t1 ) = fh(t2 - ti). ( 1 2) 

This yields Kepler's second law: The line segment joining the sun to a planet 
sweeps out equal areas in equal intervals of time. 

CENTRAL GRAVITATIONAL FORCES AND KEPLER'S FIRST LAW 

We now specialize even further, and assume that F is a central attractive force 
whose magnitude is given by the inverse square Jaw ( 1 ) ,  so that 

Mm Fr = -G-2-. r 
If we write ( 1 3) in the slightly simpler form 

F = _ km 
r r2 

where k = GM, then the second of equations ( 1 0) becomes 

d2r ( dB)2 _ k 
dt2 - r dt 

-
-72· 

( 1 3) 

( 1 4) 

The next step in this line of thought is difficult to motivate, because it involves 
considerable technical ingenuity, but we will try. Our purpose is to use the dif
ferential equation ( 14) to obtain the equation of the orbit in the polar form r = 
f(()), so we want to eliminate t from ( 1 4) and consider () as the independent vari
able. Also, we want r to be the dependent variable, but if ( 1 1 )  is used to put ( 14) 
in the form 

k 
2 ' r ( 1 5) 

then the presence of powers of l lr suggests that it might be temporarily conve
nient to introduce a new dependent variable z = llr. 

To accomplish these various aims, we must first express d2r/dt2 in terms of 
d2z/d(}2, by calculating 
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and 

dr _ .!!:.._ (l) - _ _!__ dz _ _ _!__ dz d{) 
dt - dt z - z2 dt - z2 d{) dt 

_ I dz h _ h dz 
- -� d{) 72 - - d{) 

When the latter expression is inserted in ( 1 5) , and r is replaced by l/z, we get 

d2z -h2z2 - - h2z3 = -kz2 d{)2 

or 

( 16) 

To solve this equation, we observe that, except for the constant term on the 
right, it is the differential equation of simple harmonic motion discussed in Sec
tion 9.6. To eliminate the constant term, we put 

k 
w = z - h2 ' 

so that d2w/d82 = d2zld82 and ( 1 6) becomes 

As we know, the general solution of this familiar equation is 

so 

w = A sin {) + B cos 0, 

. 0 
k z = A  sm {) + B cos + fz2· ( 1 7) 

For the sake of simplicity, we now shift the direction of the polar axis in such a 
way that r is minimal (that is ,  m is closest to the origin) when 8 = 0. This means 
that z is to be maximal in this direction, so 

and 

when 8 = 0. By calculating dz!d8 and d2z/d82 from ( 17), we easily see that these 
conditions imply that A = 0 and B > 0. If we now replace z by l!r, then ( 17) can 
be written as 

I h2/k 
r = k!h2 + B cos {) = I + (Bh2/k) cos {) ; 

and if we put e = Bh2/k, then our equation for the orbit becomes 
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r = -----
1 + e cos (] '  ( 1 8) 

where e is a positive constant. 
We recall from Section 1 6.3 that ( 1 8) is the polar equation of a conic section 

with focus at the origin and vertical directrix to the right; and furthermore, that 
this conic section is an ellipse, a parabola, or a hyperbola according as e < 1 ,  
e = 1 ,  or e >  I .  Since the planets remain in the solar system and do not move 
infinitely far away from the sun, the ellipse is the only possibility. This yields 
Kepler's first Jaw: The orbit of each planet is an ellipse with the sun at one 
focus.* 

KEPLER'S THIRD LAW 

We now restrict ourselves to the case in which m has an elliptic orbit (Fig. l 7 .53) 
whose polar and rectangular equations are ( 1 8) and 

x2 y2 
7J + b2 = I .  

We know that e = c/a and c2 = a2 - b2, so e2 = (a2 - b2)!a2 and 

b2 = a2( J - e2). ( 1 9) 

In astronomy the semimajor axis a of the elliptical orbit is called the mean dis
tance, because it is one-half the sum of the least and greatest values of r. These 
are the values of r corresponding to 8 = 0 and 8 = 1T in ( 1 8) ,  so by ( 1 8) and ( 1 9) 
we have 

which yields 

b2 = h2a 
k . (20) 

If T is the period of m (that is, the time required for one complete revolution in 
its orbit) , then, since the area of the ellipse is  1Tab, it follows from ( 1 2) that 1Tab = ±hT, so T = 21Tab/h. By using (20), we now obtain 

- 47T2a2b2 - (47T2 ) 3 T2 - h2 - k a . (2 1 )  

Since the constant k = GM depends on the central attracting mass M but not on 
m, (2 1 )  holds for all the planets in our solar system and we have Kepler's third 
law: The squares of the periods of revolution of the planets are proportional to 
the cubes of their mean distances. 

*In the discussion of equation (J 7) we have ignored the possibility that r might have a constant value 
and therefore not be minimal in any direction, so that z has a constant value and is not maximal in 
any direction. This happens when both A = 0 and B = 0, so that z = k/h2 and r = h2/k. Under these 
circumstances we have a circular orbit with radius h2/k, and this can be included under equation (I 8) 
by allowing the possibility that e = 0. However, we saw in Section 1 7.6 that a circular orbit of given 
radius requires a certain precise orbital speed, which is infinitely unlikely for an actual planet and 
can be disregarded as a genuine possibility. 
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As we explained in Section 15 .3, the standard unit of distance among as
tronomers who work with the solar system is the astronomical unit. This is the 
mean distance from the earth to the sun, which is approximately 93,000,000 mi, 
or 150,000,000 km. Equation (2 1 )  takes the more convenient form 

Tz = a3 (22) 

when time is measured in years and distance in astronomical units. The reason 
for this, of course, is that 1 year is by definition the period of revolution of the 
earth in its orbit, so that with these units of measurement T = 1 when a = 1 .  

We would like to point out that the mathematical theory discussed in this sec
tion is just the beginning of what Newton accomplished, and constitutes only a 
first approximation to the full story of planetary motion. For instance, we have 
assumed that only the sun and one planet are present. But actually, of course, all 
the other planets are present as well, and each exerts its own independent grav
itational force on the planet under consideration. These additional influences in
troduce what are called perturbations into the idealized elliptical orbit derived 
here, and the main purpose of the science of celestial mechanics is to take all 
these complexities into account. One of the great events of nineteenth century 
astronomy arose in just this way, namely, the discovery of the planet Neptune by 
Adams and Leverrier, through their attempts to explain the relatively large devi
ations of Uranus from its Keplerian orbit.* 

Also, we  have assumed that the sun and planet under discussion are particles, 
that is, points at which mass is  concentrated. In fact, of course, they are extended 
bodies with substantial dimensions. One of Newton's most remarkable achieve
ments was to prove that the sun and planets behave like particles under the in
verse square law of attraction. We will prove this statement ourselves in Chap
ter 20, where we study three-dimensional integrals. 

Newton's enormous success revived and greatly intensified the almost-forgot
ten Greek belief that it is possible to understand the universe in a rational way. 
This new confidence in its own intellectual powers permanently altered human
ity's perception of itself, and over the past 300 years almost every department of 
human life has felt its consequences. 

*For the details of this dramatic story, see pp. 820-839 of The World of Mathematics, James R. New
man, ed. (Simon and Schuster, 1 956). 

1 Newton himself did not know the value of the constant 
of gravitation G. This was determined by means of a clas
sic experiment in 1 789 by the English scientist Henry 
Cavendish. Once G is known, explain how equation (21 ), 
written in the form 

(a) twice that of the earth? 
(b) three times that of the earth? 
(c) 25 times that of the earth? 

*3 Kepler's first two laws, in the form of equations ( 1 1 )  and 
( 1 8), imply that m is attracted toward the origin with a 
force whose magnitude is inversely proportional to the 
square of r. This was Newton's fundamental discovery, 
for it caused him to propound his law of gravitation and 
investigate its consequences. Prove this by assuming ( 1 1 )  
and ( 1 8) and verifying the following statements: 

T2 = ( 47T2 ) 3 
GM a ' 

might be used to calculate the mass of the sun. 
2 What is the period of revolution T (in years) of a planet 

whose mean distance from the sun is (a) Fe = O; 



ADDITIONAL PROBLEMS FOR CHAPTER 1 7  627 

dr ke . (b) dt = h sm 8; 

( )  d2r = ke cos 8 . c dt2 r2 , 

(d) Fr = _ m� = -G Mi;. r r 
*4 Use formula ( 1 7) to show that the speed v of a planet at 

any point of its orbit is given by 

v2 = k (� - �) . 
5 Suppose that the earth explodes into fragments which fly 

off at the same speed in different directions into orbits 
of their own. Use Kepler's third law and the result of 
Problem 4 to show that all fragments that do not fall into 
the sun or escape from the solar system will reunite later 
at the same point. 

CHAPTER 17 REVIEW: CONCEPTS, FORMULAS 

Think through the following. 
1 Parametric curve. 
2 Cycloid: area and length. 
3 Brachistochrone problem. 
4 Tautochrone property. 
5 Scalars and vectors. 
6 Parallelogram rule. 

ADDITIONAL PROBLEMS FOR CHAPTER 1 7  

SECTION 17. 1 

1 Find the area of the loop of the folium of Descartes shown 
in Fig. 1 7 . 1 1 . Hint: Use the polar equation of the folium 
and evaluate the area integral with the aid of the substi
tution u = tan 8. 

2 Find parametric equations for the right loop of the lem
niscate r2 = 2a2 cos 28  by using the slope of the radial 
line t = ylx as parameter. How can the left loop be rep
resented? 

SECTION 1 7.2 

3 Consider the cycloid discussed in Section 1 7  .2. 
(a) Find the volume of the solid generated by revolving 

the region under one arch about the x-axis . 
(b) Find the area of the surface generated by revolving 

one arch about the x-axis. 
*4 Let a be fixed and consider the hypocycloid of n cusps, 

so that a = nb. Find the total length Ln of this curve, and 
also the limit approached by Ln as n � =. 

*5 Find the length of one arch of the epicycloid generated 
by a circle of radius b rolling on the outside of a fixed 
circle of radius a. t 

tNewton discovered this length, and obtained Wren's Theorem (Ex
ample 2 in Section 17 .2) by letting a -> oo. See Book I of the Prin
cipia, Prop. 48 and Cor. 2 to Prop. 52. It is interesting to try to bridge 
the gap between Newton's language and our own. 

7 Velocity v = dR/dt. 
8 Acceleration a = dvldt = d2RJdt2. 
9 Newton's second law of motion: F = ma. 

10 Curvature: definition and formula. 
1 1  Kepler's laws of planetary motion. 
1 2  Newton's law o f  gravitation. 

*6 Let a be fixed and consider the epicycloid of n cusps, so 
that a = nb. Find the total length Ln of this curve, and 
also the limit approached by Ln as n � =. 

*7 Consider an ideal pendulum consisting of a particle of 
mass m at the end of a weightless string of length L (Fig. 
1 7  .54). If it is pulled aside through an angle a and re
leased, show that its period of oscillation T can be ex
pressed in the form 

T = 4 {i__ J1 du 
V g o Y( I  - u2)( 1 - k2u2)

, 

y 

x 

\ \ \ \ 
\ \ \ \ \ 

m 

Figure 17.54 An ideal pendulum. 
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where k = sin ta and u = ( l/k) sin tB. Hint: x = 
L sin () and y = L cos (), and tmv2 = mg(L cos () -
L cos a). This integral is called a complete elliptic inte
gral of the first kind, and it cannot be evaluated by means 
of elementary functions. When a is small, so that k2 is 
very small, we have the approximation 

T =  4fg sin- 1 u I = 2Trft, 

as in Example 3 in Section 9.6. 
*8 Consider a wire bent into the shape of a cycloid 

with parametric equations x = a(() - sin ()) and y = 
a(I - cos ()), and invert it as in Fig. 17. 15. If a bead is 
released on the wire and slides without friction under the 
influence of gravity alone, show that its velocity v satis
fies the equation 

4av2 = g(s02 - s2), 
where s0 and s are the arc lengths from the lowest point 
to the bead's initial position and its position at any later 
time, respectively. By differentiation obtain the equation 

d2s g 
dt2 + 4a s = O, 

which shows that the bead moves in simple harmonic 
motion. Use the ideas of Section 9.6 to find s as a func
tion of t, determine the period of the motion, and observe 
that this establishes in another way the tautochrone prop
erty of the cycloid proved in Section 1 7  .2. 

SECTION 1 7 .3 
9 Use vector methods to show that the line joining the mid

points of two sides of a triangle is parallel to the third 
side and half its length. 

10 Generalize Problem 9 by using vector methods to show 
that the line joining the midpoints of the nonparallel sides 
of a trapezoid is parallel to the parallel sides and half the 
sum of their lengths. 

SECTION 1 7.5 

1 1  Locate the points on the curve y = fx4 where the radius 
of curvature is smallest. What is this smallest radius? 

1 2  Show that the radius of curvature at any point (x, y )  on 
the hypocycloid of four cusps x213 + y213 = a213 is three 
times the distance from the origin to the line which is 
tangent to the curve at (x, y). 

SECTION 1 7.7  

13 The Cavendish value for G is 6.7 X 10-8 cm3 · g- 1 • s-2 
when mass is measured in grams, distance in centime
ters, and time in seconds. In Example 2 in Section 17.6 
we used the fact that GM. =  gR2, where Me is the mass 

of the earth. Calculate Me (approximately) in grams by 
using the values g = 980 cm/s2 and R = 6.37 x 108 cm. 

14  With the notation of Section 1 7 .7, the inverse square law 
can be written as 

km F = --2 Ur r 

where k = GM, and since ma = F, we have 

dv k 
dt = --;z u,. 

Verify the following steps to obtain another derivation of 
Kepler's first law from the inverse square law: 
(a) Use (6) and ( 1 1 ) to write 

dv _ _ _.15_ (--1- due) - !5._ due 
dt - r2 d()/dt dt - h dt · 

(b) Integrate the equation in (a) to obtain 

k ( k ) . v = h ue + vo - h J, 

by assuming initial conditions in the following form 
(Fig. 1 7  .55): At t = 0, m has its closest approach to 
the origin and crosses the polar axis at the point R = 
r0i with velocity v = voj. 

Figure 1 7.55 

(c) Equate ue-components of the equation in (b) to ob
tain 

d() k ( k ) r - = - + vo - - cos () dt h h ' 

and use ( 1 1 ) to write this in the form 

7 = * + (Vo - *) cos 8. 

(d ) Solve the equation in (c) for r to obtain 
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r =  1 + ( v0h/k - 1 )  cos (} · 
(f) Observe that the equation in (e) represents 

A circle if rovo2 = GM; 
(e) Use (7) and ( 1 1 )  to show that h = r0v0, and write the 

equation in (d) in the form 
An ellipse if GM < r0v02 < 2GM; 
A parabola if r0v02 = 2GM; 

r = 1 + (r0v02/k - 1) cos (} 

where e = rovo21k - 1 .  

(rovo)2/k A hyperbola if r0v02 > 2GM. 
I + e cos (} '  

As explained in Section 17.2, we begin with a point Po and a lower point P1 ,  and we seek 
the shape of the curved wire joining these points down which a bead will slide without 
friction in the shortest possible time. 

We start by considering an apparently unrelated problem in optics. Figure 1 7.56 illus
trates a situation in which a ray of light travels from A to P with constant velocity v1 , and 
then, entering a denser medium, travels from P to B with a smaller velocity v2. In terms 
of the notation in the figure, the total time T required for the journey is given by 

Y a2 + x2 Y b2 + (c - x)2 T =  + ------v, V2 
If we assume that this ray of light is able to select its path from A to B in such a way as 
to minimize T, then dT/dx = 0, and with a little work we see that the minimizing path is 
characterized by the equation 

sin a1 sin a2 
V1 V2 

This is Snell 's law of refraction. *  The assumption that light travels from one point to an
other along the path requiring the shortest time is called Fermat 's principle of least time. 
This principle not only provides a rational basis for Snell's law-which is an experimental 
fact-but also can be applied to find the path of a ray of light through a medium of vari-

APPE DIX: 
BERNOULLI 'S  
SOLUTION OF THE 
BRACHISTOCHRONE 
PROBLEM 

A 

able density, where in general light will travel along curves instead of straight lines. In Figure l7.56 The refraction of light. 

Fig. 1 7  .57(a) we have a stratified optical medium. In the individual layers the velocity of 
light is constant, but the velocity decreases from each layer to the one below it. As the 
descending ray of light passes from layer to layer, it is refracted more and more toward 

*See Example 4 in Section 4.4. 

(a) (b) 
Figure 1 7.57 Refraction in other 
optical media. 



630 

·-----�1------- x Po I 

y 
Figure 1 7.58 

I 
I 
I v I · 
I 
I 
I 

PARAMETRIC EQUATIONS. VECTORS IN THE PLANE 

the vertical, and when Snell 's law is applied to the boundaries between the layers, we ob
tain 

sin a1 sin a2 sin a3 sin a4 

V1 Vz V3 V4 

If we next allow these layers to grow thinner and more numerous, then in the limit the 
velocity of light decreases continuously as the ray descends, and we conclude that 

sin a -- = a constant. v 
This situation is indicated in Fig .  1 7.57(b); it is approximately what happens to a ray of 
sunlight falling on the earth as it slows in descending through atmosphere of increasing 
density. 

Returning now to the brachistochrone problem, we introduce a coordinate system as in 
Fig. 17.58 and assume that the bead (like the ray of light) is capable of selecting the path 
down which it will slide from Po to P1 in the shortest possible time. The argument given 
above yields 

sin a -- = a constant. v ( 1 )  

If the bead has mass m, s o  that mg i s  the downward force that gravity exerts on it, then 
the fact that the work done by gravity in pulling the bead down the wire equals the in
crease in the kinetic energy of the bead tells us that mgy = tmv2. This gives 

v = \/'2gy. 
From the geometry of the situation we also have 

. {3 I Sin a = COS = -- = ---:==== sec f3 YI + tan2 {3 

(2) 

YI +  ( y')2 
(3) 

On combining equations ( I ) , (2), and (3)-obtained from optics, mechanics, and calcu
lus-we get 

y[ l + (y ' )2] = c (4) 

as the differential equation of the brachistochrone. 
We now complete our discussion, and discover what curve the brachistochrone actu

ally is, by solving equation (4). When y' is replaced by dyldx and the variables are sepa
rated, (4) becomes 

so 

dx = !;- dy, '1� 

x = f t;- dy. '1 � 
We evaluate this integral by starting with the algebraic substitution u2 = yl(c - y), so that 

cu2 y = 1 + u2 and 2cu dy = ( 1 + u2)2 du. 

Then 

I 2cu2 x = ( 1 + u2)2 du, 

and the trigonometric substitution u = tan <f>, du = sec2 </> d<f> enables us to write this as 
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f 2c tan2 <f> sec2 <f> x = d<f> 
( l + tan2 ¢)2 f tan2 <f> J . = 2c 

sec2 
</> d<f> = 2c sm2 <f> d<f> 

f I . = c ( I  - cos 2¢) d<f> = 2 c(2<f> - sm 2¢). 

The constant of integration here is zero because y = 0 when <f> = 0, and since Po is at the 
origin, we also want to have x = 0 when <f> = 0. The formula for y gives 

c tan2 <f> . I y = = c sm2 <f> = -c( l - cos 2¢). sec2 <f> 2 
We now simplify our equations by writing a = +c and () = 2<{>, which yields 

x = a(() - sin fJ), y = a( l - cos fJ). 
These are the standard parametric equations of the cycloid with a cusp at the origin. We 
note that there is a single value of a that makes the first inverted arch of this cycloid pass 
through the point P 1 in Fig. 17 .58; for if a is allowed to increase from 0 to oo, then the 
arch inflates, sweeps over the first quadrant of the plane, and clearly passes through P1 
for a single suitably chosen value of a. 
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18 . 1 
COORDINATES AND 

VECTORS IN THREE
DIMENSIONAL SPACE 

Figure 18.1 Coordinate axes. 

VECTORS IN 
THREE

DIMENSIONAL 
SPACE . SURFACES 

In the preceding seventeen chapters we have discussed many aspects of the cal
culus of functions of a single variable. The geometry of these functions is two
dimensional because the graph of a function of a single variable is a curve in the 
plane. Most of the remainder of this book is concerned with the calculus of func
tions of several (two or more) independent variables. The geometry of functions 
of two variables is three-dimensional, because in general the graph of such a 
function is a curved surface in space. 

In this chapter we discuss the analytic geometry of three-dimensional space. 
Our treatment will emphasize vector algebra, partly because this approach pro
vides a more direct and intuitive understanding of the equations of lines and 
planes, and partly because the concepts of dot and cross products as developed 
in the next two sections are indispensable in many other parts of mathematics 
and physics. 

Rectangular coordinates in the plane can be generalized in a natural way to 
rectangular coordinates in space. The position of a point in space is described by 
giving its location relative to three mutually perpendicular coordinate axes pass
ing through the origin 0. We always draw the x-, y-, and z-axes as shown in Fig. 
1 8 . 1 ,  with equal units of length on all three axes and with arrows indicating the 
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1 8. 1 COORDINATES AND VECTORS IN THREE-DIMENSIONAL SPACE 

P = (x, y, z) 

x 

z 

y y 
x 

y 

x 

positive directions. Each pair of axes determines a coordinate plane: the x-axis 
and y-axis determine the xy-plane, etc. The configuration of axes in this figure 
is called right-handed, because if the thumb of the right hand points in the di
rection of the positive z-axis, then the curl of the fingers gives the positive di
rection of rotation in the xy-plane, from the positive x-axis to the positive y-axis. 

Since many people have trouble visualizing space figures from plane draw
ings, we point out that Fig. 1 8 . 1  can be thought of as part of a rectangular room 
drawn in perspective, with the origin 0 at the far left corner of the floor. The 
xy-plane is the floor, and has the normal appearance of the xy-plane if we look 
down on it from a point on the positive z-axis; the yz-plane is the back wall of 
the room, in the plane of the paper; and the xz-plane is the wall on the left side 
of the room. 

A point P in space (see Fig. 1 8.2) is said to have rectangular (or Cartesian) 
coordinates x, y, z if: 

x is its signed distance from the yz-plane; 

y is its signed distance from the xz-plane; 

z is its signed distance from the xy-plane. 

Just as in plane analytic geometry, we write P = (x, y, z) and identify the point 
P with the ordered triple of its coordinates. On the right in the figure we attempt 
to strengthen the illusion of three dimensions by completing the box that has 0 
and P as opposite vertices.* 

The three coordinate planes divide all of space into eight cells called octants. 
The cell emphasized in Fig. 1 8.2, where x, y, and z are all positive numbers, is 
called the first octant. (No one bothers to number the other seven octants. )  

Even before plunging into a general study of the equations of  lines and planes 
in Section 1 8.4, we can notice a few obvious facts. The xy-plane is the set of all 
points (x, y, 0); it consists precisely of those points in space whose z-coordinate 
is 0, so its equation is 

z = 0. 

Similarly, the equation of the yz-plane is  x = 0, and the equation of the xz-plane 
is y = 0. 

'The technical term for the object shown on the right is "rectangular parallelepiped." We prefer the 
simpler word "box." 
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Figure 1 8.2 Locating a point by its 
rectangular coordinates. 
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VECTORS IN THREE-DIMENSIONAL SPACE. SURFACES 

The z-axis is the set of all points (0, 0, z) . It is therefore represented by the 
pair of equations 

x = 0, y = 0. ( I )  

These are the equations of the yz-plane and the xz-plane, respectively, so equa
tions ( l )  taken together characterize the z-axis as the intersection of these two 
coordinate planes. Similarly, the equations of the x-axis are y = 0, z = O; and the 
equations of the y-axis are x = 0, z = 0. 

There is nothing special about the number 0 in these remarks .  For instance, 
the equation of the horizontal plane 5 units above the xy-plane is z = 5 ;  and the 
equations of the vertical line that passes through the point ( 1 ,  2, 0) in the xy-plane 
are x = 1 ,  y = 2. See Fig. 1 8.3. 

Almost all of the ideas about vectors that were presented in Section 1 7.3 are 
valid in three-dimensional space and require no further discussion. This remark 
applies to the concept of a vector, to the definition of equality for vectors, and 
to the definitions of addition and scalar multiplication. In all this material there 
is no need at all to suppose that the vectors lie in a plane. 

The only real difference is that a vector in space has three components rather 
than two. In computing with vectors in the plane, we used the unit vectors i and 
j in the positive x- and y-directions. In order to compute with vectors in three
dimensional space, we introduce a third unit vector k in the positive z-direction, 
as shown in Fig. 1 8 .4. If P = (x, y, z) is any point in space, the position vector 

� 
R = OP can be written in the form 

R = xi + yj + zk, 

and the numbers x, y, and z are called its i-, j-, and k-components. 
The length of the vector R is given by the formula 

IR I  = Yx2 + y2 + z2 . (2) 

This can be proved by a double application of the theorem of Pythagoras, as il
lustrated in Fig. 1 8.5 :  

IR l2 = op2 = os2 + sp2 

= OA2 + AB2 + BP2 
= x2 + y2 + z2. 

If P1 = (x" y"  z 1 ) and P2 = (x2, Y2, z2) are any two points in space (Fig. 1 8.6), 
� 

the distance between them is the length of the vector P 1P2 from P 1 to P2. Since 
� 
P1P2 = R1 - R1 = (x2i + J2j + z2k) - (x1 i + yij  + z 1k) 

= (x2 - x1)i + ( y2 - Y1 )j + (z2 - z1 )k, 
we can use (2) to obtain 

IMI = Y(x2 - x1 )2 + ( Y2 - Y1 )2 + (z2 - z1 )2. (3) 

This is the important distance formula; it has many uses. 
Since a sphere is the set of all points P at a given distance r from a given fixed 

point Po (Fig. 1 8.7), the equation of a sphere can be written as 

IPnPI = r. (4) 
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Figure 18.6 

If P = (x, y, z) and P0 = (x0, y0, z0), then (3) enables us to write (4) in the equiv
alent form 

(x - xo)2 + (y  - Yo)2 + (z - zo)2 = r2. (5) 

This is the standard equation of the sphere with center P0 = (x0, y0, zo) and ra
dius r. 

Example If we complete the squares in the equation 

x2 + y2 + z2 + 4x - 2 y - 6z + 8 = 0, 

it becomes 

(x + 2)2 + ( y - 1 )2 + (z - 3)2 = 6 .  

(6) 

By comparing this with (5), we see at once that (6) is the equation of the sphere 
with center (-2, 1 ,  3) and radius \/6. 

Figure 18.7 Sphere. 

PROBLEMS 

1 Sketch the box with the vertices ( 1 ,  - 1 ,  0), ( 1 ,  4, 0), 
(-2, 4, 0), (-2, - 1 , 0), ( I ,  - 1 , 5), ( 1 , 4, 5), 
(-2, 4, 5), (-2, - 1 , 5). Write down the equations of 
the faces and edges of the box that pass through the ver
tex ( I ,  4, 5). 

2 Sketch the box bounded by the planes x = 1 ,  x = 3, y = 
0, y = 4, z = 1 ,  z = 5. Write down the vertices. 

3 Sketch the tetrahedron whose base vertices are (3, 4, 0), 
(3, -4, 0), and (- 5, 4, 0) and whose fourth vertex is 
(0, 0, 6) . Use the fact that the volume of a tetrahedron 
is one-third the area of the base times the height to find 
the volume of this tetrahedron. 

4 Sketch the straight lines whose equations are given: 
(a) x = 2, z = 3 ; (b) y = 1 ,  z = 4; 
(c) x = -3, y = 1 .  

5 Describe the graph of the equation 
(a) xy = O; (b) xyz = 0. 

6 Describe and sketch the locus of all points P = (x, y, z) 
that satisfy the given pairs of simultaneous equations: 
(a) x2 + y2 = 4, z = 3; 

(b) x = 4, z = 4y2; 
(c) y = x, x = 5 ; 
(d ) z = -x2, y = O. 

7 Find the point on the y-axis which is equidistant from 
(2, 5, -3)  and (-3 ,  6, 1 ). 

8 Find and simplify the equation of the locus of all points 
that are equidistant from (7, 0, -4) and (-3 ,  2, 2). De
scribe this locus in geometric language. 

9 Write the equation of the sphere with radius 7 and cen
ter on the positive z-axis, if the sphere is tangent to the 
plane z = 0. 

10 Find the equation of the sphere with center (3 ,  -2, 5) 
which is 
(a) tangent to the xy-plane; 
(b) tangent to the yz-plane; 
( c) tangent to the xz-plane. 

1 1  Identify the graph of each o f  the following equations, 
and if it is a sphere, give its center and radius: 
(a) x2 + y2 + z2 + 2x - 6y - 1 Oz + 26 = O; 
(b) x2 + y2 + z2 - !Ox + 2 y  - 6z + 35 = O; 
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(c) 2x2 + 2 y2 + 2z2 - 1 6x + Sy +  4z + 49 = O; 
(d ) x2 + y2 + z2 + 2x - 1 4y - 6z + 59 = O; 
(e) 4x2 + 4y2 + 4z2 - 1 6x + 24y + 52 = 0. 

tor from the first point to the second, and also the dis

12 A point P moves in such a way that it is always twice 
as far from (3, 2, 0) as from (3, 2, 6). Show that the lo
cus of P is a sphere and find its center and radius. 

tance between the points: 
(a) (2, 0, -3), (5, I ,  2); 
(c) (8, 3, 6), (2, - 2, O); 

(b) (-2, 1 ,  7), ( 1 ,  -4, 2); 
(d ) ( 1 ,  5, -3), (9, 7, 1 ) . 

17 Find the vector from the origin 0 to the intersection of 
the medians of the triangle whose vertices are A = 
(3 ,  2, 2), B = ( - 1 , 0, 4), and C = (5, 3, - 2) .  13 If P, = (x1 , y , ,  z 1 ) and P2 = (xz. yz, zz), use vectors to 

show that the coordinates of the midpoint of the seg
ment P1P2 are 

18 If A, B, C are any three distinct vectors, their endpoints 
form a triangle. Find the position vector of the inter
section of the medians of this triangle. x = +cx1 + xz), y = +C Y 1 + Yz), z = +cz , + zz). 

* 19 If A, B, C, D are any four distinct vectors, their end
points form a tetrahedron. Show that the four lines join
ing each vertex to the intersection of the medians of the 
opposite face are concurrent, and find the position vec
tor of their common point. 

14 Find the equation of the sphere that has the two given 
points as ends of a diameter: 
(a) (6, 2, - 1 ), (-2, 4, 3); (b) (0, 1 , -7), ( -6, 7 , 3) . 

I S  Show that the triangle with vertices (4, 3 ,  6), (-2, 0 ,  8), 
and ( I ,  5,  0) is a right triangle. Find its area. 

16  For each of the following pairs of points, find the vec-

18 . 2 
THE DOT PRODUCT 

OF TWO VECTORS 

IBI cos e 
A 

Figure 18.8 Scalar projection. 

Up to this point in our work we have not defined the product of two vectors A 
and B. There are two different ways of doing this, both of which have important 
uses in geometry and physics. Since there is no reason to choose one of these 
definitions in preference to the other, we keep both, using a dot for one defini
tion and a cross for the other. The dot product (or scalar product) of A and B is 
denoted by A · B and is a number. The cross product (or vector product) is de
noted by A X B and is a vector. These two kinds of multiplication are totally dif
ferent. We discuss the first in this section and the second in Section 1 8 .3. 

The dot product A · B of two vectors A and B is defined to be the product of 
their lengths and the cosine of the angle between them. This definition can be 
written as 

A . B = IA l lBI cos (), ( 1 )  

where () (0 :5 () :5 11) i s  the angle between A and B when they are placed so that 
their tails coincide (Fig. 1 8.8). It i s  clear from the definition that A · B is a scalar 
(or number), not a vector. 

As Fig. 1 8 .8  shows, the number IB I cos () is the scalar projection of B on A, 
denoted by projA B. Definition ( 1 )  can therefore be interpreted geometrically as 
follows: 

A · B = IAJC IBI cos 8) = JA i projA B 
= (length of A) x (scalar projection of B on A). 

By interchanging the roles of A and B, we also have 

A · B = JBJ(JAJ cos 8) = JB J  proje A 
= (length of B) X (scalar projection of A on B). 

The vector projection of B on A is  also indicated in the figure. Both types of pro
jections are useful in applications. 

It is easy to see from the definition ( I )  that the dot product has the properties 

A · B  = B · A, the commutative law, (2) 



1 8.2 THE DOT PRODUCT OF TWO VECTORS 

and 
(cA) · B = c(A · B) = A · (cB). (3) 

It also has the property 

A · (B + C) = A · B + A · C, the distributive law, (4) 

but this is not quite as evident as (2) and (3). To establish (4), we observe from 
Fig 18.9 that 

A · (B + C)  = IA l [projA(B + C)] 

= IA l (projA B + projA C) 

= IA lprojA B + IA lprojA C 

= A · B + A · C. 

If we combine (4) with the commutative law (2), we also have 

(A + B) · C = A · C + B · C. (5) 

Properties (4) and (5) permit us to multiply out sums of vectors by the ordinary 
procedures of elementary algebra, as in 

(A + B) · (C + D) = A · C + A · D + B · C + B · D. 

Another simple consequence of the definition ( 1 )  is the fact that 

A . A =  IAl2 

for any vector A .  

(6) 

Example 1 In the notation of Fig. 1 8 . 10, the cosine law of trigonometry states 
that 

c2 = a2 + b2 - 2ab cos 8. 

This can be proved very easily by using property (6) to write 

c2 = IC l2 = IA - Bl2 = (A - B) · (A - B) 
= A · A + B · B - 2A · B 
= IA l2 + IBl2 - 2A . B 

= a2 + b2 - 2ab cos 8. 

If we apply the definition ( 1 )  to the mutually perpendicular unit vectors i, j, 
and k introduced in Section 1 8. 1 ,  we obtain 

i · i = j · j = k · k = l , 
(7) 

i . j = i . k = j . k = 0. 

These facts enable us to find a convenient formula for computing the dot prod
uct of any two vectors given in i ,  j, k form, 

and 

If we expand A · B by using (7) together with the general properties previously 
discussed, we get 

(8) 
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since six of the nine terms in the expansion vanish. Thus, to compute A · B, we 
simply multiply their respective i-, j-, and k-components, and add. 

If A and B are nonzero vectors, the definition ( 1 )  can be written in the form 

A · B  cos () = 1Aj1Bf • (9) 

This formula displays the main significance of the dot product in geometry: It 
provides a simple way to find the angle between two vectors and, in particular, 
to decide when two vectors are perpendicular. Indeed, if we agree that the zero 
vector is perpendicular to every vector, then by (9) we see at once that 

A _l_ B  if and only if A · B  = 0. 

Formula (8) makes it possible for us to use the dot product in these ways as a 
convenient computational tool. 

Example 2 Find the cosine of the angle 8 between the vectors A = i + 2j + 
2k and B = -3i + 4j . 

Solution It is clear that 

I A I = v I + 4 + 4 = 3 ,  

Therefore by (9) we have 

IBI = V9+l6 = 5, A · B = -3 + 8 + 0 = 5 . 

A ·  B 5 I cos o = 1Ai1BT = M = 3. 
If we want the angle e itself, we can use a calculator to find that 6 = 70.5°. 

Example 3 Compute the cosine of the angle 6 between A and B if A = i - 2j 
+ 2k and B = -i  + ck, and find a value of c for which A J_ B. 

Solution We have 

IA l = Yl + 4 + 4 = 3, IBI = �, 

so 

A · B  2c - l  cos (} = 1Ai1BT = 
3 \!'T+2 .  

A ·  B = - I +  2c, 

When c = I' this quantity has the value 0, and hence the vectors are perpendic
ular. 

The simplest physical illustration of the use of the dot product is furnished by 
the concept of work. We recall that the work W done by a constant force F ex
erted along the line of motion in moving a particle through a distance d is given 
by W = Fd. But what if the force is a constant vector F pointing in some direc
tion other than the line of motion from P to Q, as shown in Fig. 18 .  I I ?  Only the 
vector component of F in the direction of the line of motion does work, so in 
this case we have 

w = < IF I cos O)IPQI = IFl lPOI cos (} = F . PQ, 
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that is, 
� 

W =  F · PQ. ( 10) 

In more advanced treatments of the physical uses of vectors, it is often neces
sary to calculate the work done by variable forces whose points of application 
move along curved paths, and formula ( 10) is the starting point for all such ap
plications. 

PROBLEMS 

Show that the vectors 
A =  i + 3j + 4k, 
8 = 4i + 4j - 4k, 

are perpendicular. 
2 Show that 

A =  i - 2j + k, 
8 = i - k, 
c = i + j + k, 

are mutually perpendicular. 
3 Find the angle between each of the given pairs of vec

tors: 
(a) A = i + 2j + k, 8 = -i + j + 2k; 
(b) A = i, 8 = i + j; 
(c) A =  3i + 4j, 8 = 4i - 3j + 9k. 

4 Use dot products to show that the given three points are 
the vertices of a right triangle. Which is the vertex of the 
right angle? 
(a) P = ( 1 ,  7, 3), Q = (0, 7, - 1 ), R = ( - 1 ,  6, 2). 
(b) P = (2, -5,  -2), Q = (- 1 ,  -2 ,  2), R = (4, I , -5) .  
(c) P = (2, 7, -2), Q = (0, 4, - 1), R = (I ,  4, I ). 

5 Show that the vectors 
A =  i - 3j - 5k, 
8 = 2i - j + k, 
c = 3i - 4j - 4k, 

form the sides of a right triangle if placed in the proper 
positions. 

6 Find the angle 8 between a diagonal of a cube and 
(a) an adjacent edge; 
(b) an adjacent diagonal of a face. 

7 Let A be a nonzero vector, and suppose that 8 and C are 
two vectors such that A · 8 = A · C. Is it legitimate to 
cancel A from both sides of this equation and conclude 
that 8 = C? Explain. 

8 Find a value of c for which the given vectors will be per
pendicular: 
(a) 3i - 2j + 5k, 2i + 4j + ck; 
(b) i + j + k, i + j + ck. 

9 If a = IAI and b = IOI, show that the vector bA + a8 bi
sects the angle between A and 8. 

10 With the notation of Problem 9, show that bA + a8 and 
bA - a8 are perpendicular. 

1 1  Use the dot product to prove that an angle inscribed in 
a semicircle is a right angle. Hint: With the notation in 
Fig. 1 8. 12, calculate (A + 8) · (A - 8). 

-B 
Figure 18.12 

B 

12 If Q = ( 1 , - 1 , 7), find the points P = (0, c, c) on the line 
� 

z = y in the yz-plane such that the vector OP is perpen
� 

dicular to the vector PQ. 
13 If A = i + 2j - 3k and 8 = 4i - 2k, find the vector 

component of A along 8. Solve this problem by finding 
a general formula for the vector component of A along 
8 if A and 8 are any two vectors. 

14 Use vector methods to show that the distance from a point 
(xo, Yo) to a line ax + by + c = 0 (both in the xy-plane) 
is 

laxo + byo + cl 
y' a2 + b2 

15 Use property (6) to prove the parallelogram law of ele
mentary geometry: The sum of the squares of the diag
onals of a parallelogram equals the sum of the squares 
of the four sides. Hint: With the notation of Fig. 1 8. 1 3, 
use (6) to expand IA + 812 + IA - 812. 

~ A 
Figure 18.13 The parallelogram law. 

16 For the triangle OAB in Fig. 1 8. 14, the law of cosines 
states that 
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IA - n12 = IA l2 + 1n12 - 2IA l lB I cos (). (c) cos2 a +  cos2 {3 + cos2 y = I .  

Give another proof of formula (8) by solving this equa
tion for IAl lBI cos () and simplifying the result. 

18 How many lines through the origin make angles of 45° 
with both the positive x-axis and the positive y-axis? 

19 How many lines through the origin make angles of 60° 

y 

Figure 1 8. 15  Direction angles. 
Figure 18.14 

17 If a vector V = ai + bj + ck makes angles u, {3, and y 
with the positive x-, y-, and z-axes (Fig. 1 8 . 1 5), then these 
angles are called the direction angles and cos a, cos {3, 
and cos y are called the direction cosines of V. Show that 
(a) (ai + bj + ck)/Y a2 + b2 + c2 is a unit vector hav-

with both the positive x-axis and the positive y-axis? 
What angles do they make with the positive z-axis? 

20 Find the work done by the force F when its point of ap
plication moves from P to Q: 
(a) F = 2i - 5j + 3k, P = ( 1 , 2, -2), Q = (3, - 1 , l ); 
(b) F = 3i + 2j - 3k, P = (- 1 , 2, 3), Q = ( 1 ,  2, - 1  ) . 

ing the same direction as V; 
a 

(b) cos a =  , Ya2 + b2 + c2 
b cos {3 = ' Ya2 + b2 + c2 
c 

cos 'Y = . 
Ya2 + b2 + c2 ' 

1 8 . 3 
THE CROSS PRODUCT 

OF TWO VECTORS 

A X  B 

n 

Figure 1 8. 16  

21 Find the work done by a force F = -ck when i ts  point 
of application moves from P = (x1 , y 1 ,  z 1 ) to Q = 
(x2, y2, z2). 

22 Find the work done by a constant force F if its point of 
application moves around a closed polygonal path. 

Many problems in geometry require us to find a vector that is perpendicular to 
each of two given vectors A and B.  A routine way of doing this is provided by 
the cross product (or vector product) of A and B, denoted by A X B.  This cross 
product is very different from the dot product A · B - for one thing, A X B is 
a vector, while A · B is a scalar. First we define this new product, then we de
scribe its algebraic properties so that we can compute it with reasonable ease, 
and finally we illustrate some of its uses. 

Consider two nonzero vectors A and B.  Suppose that one of these vectors is 
translated, if necessary, so that their tails coincide, and let 8 be the angle from 
A to B (not from B to A), with 0 ::5 8 ::5 7T. If A and B are not parallel, so that 
0 < 8 < 7T, then these two vectors determine a plane, as shown in Fig. 1 8. 1 6. We 
now choose the unit vector n which is normal (perpendicular) to this plane and 
whose direction is determined by the right-hand thumb rule. This means that if 
the right hand is placed so that the thumb is perpendicular to the plane of A and 
B and the fingers curl from A to B in the direction of the angle 8, then n points 
in the same direction as the thumb of this hand. This gives the direction of the 
vector A X B that we are defining. Not only do the vectors A and B determine 
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the plane under consideration, but they also determine a parallelogram in this  
plane, of area IA l lBI sin (} (see Fig. 1 8 . 1 7) .  We take the area of this parallelogram 
as the magnitude of the vector A X B. With these preliminaries, we can now state 
the definition of the cross product of A and B, in this order, as follows: 

A X  B = IAl lBI sin B n. ( I )  

Observe that if A or B is 0, or if A and B are parallel, then they do not deter- Figure 18. 1 7  
mine a plane, and hence the unit normal vector n i s  not defined. But in these 
cases IAI = 0 or IB I  = 0, or sin (} =  0, so by ( 1 )  we have A X  B = 0 and the de-
termination of n is not necessary. If we agree that the zero vector is to be con-
sidered as parallel to every vector, then it is easy to see that 

A is parallel  to B if and only if A x B = 0. 

In particular, we have 

A X A = O  

for every A.  If instead of A X B we consider B X A, then the direction of the 
angle (} is reversed, and we must flip the right hand over so that the thumb points 
in the opposite direction. This means that n is replaced by - n, and therefore 

B x  A =  - A x B.  (2) 

This shows that the cross product is not commutative, and we must pay close at
tention to the order of the factors. 

If we keep (2) in mind and apply the definition ( 1 )  to the unit vectors i, j, and 
k (Fig. 1 8 . 1 8), then we easily see that 

and also that 

i x  j = -j x i  = k, 

j x k = -k x j = i, 

k x i  = -j x k = j,  

i x i = j x j = k x k = 0. 

(3) 

For example, the right-hand thumb rule says that the direction of i X j is the same 
as the direction of k. But the area of the parallelogram determined by i and j i s  
1 ,  and since k itself has length 1 ,  we have 

i X j = k. 

The products (3) are easy to remember by visualizing the figure. Another way to 
remember them is to arrange i, j, and k in cyclic order, 

i X j  k k 

k x i  

Figure 18.18 

64 1 
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and to observe that 

(each unit vector) X (the next one) = (the third one). 

Our next objective is to develop a convenient formula for calculating A X B 
in terms of the components of A and B, where 

and (4) 

In order to multiply out the product 

A X B = (a1 i  + a2j + a3k) X (b1 i  + b2j + b3k) = ? 

we need to know that the cross product possesses the following algebraic prop
erties: 

(cA) x B = c(A x B) = A x (cB), 

A x (B + C) = A x B + A x C, 

(A + B) x C = A x C + B x C. 

(5) 
(6) 

(7) 

Property (5) is easily established directly from the definition (1 ) . Property (7) 
follows from (6) by using (2), 

(A + B) x C = - [C x (A + B)] 

= -(C x A + C x B) 

= -C x A - C x B 

= A x C + B x  C. 

The real difficulty here is with the distributive law (6). There is no simple proof 
of this fact; and rather than hold up our progress by pausing to insert a compli
cated proof here, we simply take (6) for granted and continue on to our imme
diate objective. A proof of (6) is given in Remark 2 for the use of any students 
who may wish to examine it. 

We continue with our task of multiplying out the cross product of the vectors 
(4). Remembering to pay close attention to the order of the factors, we have 

A X  B = (a 1 i  + a2j + a3k) X (b1i + b2j + b3k) 

= a 1 i  X (b1i + b2j + b3k) + a2j X (b1 i  + b2j + b3k) 

+ a3k X (b1i + b2j + b3k) 

so 

A x B = a1b 1 i  X i + a 1b2i x j + a1b3i X k 

+ a2b d X i + a2b2j X j + a2b3j X k 

+ a3b 1k X i + a3b2k X j + a3b3k X k. 

By using (3) , we now obtain the rather awkward formula 

A X B = i(a2b3 - a3b2) - j(a1b3 - a3 b 1 )  + k(a1b2 - a2b1 ). (8) 

(The slightly strange way of writing the signs here has a purpose that will be
come clear below.) 
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It is not necessary to memorize formula (8), because there is an equivalent ver
sion involving determinants that is easy to remember. We recall that a determi
nant of order 2 is defined by 

For example, 

I �  -� I  = 3 . 5 - (-2) - 4 = 23 . 
A determinant of order 3 can be defined in terms of determinants of order 2: 

(9) 

Here we see that each number in the first row on the left is multiplied by the de
terminant of order 2 that remains when that number's row and column are deleted. 
We particularly notice the minus sign attached to the middle term on the right 
side of formula (9). 

Even though a determinant of order 3 can be expanded along any row or col
umn, we use only expansions along the first row, as in (9). For example, 

3 4 -2 
2 3 
7 - �  = 3 1 3 3 1 - 2 1 

4 3 1 + (- l ) I 
4 3 1 7 1 -2 1 - 2 7 

= 3(3 . 1 - 3 .  7) - 2[4 . 1 - 3 .  ( -2)) + (- 1) [4 . 7 -3 . (-2)) 
= - 54 - 20 - 34 = - 108. 

Formula (8) for the vector product of A = a1 i + a2j + a3k and B = b1 i + 
b2j + b3k is clearly equivalent to 

Motivated by (9), we now write ( 10) in the form 

j k 
A X  B = a1 a2 a3 

bi b2 b3 

( 10) 

( 1 1 )  

This i s  the concise and easily remembered formula for A X B that we  have been 
seeking. The "symbolic determinant" here is to be evaluated by expanding along 
its first row, just as in equation (9). We emphasize that the components of the 
first vector A in A X B form the second row of the determinant in ( 1 1 ), and that 
the components of the second vector B form the third row of this determinant.* 

*Some authors define A X B by formula ( 1 1 ). This approach has several disadvantages, one of which 
is that considerable effort is needed before the geometric nature of A X B (that is, its length and di
rection) can be understood. We prefer to define A X B directly, in terms of its length and direction, 
and to consider formula ( 1 1 )  as simply a convenient tool for making calculations. Definitions of vec
tor operations that avoid dependence on explicit representations of vectors in terms of any particu
lar coordinate system are called invariant or coordinate-free. 
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Example 1 Calculate the cross product of A = 2i - j + 4k and B = i + 5j -
3k. 

Solution By formula ( 1 1 )  we have 

j k 
· 
1
- 1  

A x B = 2 - I 4 - I - 5 5 -3 
= - 17i + !Oj + I lk. 

As a routine check to help guard ourselves against computational errors, we ob
serve that our answer is perpendicular to A because (A X B) · A = - 34 - 1 0  + 
44 = 0, and is perpendicular to B because (A X B) · B = - 1 7  + 50 - 33 = 0. 

Example 2 Find all unit vectors perpendicular to both of the vectors A = 2i -
j + 3k and B = -4i + 3j - 5k. 

Solution Since A X B is automatically perpendicular to both A and B, we 
compute 

A X B =  -� -! _1 = i 1
-
� -� 1 - j l -! -� l + k l -! 

-
� 1 

= - 4i - 2j + 2k. 

We next convert this into a unit vector in the same direction by dividing by its 
own length, which is Yl6  + 4 + 4 = \/24 = 2v'6: 

-4i - 2j + 2k = -2i - j + k 
2\/6 \/6 

And finally, we introduce a plus-or-minus sign, 

+ -2i - j + k - \/6 
because there are two possible directions .  

Example 3 Find the area of the triangle whose vertices are P = (2, - 1 , 3) , Q = 
( 1 ,  2, 4), and R = (3, 1 ,  1 ) . 

Solution Two sides of the triangle are represented by the vectors 

The vector 

--'> A = PQ = ( I - 2)i + (2 + l )j + (4 - 3)k = -i + 3j + k, 
--'> B = PR = (3 - 2)i + ( I + l )j + ( 1  - 3)k = i + 2j - 2k. 

j k 
A x B = - I 3 = - Si - j - 5k 

2 -2 

has magnitude Y64 + 1 + 25 = v9o = 3v'l0, and this is equal to the area of 
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� � 
the parallelogram with A = PQ and B = PR as adjacent sides. The area of the 
given triangle is clearly half the area of this parallelogram, and is therefore t VlO. 

Remark 1 The cross product arises quite naturally in many situations in physics. 
For example, if a force F is applied to a body at a point P (Fig. 1 8 . 1 9), and if R 
is the vector from a fixed origin 0 to P, then this force tends to rotate the body 
about an axis through 0 and perpendicular to the plane of R and F .  The torque 
vector T defined by 

T = R X F 

specifies the direction and magnitude of this rotational effect, since JR J JF J sin 8 
is the moment of the force about the axis, namely, the product of the length of 
the lever arm and the scalar component of F perpendicular to R. 

As another example, we mention the force F exerted on a moving charged par
ticle by a magnetic field B. It turns out that 

F = qV x B, 

where V is the velocity of the charged particle and q is the magnitude of its 
charge. This is the primary fact that causes the aurora borealis, or northern lights, 
which are produced by blasts of charged particles from the sun streaming through 
the magnetic field of the earth. This basic principle of electromagnetism also un
derlies the design and operation of cyclotrons and TV sets. 

Remark 2 We now return to the problem of establishing the distributive law (6). 
We prove (6) only for unit vectors A, because once this has been done, an ap
plication of (5) allows us to obtain (6) immediately for vectors A of arbitrary 
length. 

With a unit vector A and an arbitrary vector V, A X V can be constructed by 
performing the following two operations, shown on the left side of Fig. 1 8.20: 

Figure 18. 19 Torque vector. 

First, project V on the plane perpendicular to A to obtain a vector V '  of length & JV J sin 8; then rotate V' in this plane through an angle of 90° in the positive di- � rection to obtain V", which is A X V since A is a unit vector. Each of these op-
erations transforms a triangle into a triangle; so if we start with the three vectors 
B, C, and B + C shown on the right, the final three vectors B", C", and (B + 
C)" still form a triangle, and therefore (B + C)" = B" + C". But this means that 

A x (B + C) = A x B + A x C, 
and the argument is complete. 
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Figure 18.20 The distributive Jaw. 
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PROBLEMS 

1 Calculate A X 8 and check the result by showing that it 
is perpendicular to both A and 8: 
(a)  A = 3i - 2j + 4k, 8 = 2i + j - 2k; 
(b) A = 2i + 2j - k, 8 = i + j + k; 
(c) A = Si - 4j + 3k, 8 = -3i - 2j + k; 
(d ) A = i, 8 = i + j. 

2 Find a vector N perpendicular to the plane of the three 
points P = ( I , - 1 , 4), Q = (2, 0, 1 ), R = (0, 2, 3). 

3 Find the area of the triangle PQR in Problem 2. 
4 Find the distance from the origin to the plane in Prob

� 
!em 2 by finding the scalar projection of OP along the 
vector N. 

5 If A · (8 X C) = 0, what can be concluded about the 
configuration of A, 8, and C? 

6 Show that IA x 812 = IA l2 l8 l2 - (A . 8)2 . 
7 Show that the cross product is not associative by show

ing that 

A x (8 x C) *- (A x 8) x C 

for the three vectors A = i + j, 8 = j, C = k. 
8 Show that the cross product of each pair of the follow

ing vectors is parallel to the third: i - 2j + k, i + j + 
k, i - k. What does this tell us about the configuration 
of the vectors? 

9 Show that if A is a nonzero vector and A x 8 = A  x C, 
then 8 = C is not necessarily true. 

10 If A, 8, and C are mutually perpendicular, show that A X 
(8 x C) = 0. 

1 1  Let P1 and Q 1 be two points on a line L1 ,  and let P2 and 
Q2 be two points on a line L2 . If L1 and L2 are not par
allel, then the perpendicular distance d between them is 

_____.,. 
the absolute value of the scalar projection of P 1P2 on a 
unit vector that is perpendicular to both lines. Why? 
(a) Show that 

(b) Find d if L1 is the line determined by P1 = ( - 1 ,  1 ,  1 )  
and Q1  = ( l ,  0 ,  0), and L2 is the line determined by 
P2 = (3 , 1 ,  0) and Q2 = (4, 5, - 1 ). 

12 If A = 2i - 3j + k is normal to one plane and B = 
-i + 4j - 2k is normal to another plane, do the planes 
necessarily intersect? Give a reason for your answer. If 
they do intersect, find a vector parallel to their line of 
intersection. 

1 8 . 4  
LINES AND PLANES 

Since all the machinery of vector algebra is now in place, it might be expected 
that we would next turn to the calculus of vector functions in three-dimensional 
space. However, a full study of this subject belongs to a later course in advanced 
calculus or vector analysis, and is not part of our purpose in this book. 

Figure 18.21 A space curve. 

Nevertheless, on a few occasions we will need to consider the position vector 
R(t) = x(t)i + y(t)j + z(t)k of a point P that moves along a space curve, as shown 
in Fig. 1 8.2 l .  The derivative of this function is defined in the obvious way, 

dR = lim R(t + �t) - R(t) 
dt �t->O �t ' 

and has all the properties we expect on the basis of our experience in Chapter 
17 .  In particular, dR/dt is tangent to the path at the point P, and is the velocity 
of P if the parameter t is time, and the unit tangent vector if t is arc length. 

With these brief remarks we put aside the calculus of vector functions, and 
turn to the main subject of the rest of this chapter, namely, the analytic geome
try of lines, planes, and curved surfaces in three-dimensional space. We shall find 
that the vector algebra discussed in the preceding sections is a very valuable tool 
for this work. 

As we know, in plane analytic geometry a single first-degree equation, 

ax +  by + c = 0, 

is the equation of a straight line (assuming that a and b are not both zero). How
ever, we shall see that in the geometry of three dimensions such an equation rep-
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resents a plane, and therefore it is not possible to represent a line in space by any 
single first-degree equation. 

We begin with the study of lines. A line in space can be given geometrically 
in three ways: as the line through two points, as the intersection of two planes, 
or as the line through a point in a specified direction. The third way is the most 
important for us. 

Suppose L is the line in space that passes through a given point Po = (xo, Yo, zo) 
and is parallel to a given nonzero vector 

V = ai + bj + ck, 

as shown in Fig. 1 8.22. Then another point P = (x, y, z) lies on the line L if and Figure 18.22 A line in space. 
� 

only if the vector P0P is parallel to the vector V. That is, P lies on L if and only 
� 

if P0P is a scalar multiple of V, so that 
� 
PoP = tV 

---7 ---7 

( I )  

for some real number t. If R0 = OP0 and R = OP are the position vectors of Po 
------'> 

and P, then P0P = R - Ro and ( 1 )  gives 

R = Ro +  tV, (2) 

which is the vector equation of L. As t varies from - 00 to 00, the point P tra
verses the entire infinite line L, moving in the direction of V .  

If we write (2) in  the form 

xi + yj + zk = xoi + yoj + zok + t(ai + bj + ck) 

and equate the coefficients of i, j, and k, we get the three scalar equations 

x = x0 + at, 

y = Yo +  bt, 

z = zo + ct. 

(3) 

These are the parametric equations of the line L through the point Po = (xo, Yo, zo) 
and parallel to the vector V = ai + bj + ck. Observe that the parametric equa
tions of a straight line are not unique. The numbers x0, y0, and zo can be replaced 
by the coordinates of any other point on L, and a, b, and c can be replaced by 
the components of any other nonzero vector parallel to L,  and the resulting para
metric equations will be completely equivalent to equations (3) in the sense that 
they describe the same line. 

In order to obtain the Cartesian equations of the line, we eliminate the para
meter from equations (3) by equating the three expressions obtained by solving 
for t. This gives 

x - xo Y - Yo = z - zo 
a b c (4) 

These are called the symmetric equations of the line L. If any one of the con
stants a, b, c is zero in a denominator of (4), then the corresponding numerator 
must also be zero. This is easy to see from the parametric form (3), which shows, 
for example, that if 

x = xo + at and a =  0, 
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then x = x0. Thus, when one of the denominators in (4) vanishes, we interpret 
this as meaning that the corresponding numerator must also vanish. With this in
terpretation, equations (4) can always be used, even though division by zero is 
normally forbidden. 

Example 1 A line L goes through the points Po = (3, -2, 1 )  and P1 = (5, 1 ,  0). 
Find the parametric equations and the symmetric equations of L. Also find the 
points at which this line pierces the three coordinate planes. 

� 
Solution The line L is parallel to the vector P0P1 = 2i + 3j - k, so by using 
Po as the known point on the line, equations (3) give the parametric equations 

x = 3 + 2t, 

y = -2 + 3t, 

z = I - t. 

By eliminating t, we obtain the symmetric equations 

x - 3  y + 2  z - l -2
- = -3- = -=t· 

To find the point at which L pierces the xy-plane, we set z = 0 in the third para
metric equation and see that t = I .  With this value of t, x = 5 and y = 1 ,  so the 
point is (5 ,  1 ,  0) . Similarly, x = 0 implies that t = -%, so the point in the yz-plane 
is (0, -Jf-, t) ; and y = 0 implies t = f, so the point in the xz-plane is (Jf, 0, t). 

Now we turn to the study of planes. A plane can also be characterized in sev
eral ways: as the plane through three noncollinear points, as the plane through a 
line and a point not on the line, or as the plane through a point and perpendicular 
to a specified direction. Again,  the third approach is the most convenient for us. 

Consider the plane that passes through a given point Po = (x0, yo, zo) and is 
perpendicular to a given nonzero vector 

N = ai + bj + ck, (5) 

as shown in Fig. 1 8.23 . Another point P = (x, y, z) lies on this plane if and only 
if the vector P0P is perpendicular to the vector N, which means that 

� 
N · PoP = 0. 

� � � 
(6) 

N If R0 = OP0 and R = OP are the position vectors of P0 and P, so that P0P = 

x 

Figure 18.23 A plane in space. 

R - R0, then (6) becomes 

N · (R - Ro) = 0. (7) 

This is the vector equation of the plane under discussion. 
Since R - R0 = (x - xo)i + (y - Yo)j + (z - zo)k, (7) can be written out in 

the scalar form 

a(x - xo) + b( y - Yo) + c(z - zo) = 0. (8) 

This is the Cartesian equation of the plane through the point P0 = (x0, y0, z0) 
with normal vector N = ai + bj + ck. For example, the equation of the plane 
through Po = (5, -3, 1) with normal vector N = 4i + 3j - 2k is 
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4(x - 5) + 3(y + 3) - 2(z - 1) = 0 

or 

4x + 3y - 2z = 9. 

Observe that the coefficients of x, y, and z in the last equation are the compo
nents of the normal vector. This is always the case, for equation (8) can be writ
ten in the form 

ax + by + cz = d, (9) 

where d = a.x0 + by0 + cz0; and the coefficients of x, y, and z in this equation 
are clearly the components of the normal vector (5). Conversely, every linear 
equation in x, y, and z of the form (9) represents a plane with normal vector 
N = ai + bj + ck if the coefficients a, b, and c are not all zero. To see this, we 
notice that if (for instance) a * 0, then this permits us to choose y0 and zo arbi
trarily and solve the equation ax0 + by0 + cz0 = d for x0. With these values, (9) 
can be written as 

ax + by + cz = axo + byo + czo 

or 

a(x - xo) + b( y - Yo) + c(z - zo) = 0, 

and this is immediately recognizable as the equation of the plane through 
(xo, Yo. zo) with normal vector N = ai + bj + ck. 

Example 2 Find an equation for the plane through the three points Po = (3, 2, 
- 1 ) ,  P1 = ( 1 ,  - 1 , 3), and P2 = (3, -2, 4). 

Solution To use equation (8), we must find a vector N that is normal to the 
plane. This is easy to do by using the cross product. We compute 

i j 
N = M X M = -2 -3 

0 -4 
---7 � 

k 
4 = i + IOj + 8k. 
5 

Since P0P1 and PoP2 lie in the plane, their cross product N is normal to the plane. 
Using equation (8) with P0 as the given point, our plane has the equation 

(x - 3) + I O( y  - 2) + 8(z + 1 )  = 0 

or 

x + I Oy + Sz = 15 , 

after simplification. 

Example 3 Find the point at which the line 

x - 2 = y + 3 = z - 4  
1 2 2 

pierces the plane x + 2y + 2z = 22. 

Solution To find parametric equations for the line, we introduce t as the com
mon ratio in the given symmetric equations, 
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Figure 18.24 
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which gives 

x = 2 + t, y = -3  + 2t, z = 4 + 2t. 

We want the value of t for which the variable point (x, y, z) on the line lies on 
the given plane. By substituting these equations into the equation of the plane, 
we obtain 

(2 + t) + 2( -3 + 2t) + 2( 4 + 2t) = 22, 

so t = 2 at the point where the line pierces the plane. By substituting t = 2 back 
in the parametric equations of the line, we find that the desired point is (4, 1 ,  8). 

Example 4 Find the cosine of the angle between the two planes x + 4y - 4z = 
9 and x + 2y + 2z = -3 .  Also, find parametric equations for the line of inter
section of these planes. 

Solution Clearly the angle () between two planes is the angle between their nor
mals (Fig. 1 8.24). By inspecting the equations of the given planes, we see at once 
that their normals are 

N 1 = i + 4j - 4k, N2 = i + 2j + 2k. 

We therefore use the dot product to obtain 

N1 · N2 1 cos (} = -- = --
IN 1 I IN2I 3\133 

From this we can find the angle () if we wish, by tables or otherwise. 
To find parametric equations for the line of intersection, we need a vector V 

parallel to this line and a point on the line. We find V by computing the cross 
product of N 1 and N2, 

j k 
4 -4 = 1 6i - 6j - 2k. 
2 2 
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Since any vector parallel to the line will do, we divide by 2 and use the slightly 
simpler vector 8i - 3j - k. To find a point on the line, we can set z = 0 and solve 
the resulting system in the unknowns x and y, 

x + 4y = 9, 

x + 2y = -3 .  

This yields x = - 15, y = 6. The desired point is therefore ( - 15 ,  6, 0), and the 
parametric equations of the line are 

x = - 15 + 8t, 

y = 6 - 3t, 

z = -t. 

We repeat that there is nothing unique about these equations, for we could have 
found a point on the line in many other ways and there are many different vec
tors parallel to the line. 

As we remarked at the beginning of this section, any two intersecting planes 
determine a straight line in space. The equations of the two planes are satisfied 
simultaneously only by points on the line of intersection. From this point of view, 
a pair of linear equations considered as a simultaneous system can be interpreted 
as representing a line, namely, the line of intersection of the two planes repre
sented by the individual equations. (Of course, the planes must actually intersect, 
and not be parallel or identical . )  Thus, in Example 4 the pair of simultaneous 
equations 

x + 4y - 4z = 9, 

x + 2y + 2z = -3 ,  

represents the line discussed in that example. We also point out that the sym
metric equations ( 4) are equivalent to the three simultaneous equations 

b(x - xo) - a(y - Yo) =  0, 

c(x - xo) - a(z - zo) = 0, 

c( y - Yo) - b(z - zo) = 0. 

These are the equations of three planes that intersect in the line L represented by 
(4). The first has normal vector bi - aj, which is parallel to the xy-plane, so the 
first plane is  perpendicular to the xy-plane. Similarly, the second plane is per
pendicular to the xz-plane and the third is perpendicular to the yz-plane. Any pair 
of these equations represents the line L, which is the intersection of the corre
sponding pair of planes. 

PROBLEMS 

1 Label each of the following statements as true or false: 
(a) Two planes perpendicular to a line are parallel. 

(e) Two planes parallel to a line are parallel. 
( f) Two lines parallel to a third line are parallel. 

65 1 

(b) Two lines perpendicular to a third line are parallel. 
(c) Two planes parallel to a third plane are parallel. 

(g) Two planes perpendicular to a third plane are parallel. 
(h) Two lines parallel to a plane are parallel. 

(d ) Two lines perpendicular to a plane are parallel. 
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2 

3 

What conclusion can be drawn about the lines 

X - Xo Y - Yo Z - Zo 
a b c 

x - xo Y - Yo z - zo 
A B c 

if aA + bB + cC = O? 
What conclusion can be drawn about the lines 

x - xo Y - Yo z - zo 
a b c 

X - X1 
= Y - YI = Z - Z1 

A B C 

if a/A = b/B = c/C? 
4 Write symmetric equations for the line through the point 

(3, 0, - 2) and parallel to 
(a) the vector 4i - 3j + 5k; 
(b) the line (x + 1 )/7 = (y - 2)/2 = z/(-3) ;  
(c)  the x-axis. 

5 Write parametric equations for the line through the point 
(2, - 1 ,  -3) and parallel to 
(a) the vector i + 4j -2k; 
(b) the line x/3 = (y + 7)/( - 1 )  = (z - 3)/6; 
(c) the line x = 2t - 3, y = 3 - 21, z = St - 4. 

6 Write symmetric equations for the line through the points 
(a) (2, - 1 ,  3) and (5, 2, -2) ;  
(b) (7 ,  3 ,  - 1 )  and (3, - 1 , 3 ) .  

7 Write parametric equations for the line through the points 
(a) (2, 0, 3) and (- 1 ,  3, 5) ;  
(b) ( 4, 2, - I )  and (0, 2, - I ) . 

8 If L is the line through the points (-6, 6, - 4) and 
( 12, -6, 2), find the points where L pierces the coordi
nate planes. 

9 Show that the lines 

x = 1 + t, 
and 

x = 3s, 

y = 2t, z = 1 + 3t 

y = ls, z = 2 + s 

intersect, and find their point of intersection. 
10 Find the distance between the lines 

x - 2  y - 3  z (a) 
- 1  4 2 

and 
x + l = y - 2 = i__±__!_. 

I 0 2 ' 
(b) X = 21 - 4, y = 4 - I, z = -2t - 1 

and x = 4r - 5, y =  - 3t + 5, z =  - St + S . 
1 1  Find the distance from the origin to the line 

x - 4  y - 2  4 - z  
-3

- = -4-
= 

-5-. 

1 2  (a) As a function of t, find the distance D from the point 
Po = ( I ,  2, 3) to a variable point on the line 

x = 3 + t, y = 2 + t, z = 1 + t. 

(b) By differentiating, find the value of t that minimizes 
D, find the actual minimum distance, and find the 
corresponding point P1 on the line. 

� 
(c) Verify that the vector PoP1 is perpendicular to the 

line. 
13  Find the equation of the plane that contains the point 

( 1 ,  3, 1 )  and the line x = t, y = t, z = t + 2. 
1 4  Find symmetric equations for the line of  intersection of 

each of the following pairs of planes: 
(a) 2x + y + z = 0, 3x + 4y - z = I O; 
(b) 2x + 3y + Sz = 2 1 ,  3x - 2y + z = 1 2. 

1 5  Use vector methods to show that the distance D from the 
point (xo, Yo. zo) to the plane ax + by + cz + d = 0 is 
given by the formula 

laxo + byo + czo + di D =  
Ya2 + b2 + c2 

16 Show that the planes ax + by + cz + d1 = 0 and ax + 
by + cz + d2 = 0 are parallel, and that the distance be
tween them is 

Ya2 + b2 + c2 · 

1 7  Find the distance between the planes x - 2 y + 4z = 
and 2x - 4y + 8z = - 1 4. 

1 8  Find an equation for the plane that is parallel to the plane 
2x - Sy + 3z = 7 and passes through the point (5, 2, 3) .  

19 Consider the sphere of radius 3 with its center at the ori
gin. The plane tangent to this sphere at ( I ,  2, 2) inter
sects the x-axis at a point P. Find the coordinates of P. 

20 Find the value of the parameter t for which the planes 

3x - 4y + 2z + 9 = 0, 

3x + 4y - tz + 7 = 0, 

are perpendicular. 
2 1  Verify that the planes 

2x + 3y + 4z - 1 = 0, 

x - 2 y + 3z - 4 = 0, 

intersect in a line L. Find symmetric equations for L in 
two ways: 
(a) by finding two points on L and going on from there; 
(b) by first eliminating x from the given equations, and 

then y, to find two planes through L that are perpen
dicular to the yz-plane and the xz-plane, respectively, 
and then solving each of these equations for z and 
equating all the z's. 
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22 Show that the two sets of equations 

x - 4  = y - 6  = z + 9  

26 Find the coordinates of the point P at which the line 

� = y + 3 = z - 3  

and 
3 4 - 1 2 

� = y - 2  = z - 3  
-6  - 8  24 

represent the same straight line. 
23 Let p 1 and p2 be two planes that intersect in a line L and 

have equations 

a1x + b 1y + c1z + di = 0, 

azx + b2Y + c2z + dz = 0. 
If k is a constant, show that 

is the equation of a plane containing L. For various val
ues of k, this equation represents every member of the 
family of all planes containing L, with one exception. 
What is this exception? 

24 Find the equation of the plane that contains the inter
section of the planes 2x  + 3y - z = 1 and 3x - y + 
Sz = 2 and passes through ( ! ,  4, 1 ). 

25 Find the equation of the plane that contains the inter
section of the planes x - 2 y - Sz = 3 and Sx + y - z = 
I and is parallel to 4x + 3y + 4z + 7 = 0. 

3 4 2 

pierces the plane 3x + 4y + Sz = 76 . 
27 Show that the line 

x + S = y - IO = z - 9  
9 -4 -6  

lies in the plane 2x - 3y + S z  = - 1 . 
28 Show that the line of intersection of the planes 

x + y - z = O  

is parallel to the line 

x + 3  
3 

and x - y - Sz + 7 = 0 

z - 5  
1 

29 Find the cosine of the angle between the given planes: 
(a) 2x - y + 2z = 3, 3x + 2y - 6z = 7 ;  
(b) Sx - 3y + 2z  = 3, x + 3y + 2z  = - 1 1 .  

30 Show that the single equation 

(2x + y - z - 3)2 + (x + 2 y  - 3z + 5)2 = 0 

represents a straight line in space. (But this equation is 
of the second degree.) 

We know that the graph of an equation f(x, y) = 0 is usually a curve in the xy
plane. In just the same way, the graph of an equation 1 8 . 5  

F(x, y, z) = 0 ( 1 )  

i s  usually a surface i n  xyz-space. The simplest surfaces are planes, and we saw 
in Section 1 8.4 that the equation of a plane is a linear equation that can be writ
ten in the form 

ax + by + cz + d = O; 

that is ,  it contains only first-degree terms in the variables x, y, and z. In this sec
tion and the next we examine a few other simple surfaces containing terms of 
higher degree that often appear in multivariable calculus. 

Cylinders are the next surfaces after planes in order of complexity. To under
stand what these surfaces are, we consider a plane curve C and a line L not par
allel to the plane of C. B y  a cylinder we mean the geometric figure in space that 
is generated (or swept out) by a straight line moving parallel to L and passing 
through C (Fig. 18.25). * The moving line is called the generator of the cylinder. 
The cylinder can be thought of as consisting of infinitely many parallel lines, 

*This concept includes the familiar right circular cyl inders of elementary geometry, for which the 
curve C is a circle and the line L is perpendicular to the plane of the circle. In geometry the adjec
tives are often omitted, because no other kinds of cylinders are considered. However, it should be 
noticed that when C is itself a straight line, the cylinder is a plane, so cylinders also include planes 
as special cases. 

CYLINDERS AND 
SURFACES OF 
REVOLUTION 

\ 1 1 I I I I I 
I 1 1 1 I I I I I 

\\\\\ \ \\ \ 
Figure 18.25 A general cylinder. 
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Figure 1 8.27 Elliptic cylinder. 
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called rulings, corresponding to various positions of the generator. This is sug
gested in the figure. 

For example, suppose that the given curve C is the curve 

f(x, y) = 0 (2) 

in the xy-plane, and let the generator be parallel to the z-axis, as shown in Fig. 
1 8.26. Then exactly the same equation (2) is the equation of the cylinder in three
dimensional space. The reason for this is that the point P = (x, y, z) lies on the 
cylinder if and only if the point Po = (x, y, 0) lies on the curve C, and this hap
pens if and only if f(x, y) = 0. The essential feature of (2) as the equation of the 
cylinder is that it is an equation of the form ( 1 )  from which the variable z is miss
ing. To express this in another way, the fact that we are dealing with a cylinder 
whose rulings are parallel to the z-axis means that for a point P = (x, y, z), the 
value of z has no bearing on whether P lies on the cylinder or not; and since only 
the variables x and y are relevant to this issue, only the variables x and y can be 
present in the equation of the cylinder-that is, z must be missing from this equa
tion. 

Example 1 Sketch the cylinder 

x2 y2 - + - = 1 9 4 . 

Solution This appears to be the equation of an ellipse in the xy-plane. However, 
it is stated that this is a cylinder, and since the variable z is missing from the 
equation, the rulings of this cylinder are parallel to the z-axis. In Fig. 1 8 .27, the 
ellipse in the xy-plane is drawn first, then two vertical rulings, then a horizontal 
elliptical cross section above the xy-plane. In spite of the limitations of our fig
ure (which we hope students will try to overcome by an active use of imagina
tion), it should be remembered that all rulings on a cylinder extend to infinity in 
both directions. This surface is called an elliptic cylinder. 

It is clear that this discussion can be carried through for a cylinder with rul
ings parallel to any coordinate axis. We therefore have the conclusion that any 
equation in rectangular coordinates x, y, z with one variable missing represents 
a cylinder whose rulings are parallel to the axis corresponding to the missing 
variable. 

Example 2 Sketch the cylinder z = x 2. 

Solution In the xz-plane, this is the equation of a parabola with vertex at the 
origin that opens in the positive z-direction. However, we know that we are deal
ing with a cylinder, and since the variable y is missing from the equation, the 
rulings of this cylinder are parallel to the y-axis. In Fig. 1 8.28 the parabola in the 
xz-plane is drawn first, then several rulings, and then a second parabolic cross 
section located to the right of the xz-plane. This surface can be described as a 

---�-------- Y parabolic cylinder. 

x 
Figure 1 8.28 Parabolic cylinder. 

Another way to generate a surface by using a plane curve C is to revolve the 
curve (in space) about a line L in its plane. The resulting surface is called a sur-
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face of revolution with axis L. In Chapter 7 we became acquainted with surfaces 
of revolution by calculating their areas as an application of definite integrals. We 
now consider the equations of these surfaces. 

Suppose, for example, that the curve C lies in the yz-plane and has equation 

f(y, z) = 0. (3) 

As this curve is revolved about the z-axis, a typical point P = (x, y, z) on the re
sulting surface comes from a point Q on C, as shown in Fig. 1 8.29.  Since Q lies 
on C, its coordinates (yo, zo) satisfy (3), 

f(yo, zo) = 0. (4) 

But the relation of P to Q tells us that zo = z and y0 = Y x 2 + y2, so (4) yields 

f(Yx2 + y2, z) = 0 (5) 

as the equation of the surface of revolution. Briefly, as Q swings out to the point 
P on the surface, the distances QR and PR to the z-axis are equal, and we get 

equation (5) by replacing y in (3) by V x 2 + y2. Equation (5) assumes that y ;:::::: 
0 on C. If y is positive on some parts of C and negative on others, we must re

place y in (3) by ±Y x 2 + y2 to get 

f(±Yx2 + y2, z) = 0 

as the equation of the complete surface. The awkward radical with its plus-or
minus sign can usually be eliminated by squaring. 

Example 3 If the line z = 3y in the yz-plane is revolved about the z-axis, the re
sulting surface of the revolution is clearly a right circular cone of two nappes 
with vertex at the origin and axis the z-axis (Fig. 1 8 .30) . To get the equation of 

this cone, we replace y in the equation z = 3y by ± Y x 2 + y2 and then ratio
nalize by squaring: 

z = ±3Vx2 + y2, z2 = 9(x2 + y2). 

If we had merely replaced y by V x 2 + y2 to obtain 

z = 3Yx2 + y2, 
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Figure 18.30 Cone. 
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we would have had the equation of only the upper nappe of the cone, the part 
where z � 0. 

In essentially the same way, we can obtain equations for surfaces of revolu
tion with the x-axis or the y-axis as the axis of symmetry. 

PROBLEMS 

Sketch the cylinders whose equations are given in Problems 
1-8 . If a cylinder has an obvious name, state it. 
1 y = x2. 2 y2 + 4z2 = 16 .  
3 x = sin y .  4 xz = 4. 
5 x + 3z = 6. 6 x2 + z2 = 9. 
7 x = tan y, - 11'12 < y < 7T/2. 
s y = e. 
9 The rulings of a cylinder are parallel to the y-axis. Its in

tersection with the xz-plane is a circle with center (0, 0, a) 
and radius a. Sketch the cylinder and find its equation. 

to The rulings of a cylinder are parallel to the x-axis. Its in
tersection with the yz-plane is a parabola with vertex at 
(0, 0, 0) and focus at (0, 0, -p) . Sketch the cylinder and 
find its equation. 

1 1  Find the equation of the surface of revolution generated 
by revolving the curve z = e -y' about 
(a) the z-axis; (b) the y-axis. 
Sketch both surfaces. 

12 Find the equation of the surface of revolution generated 
by revolving the circle ( y - b)2 + z2 = a2 (a < b) about 
(a) the z-axis; (b) the y-axis. 
Sketch both surfaces. 

13 In each of the following, write the equation for the sur
face of revolution generated by revolving the given curve 
about the indicated axis, and sketch the surface : 
(a) y = z2, the y-axis; 
(b) 9x2 + 4y2 = 36, the y-axis; 
(c) z = 4 - x2, the z-axis; 
(d ) x = y2, the x-axis. 

14  Any direction in space not parallel t o  the xy-plane can 
be specified by a vector of the form V = ai + bj + k 
(why?). If a curve C in the xy-plane has the equation 
f(x, y) = 0, show that the equation of the cylinder gen
erated by a moving line that is parallel to V and passes 
through C (Fig. 1 8 .3 1 )  is 

f (x - az, y - bz) = 0. 

Hint: Write the symmetric equations of the line through 
a point (x0, y0, 0) on C and parallel to V. 

Figure 18.31 

1 5  Find the equation o f  the cylinder generated by a line 
through the circle x2 + y2 = 6x in the xy-plane that 
moves parallel to the vector V = 2i + 3j + k. 

1 6  Find the equation of the cylinder generated by a line 
through the parabola y = x2 in the xy-plane that moves 
parallel to the vector V = -2i - 3j + Sk. 

18 . 6 
QUADRIC SURFACES 

In Section 1 5 .6 we learned that the graph of a second-degree equation in the vari
ables x and y is always a conic section-a parabola, an ellipse, a hyperbola, or 
perhaps some degenerate form of one of these curves, such as a point, the empty 
set, or a pair of straight lines. 

In three-dimensional space the most general equation of the second degree is 

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy +  Jz + J = 0. ( 1 )  

We assume that not all o f  the coefficients A ,  B, . . .  , F are zero, so that the de
gree of the equation is really 2 instead of 1 or 0. The graph of such an equation 
is called a quadric surface. We have already encountered several quadric sur-
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faces, such as spheres and parabolic, elliptic, and hyperbolic cylinders, but there 
are a number of others as well. Indeed, if we set aside the familiar case of cylin
ders, then by suitable rotations and translations of the coordinate axes-which 
we do not discuss- it is possible to simplify any equation of the form ( 1 )  and 
thereby show that there are exactly six distinct kinds of nondegenerate quadric 
surfaces: 

The ellipsoid. 
2 The hyperboloid of one sheet. 
3 The hyperboloid of two sheets. 
4 The elliptic cone. 
5 The elliptic paraboloid. 
6 The hyperbolic paraboloid. 

In the following we give an example of each type of surface in which the equa
tion appears in as simple a form as possible. 

Students should become familiar with these surfaces and their equations, and 
in particular should try to understand how the shape of each surface is related to 
the special features of its equation. For the purpose of visualizing and sketching 
a surface, it is often useful to examine its sections, which are the curves of in
tersection of the surface with planes 

x = k, y = k, z = k 
parallel to the coordinate planes. We point out explicitly that every second
degree section of every quadric surface is a conic section. Sections that are closed 
curves are usually the easiest to sketch, and therefore we look for elliptic sec
tions and sketch these first. Symmetry considerations should also be kept in mind. 

In the following examples, the numbers a,  b, and c are all assumed to be pos
itive. We comment informally rather than exhaustively on the surface considered 
in each example. 

Example 1 The ellipsoid 

(2) 

is shown in Fig. 1 8.32.  Since only even powers of x, y, and z occur in the equa
tion, this surface is symmetric about each coordinate plane. The sections in the 
xz- and yz-planes are the ellipses 

Y2 z2 - + - = 1 b2 c2 
with a common vertical axis. The section in a horizontal plane z = k is the 
ellipse 

x2 y2 k2 2 + -b2 = 1 - 2, 
a c 

and this decreases in size as k varies from 0 to c or - c. The numbers a, b, and 
c are the intercepts on the coordinate axes, and are called the semiaxes. If two 
of the semiaxes are equal, the ellipsoid is called a spheroid-an oblate spheroid 
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Figure 18.32 Ellipsoid. 
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Figure 18.34 Hyperboloid of two 
sheets. 
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if it is flattened like a "flying saucer," and a prolate spheroid if it is elongated 
like a football. Of course, if a = b = c, then the ellipsoid is a sphere. 

Example 2 The graph of the equation 

x2 y2 z2 
- + - - - =  1 a2 b2 c2 (3) 

is a hyperboloid of one sheet (Fig. 1 8.33).  If we write the equation in the form 

x2 y2 z2 
2 + -b2 = 1 + 1 , a c (4) 

then we see that all its horizontal sections in planes z = k are ellipses, and that 
these ellipses grow larger as their planes move up or down from the .xy-plane, 
the smallest ellipse being the one in the xy-plane. The section of the surface in 
the yz-plane is the hyperbola 

It is this hyperbola that binds together the horizontal elliptical sections into a 
smooth surface. The phrase "of one sheet" is used because this surface consists 
of one piece, in contrast to the hyperboloid discussed in the next example, which 
consists of two pieces. Observe that equation (3) is obtained from (2) by chang
ing the sign of the third term on the left; we get the same kind of surface no mat
ter which of these terms has its sign changed. 

Example 3 The hyperboloid of two sheets 

x2 y2 z2 - a2 - 17 + 2 = 1 (5) 

is shown in Fig. 1 8.34. This equation is obtained from (2) by changing the signs 
of the first two terms on the left. (The reason for this choice is explained below.) 
If we write the equation in the form 

x2 y2 _ z2 
2 + -b2 - 2 - l ,  a c (6) 

then we see that all its horizontal sections in planes z = k with k ;::: c or k :::; - c 

are ellipses or single points, while sections in planes z = k with lkl < c are empty. 
The section in the yz-plane is the hyperbola 

z2 y2 -
c2 - J;2 - 1 , 

and it is this hyperbola that unifies the horizontal sections into a smooth surface 
-of "two sheets." Observe that (6) is identical with (4) except for the presence 
of the minus sign on the right, and it is this sign that makes all the difference be
tween the surfaces in these two examples; for the right side of (4) is positive for 
all z's, whereas the right side of (6) is negative for lz l < c. 
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Example 4 The graph of the equation 

x2 y2 z2 - + - = a2 b2 c2 (7) 

is an elliptic cone (Fig. 1 8 .35). This surface intersects the xz-plane and the yz
plane in the pairs of intersecting straight lines 

c z = ±-x  a and c z = ±;; y, 

respectively. It intersects the .xy-plane at the origin alone. All horizontal sections 
in planes z = k with k =F 0 are ellipses. (In Chapter 1 5  it was convenient to dis
tinguish circles from ellipses; here we include circles among the ellipses.) It is 
clear from the form of (7) that if (x, y, z) is a point on the surface, then (tx, ty, tz) 
is also on the surface for any number t. This tells us that the entire surface can 
be thought of as generated by a moving line through the origin 0 and a variable 
point P on any horizontal elliptical section. When a = b, the cone is the famil
iar right circular cone. 

Example 5 The elliptic paraboloid 

z = ax2 + by2. (8) 

is shown in Fig. 1 8.36. The vertical sections of this surface in the xz-plane and 
yz-plane are the parabolas 

z = ax2 and z = by2, 

respectively. The horizontal section in the plane z = k is an ellipse if k > 0, the 
origin alone if k = 0, and empty if k < 0. 

Example 6 In Fig. 1 8.37 we sketch the hyperbolic paraboloid 

z = by2 - ax2. (9) 

The section in the yz-plane is the parabola z = by2 opening upward, and that in 
the xz-plane is the parabola z = - ax2 opening downward. In all planes y = k 
parallel to the xz-plane, the sections are downward-opening parabolas that are 
identical with one another and can be thought of as hanging from their vertices 
at various points along the parabola z = by2; this is emphasized in the way we  
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Figure 18.35 Elliptic cone. 
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Figure 18.36 Elliptic paraboloid. 

Figure 18.37 Hyperbolic paraboloid. 
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have drawn the figure. Near the origin the surface rises in the y-direction and 
falls in the x-direction, and thus has the general shape of a saddle or a mountain 
pass. For this reason, the surface is often called a saddle surface, with the origin 
as the saddle point. It is clear from (9) that in the horizontal plane z = k, the sec
tion is a hyperbola with principal axis in the y-direction if k > 0, and a hyper
bola with principal axis in the x-direction if k < O; if k = 0, the section is a pair 
of intersecting straight lines through the origin. 

PROBLEMS 

Sketch and identify the surfaces in Problems 1-14. 
1 2x2 + y2 + 4z2 = 16. 2 z2 = 4(x2 + y2). 
3 z = 4(x2 + y2). 4 x2 + z2 - 4.)'2 = 4 . 
5 y2 - 4x2 - 9z2 = 36. 6 z = 4 - 2x2 - 3y2. 
7 z = x2 - 2 y2. 8 x2 = y2 + 4z2. 
9 x2 - 4y2 - z2 = 4. 10 x2 + 9y2 - 4z2 = 36. 

11 36x2 + 4y2 + 9z2 = 36. 1 2  y = 4 - x2 - 2 y2 . 
13 z + 4x2 = y2. 
1 4  x2 + y2 - z2 - 2x - 4y + 1 = 0 .  
15 Find the points at which the l ine 

x - 6 = y + 2 = z - 2  
3 - 6 4 

pierces the ellipsoid 

x2 y2 22 
8

1 + 36 + 9 = 1 . 

1 6  Show that the plane 2x  - 2z  - y = 1 0  intersects the pa
raboloid 

x2 y2 2z = - + -9 4 

at a single point, and find the point. 
17 (a) Consider the ellipsoid 

x2 y2 22 
2 + -b2 + 2 = 1 ,  a c 

and find the area A(k) of the elliptical section i n  the 
horizontal plane z = k. Hint: Recall that 7TAB is the 
area of an ellipse with semiaxes A and B. 

(b) Use the formula found i n  (a) to calculate the volume 
of the ellipsoid by integration. 

18 Consider the elliptic paraboloid z = ax2 + by2, and use 
integration to show that the volume of the segment cut 
off by the plane z = k (k > 0) is half the area of its base 
times its height. 

1 9  Show that the projection on the xy-plane of the curve of 
intersection of the surfaces z = 1 - x2 and z = x2 + y2 
is an ellipse. Hint: What does it mean geometrically to 
eliminate z from these equations? 

20 Show that the projection on the yz-plane of the curve of 
intersection of the plane x = 2 y and the paraboloid x = 
y2 + z2 is a circle. 

2 1  Show that the projection on the xy-plane of the intersec
tion of the paraboloids z = 3x2 + 5y2 and z = 8 - 5x2 -
3y2 is a circle. 

22 The two equations 

x2 + 3y2 - z2 + 3x = 0, 

2x2 + 6y2 - 2z2 - 4y = 3, 

when taken together as a simultaneous system, define the 
space curve in which the corresponding surfaces inter
sect. Show that this curve lies in a plane. Hint: Project 
onto a coordinate plane. 

23 Use the methods of Section 15 .6 to discover the nature 
of the graph of z = xy. Sketch the surface. 

A ruled suiface is a surface S with the property that for each 
point P on S there is a straight line through P that lies entirely 
on S. All cones and cylinders are ruled surfaces, while ellip
soids, hyperboloids of two sheets, and elliptic paraboloids ob
viously are not. It is very surprising that all hyperboloids of 
one sheet and all hyperbolic paraboloids are ruled surfaces. 
24 Show that the hyperboloid of one sheet x2 + y2 - z2 = 

1 is a ruled surface, as follows: 
(a) The section of the surface in the xy-plane is the cir

cle C whose equation is x2 + y2 = 1 .  Let Po = 
(xo, yo, 0) be a point on C, and show that the line L 
whose equations are 

x = x0 + y0t, y = Yo - xot, z = t, 

passes through Po and lies entirely on the surface. 
(b) If P = (x, y, z) is an arbitrary point on the surface, 

show that the line L in part (a) passes through P for 
a suitable point P0 = (x0, y0, 0). Thus, as Po moves 
around C, the lines L cover the surface.* 

*The family of lines x = xo + Yot. y = Yo - xot, z = - t  also covers 
the surface, and for this reason the hyperboloid of one sheet is often 
called a doubly ruled surface. 
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25 Show that the hyperbolic paraboloid z = y2 - x2 i s  a 
ruled surface by showing that if Po = (xo, Yo, Yo2 - xo2) 
is any point on the surface, then the line 

X = Xo + I, Y = Yo + t, 

z = ( yo2 - xo2) + 2( yo - xo)t 

passes through Po and lies entirely on the surface.* 

66 1 

The two families of straight Jines constituting the doubly ruled 
surfaces discussed in Problems 24 and 25 are shown in Fig. 
1 8 .38. 

Figure 18.38 Doubly ruled surfaces. 

*The family of lines x = x0 + t, y = Yo - t, z = (yo2 - xo2) -
2(y0 + x0)t also covers the surface, so the hyperbolic paraboloid is 
also doubly ruled. 

In plane analytic geometry we used a rectangular coordinate system for some 
types of problems and a polar coordinate system for others. We saw that there 
are many situations in which one system is more convenient than the other. The 
same is true for the study of geometry and calculus in  space. We now describe 
two other three-dimensional coordinate systems, in addition to the now-familiar 
rectangular coordinate system, that are often useful for dealing with special kinds 
of problems. 

Consider a point P in space whose rectangular coordinates are (x, y, z). The 
cylindrical coordinates of this point are obtained by replacing x and y with the 
corresponding polar coordinates r and 8, and allowing z to remain unchanged. 
That is, we place a z-axis on top of a polar coordinate system and describe the 
location of a point in  space by the three coordinates (r, 8, z). We will always as
sume that this cylindrical coordinate system is superimposed on a rectangular co
ordinate system in the manner shown in Fig. 1 8.39, so that the transformation 
equations connecting the two sets of coordinates of a given point are 

x = r cos (), y = r sin (), Z = Z, 

and 

r2 = x2 + y2, tan () =  l'.., z = z. x 

It is easy to see that the graph of the equation r = a constant is a right circular 
cylinder whose axis is the z-axis; this is the reason for the term "cylindrical co
ordinates." Similarly, the graph of e = a constant is a plane containing the z-axis, 
and the graph of z = a constant is a horizontal plane. 

Example 1 Find cylindrical coordinates for the points P 1 and P2 whose rectan
gular coordinates are (3, 3, 7) and (2VJ, 2, 5), respectively. 

Solution For P1 we have r = \19+9 = 3Vl, tan 8 = 1 ,  z = 7, so a set of 
cylindrical coordinates is (3Vl, n/4, 7) .  For P2 we have r = VT2+4 = 4, 
tan e = 11\/3 = fv3, z = 5, so a set of cylindrical coordinates is (4, 7T/6, 5). 

1 8 . 7 
CYLINDRICAL AND 
SPHERICAL 
COORDINATES 
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Figure 1 8.39 Cylindrical coordinates. 

y 



662 

x 

� P :  (x, y , z) 

/ I - (p, t/J, 8) 

P /
/� / "' I 

"' / I "' / I / 1 z 
......... 

.......... '-.... I 
________ -:::,,. P'  y 

y 

Figure 18.40 Spherical coordinates. 
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Example 2 Describe the surfaces 

(a) r + z = 3, and 

(b) r(2 cos 8 + 5 sin 8) + 3z = 0. 

Solution (a) The intersection of the surface r + z = 3 with the yz-plane is the 
straight line y + z = 3 ,  because r = y in the yz-plane. B ut 8 is missing from the 
given equation, so the desired surface is symmetric about the z-axis, and is there
fore the cone generated by revolving the line y + z = 3 about the z-axis. More 
generally, it follows from our discussion of surfaces of revolution in Section 1 8.5 
that if a curve f(y, z) = 0 is revolved about the z-axis ,  then the cylindrical equa
tion of the resulting surface is f(r, z) = 0. 

(b) Since r cos 8 = x and r sin 8 = y, the given equation transforms into 2x + 
5y + 3z = 0, which i s  the plane through the origin with normal vector N = 
2i + 5j + 3k. 

Example 3 Find a cylindrical equation for (a) the spheroid x2 + y2 + 2z2 = 4, 
and (b) the hyperbolic paraboloid z = x2 - y2. 

Solution The equation in (a) transforms at once into r2 + 2z2 = 4. For (b), we 
have 

z = x2 - y2 

= r2 cos2 (} - r2 sin2 (} = r2 (cos2 (} - sin2 (}) 

= r2 cos 2(}, 

so z = r2 cos 2(} is the desired equation. 

In physics, cylindrical coordinates are particularly convenient for studying sit
uations in which there is axial symmetry, that is, symmetry about a line in space. 
As examples we mention two important classes of problems: those dealing with 
the flow of heat in solid cylindrical rods, and those concerned with the move
ments of a vibrating circular membrane-for instance, a drumhead. 

Again consider a point P in space whose rectangular coordinates are (x, y, z) . 
The spherical coordinates of P are the numbers (p, <f>, 8) shown in Fig. 1 8.40. 
Here p (the Greek letter rho) is the distance from the origin 0 to P, so p 2:: 0. 
The angle <P is the angle down from the positive z-axis to the radial line OP, and 
it is understood that <P is restricted to the interval 0 :5 <P :5 7T. Finally, the angle 
8 has exactly the same meaning in spherical coordinates as it has in cylindrical 
coordinates; that is, 8 is the angle from the positive x-axis to the line OP' ,  where 
P' is the projection of P on the xy-plane. It is clear from the figure that OP' = 
p sin <f>, and since x = OP' cos 8 and y = OP' sin 8, we have the transformation 
equations 

x = p sin <P cos e, 

and 

p2 = x2 + y2 + 22, 

y = p sin <P sin e, z = p cos </J, 

Vx2 + y2 
tan </J =  , tan e = l'... 

z x 
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The term "spherical coordinates" is used because the graph of the equation p = 

a (constant) is a sphere with center at the origin and radius a. The graph of <P = 

a (constant) is the upper nappe of a cone with vertex at the origin and vertex an
gle a, if 0 < a <  Tr/2. The graph of (} = e0 (constant) is a plane containing the 
z-axis, just as in cylindrical coordinates. 

Example 4 Find an equation in spherical coordinates for the sphere x2 + y2 + 
z2 - 2az = 0, where a > 0. 

Solution Since p
2 = x2 + y

2 + z
2 and z = p cos ¢, the given equation can be 

written as 

P2 - 2ap cos </J = 0 or p(p - 2a cos cP) = 0. 

The graph of this equation is the graph of p = 0 together with the graph of p -

2a cos <P = 0. But the graph of p = 0 (namely, the origin) is part of the graph of 
p = 2a cos ¢, so the desired equation is 

p = 2a cos ¢. 

This is the sphere of radius a that is tangent to the .xy-plane at the origin, as shown 
in Fig. 18 .4 1 .  
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Figure 1 8.41 

Example 5 What is the graph of the spherical equation p = 2a sin ¢? p = 2a sin q, 

Solution The variable (} is missing from this equation, so we have a surface of 
revolution about the z-axis. In the yz-plane the equation p = 2a sin <P represents 
a circle of radius a, as shown in Fig. 1 8 .42. Since the graph we are seeking is 
obtained by revolving this circle about the z-axis, this graph is a torus (dough
nut) in which the hole has radius zero. 

1/ / 
_ _  _J( _ _ _  _ , , 

Iv ' - - �  ...... ........ _ _  

There are many physical uses o f  spherical coordinates, ranging from problems 
about heat conduction to problems in the theory of gravitation. We shall discuss 
some of these applications in Chapter 20. Figure 1 8.42 

PROBLEMS 

1 Find a set of cylindrical coordinates for the point whose 
rectangular coordinates are 
(a) (2, 2, - 1 ) ; (b) ( I ,  -v3, 7); 
(c) (3, v3, 2); (d) (3, 6, 5). 

2 Find the rectangular coordinates of the point with cylin
drical coordinates 
(a) (V2, 7T/4, -2) ;  
(c) ( 1 ,  I ,  I ) ;  

(b) (v3, 57T/6, 1 1 ) ; 
(d ) (2, 7T/3, 'TT) .  

3 Find a set of spherical coordinates for the point whose 
rectangular coordinates are 
(a) ( 1 ,  1 ,  v'6); (b) ( 1 ,  - 1 , -v'6); 
(c) ( 1 ,  1 ,  \/2); (d ) (0, - 1 , v3). 

4 Find the rectangular coordinates of the point with spher
ical coordinates 

(a) (3, 7T/2, 7T/2); 
(c) (4, 7T/3, 7T/3); 

(b) ( 4, 7T/2, 'TT); 
(d ) (4, 27T/3, 7T/3). 

In Problems 5-1 1 ,  find a cylindrical equation for the surface 
whose rectangular equation is given. Sketch the surface. 
5 x2 + y2 + z2 = 1 6. 6 x2 + y2 = 6z. 
7 x2 + y2 = z2. 8 x2 - y2 = 3 . 
9 x2 + y2 - 2 y = 0. 10 x2 + y2 - 4x = 0. 

1 1  x2 + y2 = 9 .  
12 Find a cylindrical equation for the surface whose rec-

tangular equation is z2(x2 - y2) = 4xy. 

In Problems 1 3-1 8, find a spherical equation for the surface 
whose rectangular equation is given. Sketch the surface. 
13 x2 + y2 + z2 = 1 6. 
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1 4  x2 + y2 + z2 + 4z  = 0. 
1 5  x2 + y2 + z2 - 6z  = 0 .  
1 6  x2 + y2 = 9. 

17 z = 4 - x2 - y2. 
18 (x2 + y2 + z2)3 = (x2 + y2)2 . 

CHAPTER 18 REVIEW: DEFINITIONS, EQUATIONS 

Think through the fallowing. 
1 Rectangular (or Cartesian) coordinates. 
2 Equation of a sphere. 
3 Dot product: definition and formula. 
4 Cross product: definition and formula. 
5 Equations of a line: parametric and symmetric. 

6 Equation of a plane. 
7 Cylinder. 
8 Surface of revolution. 
9 The six quadric surfaces: graphs and equations. 

10 Cylindrical coordinates . 
11 Spherical coordinates. 



PARTIAL 
DERIVATIVES 

Many of the functions that arise in mathematics and its applications involve two 
or more independent variables. We have already met functions of this kind in our 
study of solid analytic geometry. Thus, the equation z = x2 - y2 is the equation 
of a certain saddle surface, but it also defines z as a function of the two variables 
x and y, and the surface can be thought of as the graph of this function. 

We usually denote an arbitrary function of the two variables x and y by writ
ing z = f(x, y), and we can visualize such a function by sketching- or imagin
ing-its graph in xyz-space, as suggested in Fig. 1 9. 1 .  In this figure, P = (x, y) 
is a "suitable" point in the xy-plane-that is, a point in the domain D of the func
tion-and z is the directed distance up or down to the corresponding point on 
the surface. This surface is thought of as lying "over" the domain D, even though 
part of it may actually be below the xy-plane. 

By an obvious extension of the notation used here, w = f(x, y, z, t, u, v) is a 
function of the six variables displayed in parentheses. For example, if the tem
perature T at a point P inside a solid iron sphere depends on the three rectangu
lar coordinates x, y, and z of P, then we write T = f(x, y, z); and if we also al
low for the possibility that the temperature at a given point may vary with the 
time t, then T is a function of all four variables, T = f (x, y, z, t). 

In this chapter we shall see that the main themes of single-variable differen
tial calculus-derivatives, rates of change, chain rule computations, maximum
minimum problems, and differential equations-can all be extended to functions 
of several variables. However, students should be prepared for the fact that there 
are striking differences between single-variable calculus and multivariable cal
culus. Since most of these differences already show up in  functions of only two 
independent variables, we usually emphasize this case, and refer more briefly to 
functions of three or more variables. In the next chapter we turn to the integral 
calculus of functions of several variables. 

DOMAIN 

Just as in our previous work, the domain (or domain of definition) of a function 
z = f(x, y) is the set of all points P = (x, y) in the xy-plane for which there ex
ists a corresponding z, and similarly for functions defined in xyz-space, xyzt
space, etc. Most of the functions we deal with are defined by formulas, and in 
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these cases the domain is understood to be the largest set of points for which the 
formula makes sense. For example, the domain of 

I z = f(x, y) = -x - y 

is understood to be the set of all points (x, y) with x i= y, that is, all points in the 
xy-plane that do not lie on the line y = x. The domain of 

z = g(x, y) = Y9 - x2 - y2 

is the set of all points (x, y) for which 9 - x2 - y2 2': 0, that is, the circular disk 
x2 + y2 :s 9 of radius 3 with center at the origin. And the domain of 

2x + 3y + 4z 
w = h(x, y, z) = 2 + 2 + 2 x y z 

is the set of all points (x, y, z) for which x2 + y2 + z2 i= 0, that is, all points of 
xyz-space except the origin. 

In discussing a general function z = f(x, y), we shall often require that this 
function be defined at a certain point P0 and throughout some neighborhood of 
this point. This means that the domain of f(x, y) must include not only Po itself, 
but also every point "sufficiently close" to P0, that is, every point in some small 
circular disk centered on P0. Similar remarks apply to functions defined in .xyz
space, etc. 

CONTINUITY 

There are several places in this chapter where it will be necessary to mention 
continuity in order to state things correctly. This concept extends in a natural way 
from the one-variable case to functions f(x, y), as follows. 

A function f(x, y) i s  said to be continuous at a point (x0, y0) in its domain if 
its value f(x, y) can be made as close as we please to f(x0, y0) by taking the point 
(x, y) close enough to (xo, Yo), that is, if lf(x, y) - f(xo, Yo)I can be made as small 
as we please by making both Ix - xol and IY - Yol small enough. For example, 
f(x, y) = xy is continuous at any point (x0, y0), because 

lxy - XoYol = lxy - X)'o + xyo - XoYol 

= lx( y - Yo) +  Yo(x - xo) I  

:5 lxl l Y - Yol + IYol lx - xol ,  

and it is easy to see that the quantity last written can be made as small as we 
please by making both Ix - xol and IY - Yol small enough. 

On the other hand, the function defined by 

l xy 
x2 + 2 f(x, y) = 

0 
Y if (x, y) if:. (0, 0), 

( I )  
if (x, y) = (0, 0), 

is not continuous at the origin (0, 0). For, if we let (x, y) approach (0, 0) along a 
line y = mx with m i= 0, then 

mx2 m f(x, y) = x2 + m2x2 I +  m2 ' (2) 
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which is a nonzero constant, and these values cannot be made as close as we 
please to f(O, 0) = 0 by making (x, y) close enough to (0, 0). To express this in 
another way, (2) shows that the values of the function approach different limit
ing values as the point (x, y) approaches the origin from different directions, and 
this is impossible if the function is continuous at the origin. 

We shall not pursue the details of this topic any further, beyond making the 
rather loose statement that any finite combination of elementary functions is con
tinuous at each point of its domain. Also, continuity is defined in essentially the 
same way for functions of three or more variables. 

LEVEL CURVES 

Many simple functions z = f(x, y) have graphs that are much too difficult to 
sketch. Fortunately there is another way to understand and express the geomet
ric nature of such a function. 

The basic idea comes from the art of the mapmaker. In mapping terrain with 
valleys, hills, and mountains, it is common practice to draw curves joining points 
of constant elevation. When these curves are included on a map and properly la
beled, the resulting topographical map enables an experienced user to obtain a 
clear mental picture of the contours of the land in three-dimensional space from 
this two-dimensional representation. 

We can do the same thing to portray a function z = f(x, y) of two variables. 
For any value c that f(x, y) assumes, we can sketch the curve 

f(x, y) = c 

in the xy-plane, as shown in Fig. 19.2. Such a curve is called a level curve; it lies 
in the domain of the function, and on it z = f(x, y) has the constant value c. 

A collection of level curves is called a contour map; it can give a good idea 
of the shape of the graph, and is the next best thing to a three-dimensional sketch. 
For instance, the graph of z = xy is difficult-though not impossible-to draw. 
However, a reasonably clear idea of the shape of this graph is given by the con
tour map shown in Fig. 1 9.3 ,  which is easy to draw. Each level curve xy = c is 
a hyperbola in the first and third quadrants if c > 0, a hyperbola in the second 
and fourth quadrants if c < 0, and the two axes taken together if c = 0. We as
cend the surface as we leave the origin going into the first and third quadrants, 

y 

x 

x Figure 19.2 Level curves. 
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Figure 1 9.3 
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Figure 1 9.4 Level surfaces. 
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and descend it as we leave going into the second and fourth quadrants, and in 
this way we see that the origin is the saddle point of a saddle surface. Students 
should try to use this figure to visualize the shape of the surface as it appears in 
three-dimensional space, looking down on it from above. 

LEVEL SURFACES 

Drawing graphs for functions of two variables is often difficult, but drawing 
graphs for functions of three variables is always impossible. We would need a 
visible space of four dimensions to contain such a graph, and no such space is 
available. 

However, the concept of level curves suggests a way to visualize the behavior 
of a function w = j(x, y, z) of three variables: examine its level surfaces. These 
are the surfaces 

f(x, y, z) = c (3) 
for various values of the constant c. Of course, level surfaces can be hard to draw, 
but a knowledge of what they are can help us form a useful intuitive idea of the 
nature of the function. In Fig. 1 9.4 we present a schematic view of three adja
cent level surfaces of the form (3) for three values of the constant c, where 
c1 < c2 < c3. As a point P = (x, y, z) moves along the lowest surface, the value 
of w = j(x, y, z) is constantly equal to c 1 ; but as this point hops to the next sur
face above it, the value of the function increases to c2; and so on. 

We consider two simple examples. In the case of the function w = x + 2 y + 
3z, the level surfaces are easily seen to be the planes 

x + 2y + 3z = c 

with normal vector N = i + 2j + 3k; and for w = Y x2 + y2 + z2, the level sur
faces are the concentric spheres 

x2 + y2 + z2 = c2. 

In applications, if the function w = f(x, y, z) represents the temperature at the 
point P = (x, y, z), then the level surfaces are called isothermal surfaces; if it rep
resents potential, they are called equipotential surfaces. 

HIGHER DIMENSIONS 

Level surfaces have a certain limited value, but in a sense they avoid the real 
question: How do we go about trying to obtain an intuitive understanding of the 
behavior of functions of three or more variables? 

Briefly, what we do is work by analogy with the one- and two-variable cases. 
For example, there is nothing to prevent us from considering the set of all quadru
ples of numbers such as (2 ,  -3 ,  1, 4) as forming a perfectly legitimate four
dimensional space, with an origin (0, 0, 0, 0), four coordinate axes, and a satis
factory concept of the distance from an arbitrary point (x, y, z, w) to the origin, 

d = Yx2 + y2 + z2 + w2. 
We can now consider the graph of a function 

w = f(x, y, z) 
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as forming a three-dimensional "surface" in this four-dimensional space, with 
the domain D of the function lying in the three-dimensional "coordinate plane" 
consisting of all points of the form (x, y, z, 0). 

In a similar way, if n is any positive integer we can think of the graph of a 
function of n variables as forming an n-dimensional "surface" in (n + 1 )-di
mensional space. It is true that for n 2: 3 we can no longer draw pictures, but we 
can still bolster our intuition by using geometric language, and we can still think 
geometrically, but in a looser way. However, as we move further away from the 
kind of mathematics that we can study and understand by drawing pictures, it is 
necessary to give more attention to the algebraic and analytic aspects of what we 
are doing, in order to avoid being misled by words and analogies. Nevertheless, 
the words, analogies, and geometric intuition remain indispensable, for they sug
gest worthwhile things to think about and prevent us from feeling totally lost 
among abstractions. 

PROBLEMS 

In Problems 1-12, find the domain of the given function. 

f(x, y) = ___:2'_
2 . 

1 3  Show that the function defined by 

y - x 
I I 2 f(x, y) = - + -. x y 

( xy 

f(x, y) = 
V�2 + y2 

if (x, y) -=f. (0, 0), 

if (x, y) = (0, 0), 
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3 f(x, y) = yzy. 
l 

is continuous at the origin. Hint: Use x = r cos 8 and y = 
r sin 8 to transform to polar coordinates. 

4 

5 

6 

7 

8 

9 

1 0  

1 1  
1 2  

f(x, y )  = (ex + eY)2 . 

f(x, y) = In ( y  - 3x). 

f(x, y, z) = Yx2 + y2 + z2. 
l 

f(x, y, z) = . 
Yx2 + y2 + z2 

z f (x, y, z) = 4 2 2 . x - y 

f(x, y, z) = Y 16  - x2 - y2 - z2. 
l f (x, y, z) = -. xyz 

f(x, y, z) = xy In z + 3 tan tz. 
f(x, y, z) = In (x2 + y2 + z2 - 1 ). 

In Problems 14-24, represent the given function by drawing 
a few level curves, and try to visualize the surface from the 
resulting contour map. 
1 4  z = x2 + y2. 
1 6  z = x + y. 
1 8  z = 2 x  - y. 
20 z = x3 - y. 
22 z = y/x2. 
24 z = Yx2 - y2. 

15 z = x2 + 2y2. 
1 7  z = x - y. 
19  z = x2 - y. 
21 z = ylx. 
23 z = x2 - y2. 

In each of the following problems, sketch a few level surfaces 
for the given function and use these to estimate the general 
direction in which the values of the function increase. 

x2 y2 z2 l 25 w = - + - + - 26 w = �-�-� 4 9 1 6  · x2 + y2 + z2 · 

27 w = 2x - 5y + 3z. 28 w = x2 + y2 - z2. 

Suppose that y = f (x) is a function of only one variable. We know that its de-

1 9 2 rivative, defined by • 

dy _ r f(x + .:ix) -f(x) PARTIAL D ERIVATIVES 
dx - iJ�o .:ix ' 

can be interpreted as the rate of change of y with respect to x. In the case of a 
function z = f(x, y) of two variables, we shall need similar mathematical ma-
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chinery for working with the rate at which z changes as both x and y vary. The 
key idea is to allow only one variable to change at a time, while holding the other 
fixed. For functions of more than two variables, we vary one of them while hold
ing all the others fixed. Specifically, we differentiate with respect to only one 
variable at a time, regarding all the others as constants, and this gives us one de
rivative corresponding to each of the independent variables. These individual de
rivatives are the constituents from which we build the more complicated ma
chinery that will be needed later. 

To return to our function z = f(x, y) of two variables, we first hold y fixed and 
let x vary. The rate of change of z with respect to x is denoted by dz/dx and de
fined by 

oz = lim f(x + .::U, y) - f (x, y) 
ox <ix-->0 ,ix 

This limit (if it exists) is called the partial derivative of z with respect to x, and 
is read "partial z, partial x." The most commonly used notations for this partial 
derivative are 

oz 
ox ' Zx, fx, fx(x, y), 

and we shall use all of these from time to time in order to help students become 
accustomed to them. The symbol o in the notation oz/ox is called the "round
back d" or "curly d" ; it is used to emphasize that there are other independent 
variables present during the process of differentiating with respect to x. 

Similarly, if x is held fixed and y is allowed to vary, then the partial deriva
tive of z with respect to y is defined by 

� = lim f(x, y + liy) - f (x, y) • 
oy <iy-->0 ily 

and the standard notations in this case are 

oz 
oy ' Zy, of 

oy ' fy(x, y). 

The actual calculation of partial derivatives for most functions is very easy: 
Treat every independent variable except the one we are interested in as if it were 
a constant, and apply the familiar rules. 

Example 1 Calculate the partial derivatives of/ox and of/oy of the function 
f(x, y) = x3 - 3x2y3 + y2. 

Solution To find the partial off with respect to x, we think of y as a constant 
and differentiate in the usual way, 

�� = 3x2 - 6xy3 . 

When we regard x as a constant and differentiate with respect to y, we obtain 

�� = -9x2y2 + 2y .  
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The notations fx(x, y) and fy(x, y) are useful for indicating the values of partial 
derivatives at specific points. 

Example 2 (a) Iff(x, y) = xy2 + x3, then 

fx(x, y) = y2 + 3x2, 

fx(2, 1 ) = 13,  

fy(x, y) = 2xy, 

fy(2, 1) = 4. 

In the other notation, the numerical values given here by the simple and conve
nient symbols fx(2, 1 )  and fy(2, 1 )  would have to be written more clumsily as 

(�{\
2, 1 ) 

and (�;)(2, I ). 
(b) If g(x, y) = xexy', then 

(c) If h(x, y) = sin x2 cos 3y, then 

hx(x, y) = 2x cos x2 cos 3y, hy(x, y) = -3 sin x2 sin 3y. 

These examples illustrate the fact that the partial derivatives of a function of 
x and y are themselves functions of x and y. 

These ideas and notations apply just as easily to functions of any number of 
variables. 

Example 3 If w = f(x, y, z, u, v) = .xy2 + 2x3 + xyz + zu + tan uv, then 

aw ax = y2 + 6x2 + yz, aw ay = 2xy + xz, ow -a; =  xy + u, 

OW 
au = Z + V Sec2 UV, aw av = U SeC2 UV. 

In the one-variable case, we know that the derivative dy/dx can legitimately be 
thought of as a fraction, the quotient of the differentials dy and dx. The notation 
az/ox for the partial derivative fx(x, y) suggests that something similar might be 
done with az and ox. However, it is not possible to treat partial derivatives as frac
tions. We give an example to emphasize this point. 

Example 4 The ideal gas law states that for a given quantity of gas, the pres
sure p, volume V, and absolute temperature Tare connected by the equation p V = 
nRT, where n is the number of moles of gas in the sample and R is a constant. 
Show that 

Solution Since 

we have 

nRT p = --v· 

ap av or = _ 1  av ar op · 

V =  nRT 
p ' 

ap nRT 
av = - "'V2· 

av nR 
ar p 

T =  pV nR ' 

oT V 
op nR · 

67 1 
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It follows that 

ap av aT = (- nRT) nR J::'._ = _ nRT = - I 
av aT ap V2 p nR pV . 

The fact that this result is 
- 1 instead of + 1 shows that we cannot treat the par

tial derivatives on the left as fractions. 

When we are working with a function z = j(x, y) of only two variables, the 
partial derivatives have the following simple geometric interpretation. The graph 
of this function is a surface, as shown in Fig. 1 9.5 .  Let (x0, y0) be a given point 
in the xy-plane, with (x0, y0, zo) the corresponding point on the surface. To hold 
y fixed at the value y0 means to intersect the surface with the plane y = y0, and 
the intersection is the curve 

in that plane. The number 

z = f(x, Yo) 

( aaz ) = fx<xo, Yo) x (xoso) 

is the slope of the tangent line to this curve at x = x0. Thus, in the figure we have 

tan a = ( aaz ) = fxCxo, Yo). X (xo·Yo) 

Similarly, the intersection of the surface with the plane x = x0 is the curve 

z = f(xo, y), 

and the other partial derivative is the slope of the tangent to this curve at y = y0, 

tan f3 = ( aaz ) = f,.(xo, Yo) . Y (xo·Yo) 

No such interpretation is avai lable when there are more than two independent 
variables. 

We remarked that for a function z = j(x, y) of two variables, the partial de
rivatives fx and fy are also functions of two variables, and may themselves have 
partial derivatives .  As we might expect, these second-order partial derivatives 
are denoted by several symbols. If we start with the first derivatives 

and 

then the derivatives with respect to x are 

;x (;�) = ;Ji = ;xi< = L< 
and 

and the derivatives with respect to y are 
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and 

This notation may seem a bit confusing at first, but it is actually quite reason
able. Observe that in fyx we differentiate first with respect to the "inside" vari
able y, then with respect to the "outside" variable x. This is the natural order, 
since fyx ought to mean (fy)x. Thus, in the symbols fyx and f xy, the subscript let
ters accumulate from left to right, because this is the order in which the differ
entiations are performed. For the same reason, in the symbols 

a21 
dx dy and a21 

dy dx ' 

it is natural for the letters indicating the variable of differentiation to accumulate 
from right to left: first y, then x in the first of these; and first x, then y in the sec
ond. 

The pure second partial derivatives, 

a21 
frx = ax2 and 

don't represent anything really new. Each is found by holding one variable con
stant and differentiating twice with respect to the other variable, and each gives 
the rate of change of the rate of change off in the direction of one of the axes. 

Example 5 If f(x, y) = x3e5Y + y sin 2x, then 

fx = 3x2e5Y + 2 y cos 2x, fy = Sx3e5Y + sin 2x, 
f xx =  6xe5Y - 4y sin 2x, fyy = 25x3e5Y. 

On the other hand, the mixed second partial derivatives, 

and 

represent new ideas. The mixed partial derivative f xy gives the rate of change in  
the y-direction of  the rate of  change off in the x-direction, and fyx gives the rate 
of change in the x-direction of the rate of change off in the y-direction. It is not 
at all clear how these two mixed partials are related to each other, if indeed they 
are related at all. 

Example 5 (continued) For the function being considered, f(x, y) = x3e5Y + 
y sin 2x, we easily see that 

fx = 3x2e5Y + 2 y cos 2x, fy = Sx3e5Y + sin 2 x, 
fxy = 15x2e5Y + 2 cos 2x, fyx = l 5x2e5Y + 2 cos 2x. 

For the particular function considered in this example, we obviously have 

or equivalently, 

fxy = fyx• 

a21 a21 
dy dx = dx dy ' 

( 1 )  
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so the order of differentiation seems to be unimportant-at least in this case. But 
this is not an accident, and ( 1 )  is true for almost all functions that normally arise 
in applications. More precisely, if both f xy and fyx exist for all points near (xo, Yo) 
and are continuous at (xo, Yo) ,  then 

f xy(xo, Yo) = fyx(xo, Yo). 
A proof of this statement is given in Appendix A. 17 .  

Partial derivatives of order greater than two, as well as higher-order deriva
tives of functions of more than two variables, are defined in the obvious way. 
For example, if w = f(x, y, z), then 

etc. In general, with suitable continuity, it is immaterial in what order a sequence 
of partial differentiations is carried out, for by ( 1 )  we can reverse the order of 
any two successive differentiations. For example, fxxyz = fxyxz = fxyzx = fyxzx = 
fyzxx· 

PROBLEMS 

In Problems 1-14, find oz/ox and oz/oy. 
I z = 2x + 3y. 2 z = 5x2y. 

2 y2 
3 Z = 3x + I . 4 z = y cos x. 

5 z = x2 sin y. 6 z = tan 3x + cot 4y. 
7 z = x tan 2 y + y tan 3x. 8 z = sin xy. 
9 z = cos (3x - y). 1 0  z = xyexy. 

1 1  z = ex sin y. 1 2  z = tan- I � 
y 

13 z = eY ln x2. 14  z = In (3x + y2). 
In Problems 15-18, find the partial derivatives with respect to 
x, y, and z. 
1 5  w = x2y5z7. 

17 w = x ln l:'... z 

1 6  w = sin- I �. xy 
1 8  w = ex'+y'+z4. 

19 Consider the surface z = 2x2 + y2. 
(a) The plane y = 3 intersects the surface in a curve. Find 

the equations of the tangent line to this curve at x = 
2 .  

(b) The plane x = 2 intersects the surface in a curve. Find 
the equations of the tangent line to this curve at y = 3 . 

20 Consider the surface z = x2/( y2 - 3). 
(a) The plane y = 2 intersects the surface in a curve. Find 

the equations of the tangent line to this curve at x = 3 . 

(b) The plane x = 3 intersects the surface in a curve. Find 
the equations of the tangent line to this curve at y = 2. 

2 1  Show that all of the following functions z = f(x, y) sat-

22 
23 

. f h . oz oz 0 
IS y t e equat10n X OX + y oy = : 

(a) z = �; (b) z = _x_; y x + y  
2y2 xy2 

(c) z = In -2 ; (d) z = �+ 3 . x x y 
If z = yexly, show that XZx + YZy = z. 
If z = x5 - 2x4y + 5x2y3, show that 

oz oz x ax + y oy = 5z. 

In Problems 24-28, verify that o2z/ox oy = o2z/oy ox. 

24 z = tan- I �. y 
25 z = In (x + Sy). 
26 z = exy cos ( y  - 2x) . 
27 z = f(x)g( y) . 
28 z = x3 tan 2x csc 3y4 sin- I �. 
29 Show that each of the following functions satisfies Laplace 's equation o2jlox2 + ()2jl()y2 = O: 

(a) f(x, y) = In (x2 + y2); (b) f(x, y) = ex sin y; 

(c) f(x, y) = e-3x cos 3y; (d ) f(x, y) = tan-I X. x 
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30 Show that each of the following functions satisfies the wave equation a2 a2pax2 = a2par2: It is usually possible to calculate the derivative F'(x) of such 
a function by "differentiating under the integral sign":  

(a) f(x, t) = (x + at)3; (b) f(x, t) = (x - at)5; 
(c) f(x, t) = sin (x + at); (d )  f(x, t) = ex-ar. 

31  Find a function f(x, y) such that 

d Lb Lb [ a ] • F'(x) = dx a f(x, y) dy = a axf(x, y) dy. 
"()j = 3y2 - 2x cos y and "()j = 6xy + x2 sin y + 2. ax ay 

32 Verify the formula just stated in the following cases: 
(a) a =  0, b = l , f(x, y) = x + y; 

It is sometimes convenient to define functions by integrals of 
the form 

(b) a = 0, b = 1 , f(x, y) = x3y2 + x2y3; 
(c) a = 0, b = TT, j(x, y) = sin xy. 

F(x) = J: f(x, y) dy. •A proof is given in Appendix A.18. 

The concept of a tangent plane to a surface corresponds to the concept of a tan
gent line to a curve. Geometrically, the tangent plane to a surface at a point is  
the plane that "best approximates" the surface near the point. It will be neces
sary for us to think rather carefully about what this means, because-as we shall 
see in Sections 19 .5 and 19 .6-weighty practical consequences depend on it. 

Consider a surface z = f(x, y), as shown in Fig. 19.6. As we pointed out in 
Section 19 .2, the plane y = y0 intersects this surface in a curve C1 whose equa
tion is 

z = f(x, Yo), 
and the plane x = x0 intersects it in a curve C2 whose equation is  

z = f(xo, y); 
and the slopes of the tangent lines to these curves at the point Po = (xo, Yo. zo) 
are the partial derivatives 

x 

fxCxo. Yo) and fy(xo, Yo). 

z 

J-�-=::::x==::±==::+..��--y I I , 
I I / I 
I I / I x = x0--+- - +---...l 
I , '\ I / (xo . Yo )  
1/y = Yo 

( 1 ) 

19 . 3  
THE TANGENT PLANE 
TO A SURFACE 

Figure 19.6 The tangent plane. 
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These two tangent lines determine a plane, and, as Fig. 19.6 suggests, if the sur
face is sufficiently smooth near P0, then this plane will be tangent to the surface 
at Po. 

It is important to be quite clear about what we mean by a tangent plane, so 
we give a definition. In this context, where P0 is a point on a surface z = f(x, y), 

let T be a plane through Po and let P be any other point on the surface. If, as P 
approaches Po along the surface, the angle between the segment P0P and the 
plane T approaches zero, then T is called the tangent plane to the surface at P0. 

It is easy to see that a surface need not have a tangent plane at a point P0. A 

very simple example is provided by the half-cone z = \/ x2 + y2 shown in Fig. 
19.7. It is clear that no plane is  tangent to this surface at the origin. In this case 
the curves C1 and C2 have no tangent lines at the origin, and the partial deriva
tives ( 1 )  do not exist there. However, even when the curves C1 and C2 are smooth 
enough to have tangent lines at P0, the surface may still not have a tangent plane 
at P0, because of nonsmooth behavior near Po in the regions between C1 and C2• 

In Section 1 9  .4 we discuss a vital lemma to the effect that this cannot happen if 
the partial derivativesfx(x, y) andfy(x, y) exist at all points in some neighborhood 
of (xo, Yo) and are continuous at (xo, Yo) itself. 

Meanwhile, we assume that the tangent plane exists at P0, and we develop a 
method of finding its equation. Since the point Po = (x0, yo, zo) lies on this tan
gent plane, we know that the equation has the form 

a(x - xo) + b( y - Yo) + c(z - zo) = 0, (2) 

where N = ai + bj + ck is any normal vector. It remains to find N, and to do 
this we use the cross product of two vectors V 1 and V 2 that are tangent to the 
curves C1 and C2 at Po (see Fig. 1 9.6). To find V i ,  we use the fact that along the 
tangent line to Ci,  an increase of 1 unit in x produces a change fx(x0, y0) in z, 

while y does not change at all .  Thus, the vector 

V 1 = i + 0 · j + fxCxo. Yo)k 

is tangent to C 1  at P0. Similarly, the vector 

V 2 = 0 · i + j + fy(xo, Yo)k 

is tangent to C2 at P0. Since V 1 and V 2 lie in the tangent plane, we are now able 
to obtain our normal vector N by calculating 

j k 
N = V 2 X V 1 = 0 I fy(xo, Yo) = !.ho. Yo)i + fy(xo. Yo)j - k. (3) 

1 0 fxCxo. Yo) 

(The order of factors in this cross product is chosen only for convenience, to pro
duce one minus sign in the result instead of two. )  When the components of (3) 
are inserted in (2), we see that the desired equation is 

!ho. Yo)(x - xo) + fy(xo, Yo)( y - Yo) - (z - zo) = 0, 

or equivalently, 

z - zo = fxCxo, Yo)(x - xo) + fy(xo, Yo)( Y - Yo). (4) 
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Example 1 Find the tangent plane to the surface 

z = f(x, y) = 2xy3 - 5x2 
at the point (3, 2, 3). 

Solurio11 The first step should be to check that this point actually lies on the 
given surface, and we assume that this has been done. Here we have fx = 2y3 -
I Ox and fy = 6xy2, so fx(3, 2) = - 14 and fy(3, 2) = 72. The equation of the 
tangent plane is therefore 

z - 3 = - 14(x - 3) + 72(y - 2). 

Tangent planes to surfaces where z is not explicitly given as a function of x 
and y will be discussed in Section 1 9.5 .  However, we can get a preliminary idea 
of what to expect by applying our present method to simple cases. 

Example 2 Find the tangent plane to the sphere 

x2 + y2 + z2 = l 4 
at the point ( 1 ,  2, 3). 

(5) 

Solution Even though this sphere is not a surface of the form z = f (x, y), it can 
be thought of as a combination of two such surfaces, the upper and lower hemi
spheres. By  solving (5) for z, we see that the upper hemisphere is given by 

so 

z =f(x, y) = Yl4 - x2 - y2, 

-x 
t = ---;==== x V14 - x2 - y2 and 

-y f, = ---;:==== y Vt4 - x2 - y2 
These formulas give 

fx( l , 2) = -t and fy( l ,  2) = -i, 
so the equation of the tangent plane is 

z - 3 = -tcx - 1 )  - t( Y - 2), 
or 

x + 2y + 3z = l4. 

In this example we solved equation (5) explicitly for z, then proceeded as be
fore. An alternative method that is often easier is to assume that the given equa
tion defines z implicitly as a function of x and y, and to find the partial deriva
tives by implicit differentiation. With this method we use equation (4) in the 
slightly different form 

z - zo = (�) (x - xo) + ( oz ) ( y - Yo) ,  OX P0 Oy Po (6) 

where the coefficients are written this way because oz/ox and ozloy need not de
pend only on x and y. 
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Example 3 To find the tangent plane of Example 2 by the method just suggested, 
we first hold y fixed and differentiate (5) implicitly with respect to x, which gives 

dZ 2x + 2z dx = 0, 

so az1ax = -xlz. Similarly, aztoy = -y/z. At the point Po = ( 1 ,  2 ,  3), these par
tial derivatives have the numerical values 

1 
3 and 

2 
3 '  

so by (6) the tangent plane is  

z - 3 = -t(x - I )  - t( y - 2), 

just as before. Of course, this method is of particular value when the equation of 
the surface is difficult or impossible to solve for z. 

PROBLEMS 

In Problems 1- 10, find an equation for the tangent plane to 
the given surface at the indicated point. 

1 z = (x2 + y2)2, ( I ,  2, 25). 
2 z = 4xy, (4, t. 4). 
3 z = sin x + sin 2y + sin 3 (x + y), (0, 0, 0). 
4 z = x2 + xy + y2 - IOy + 5,  (3, 2, 4). 
5 z = x2 - 2 y2, (3, 2, 1) . 

2x + y 6 z = --2-
, (3, 1, 7). x - y 

7 z = eY cos x, (0, 0, I ). 

8 z = tan- 1  �· (4, 4, ;} 
9 xy2 + yz2 + zx2 = 25, ( I ,  2, 3) 

10 z3 + xyz = 33, ( I , 2, 3). 
1 1  Let Po = (xo, yo, zo) with zo > 0 be a point on the sphere 

x2 + y2 + z2 = a2. 

Show that the tangent plane at this point is perpendicu
lar to the radius vector to the point, in agreement with 
the definition given in geometry. 

12 Use implicit differentiation to show that the equation of 
the tangent plane to the sphere 

x2 + y2 + z2 = a2 

- � �nt � = � � � � � + M + � = � 
13 Use implicit differentiation to find the equation of the 

tangent plane to the ellipsoid 

x2 y2 z2 _ 
2 +

-b2 + 2 - 1 a c 
at the point Po = (xo, Yo. zo). 

14 Let a be a positive constant and consider the tangent 

plane to the surface xyz = a at a point in the first octant. 
Show that the tetrahedron formed by this plane and the 
coordinate planes has constant volume, independent of 
the point of tangency. What is this volume? 

15 The angle between two surfaces at a common point is  
the smallest positive angle between the normals to these 
surfaces at this point. Find the angle between z = exy -

1 and z = In V x2 + y2 at (0, I ,  0). 
16 If Po = (x0, y0, zo) is a point on the curve of intersection 

of two surfaces z = f (x, y) and z = g(x, y), devise a 
method for finding a tangent vector to this curve at P0. 
Apply this method to find a vector tangent to the curve 
of intersection of the cone z2 = 3x2 + 4y2 and the plane 
3x - 2y + z = 8 at the point Po = (2, 1 ,  4). 

17 If a surface has an equation of the form z = xf(xly), show 
that all of its tangent planes have a common point. What 
is this point? 

1 8 I f  Po = (xo, Yo. zo) is a point on the cone z2 = a(x2 + y2) 
other than the vertex, show that the tangent plane at Po 
has ZoZ = a(xax + y0y) as its equation. Conclude that 
every such plane passes through the vertex. Show that 
the normal line at Po has 

x = xo + axat, Y = Yo +  ayat, z = zo - zot 

as parametric equations. 
19 On the cone in Problem 1 8, consider all points of fixed 

height h above the xy-plane and draw normal lines at 
these points. Show that the points where these lines in
tersect the xy-plane form a circle, and find the radius of 
this circle. 

20 Let normal lines be drawn at all points on the surface 
z = ax2 + by2 which are at a given fixed height h above 
the xy-plane, and find the equation of the curve in which 
these lines intersect the xy-plane. 



19 .4 INCREMENTS AND DIFFERENTIALS. THE FUNDAMENTAL LEMMA 

Most of calculus can be understood by using geometric intuition mixed with a 
little common sense, without getting bogged down in the underlying theory of 
the subject. In a few places, however, this theory is inescapable, because with
out it there is no way to grasp what is going on in the main developments of the 
subject itself. This is true for infinite series and the theory of convergence. It is 
also true for the topics of the next two sections-directional derivatives and the 
chain rule-which cannot be understood without a certain degree of attention to 
the theoretical issues that we now briefly discuss. 

In order to see what these issues are, we begin by considering a function y = 

f(x) of one variable that has a derivative at a point x0. If Li.x is an increment that 
carries x0 to a nearby point x0 + Li.x (see Fig. 19.8), we are interested in the cor
responding increment in y, 

�y = f (xo + Ill) - f (xo). 

The definition of the derivative f' (x0) is 

f' (xo) = Jim ��. 
LU->0 UA 

and this can be written in the equivalent form 

� = f' (xo) + E, 

( I )  

where E � 0 as Li.x � 0 .  Accordingly, with no further hypotheses than the as
sumed existence of the derivative ( 1 ), we can write the increment �y in the form 

�y = f' (xo) Ill + E Ill, where E � O  as & � O. (2) 

The situation is entirely different for a function of two (or more) variables, as we 
now explain. 

Consider a function z = f(x, y) and let (x0, y0) be a point at which the partial 
derivatives fx(xo, Yo) and fy(xo, Yo) both exist. The increment in z produced by 
moving from (xo, Yo) to a nearby point (xo +Li.x, Yo + �y) is 

�z = f(xo + Ill, Yo + �y) - f(xo, Yo), 

as shown in Fig. 1 9.9 .  In order to develop the tools we shall need in Sections 
1 9.5 and 1 9.6, it will be necessary to express �z in a form analogous to (2), 

x 

>-�����+1 _..l����-Y 
(xo , Yo ) � I 

tu /  \ 1 
L---� 

Ay 
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Figure 19.9 The differential dz. 
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(3) 

where E1 and E2 � 0 as Lix and Lly � 0. Unfortunately, in sharp contrast to the 
one-variable case, the mere existence of the partial derivatives fx and f;, at (xo, y0) 
is not enough to guarantee the validity of (3). Sufficient conditions for this con
clusion are given in the 

Fundamental Lemma Suppose that a function z = f(x, y) and its partial derivatives 
fx andfy are defined at a point (xo, Yo), and also throughout some neighborhood of this 
point. Suppose further that fx and fy are continuous at (xo, Yo). Then the increment �z 
can be expressed in the form (3), where E1 and Ez ---> 0 as �x and �y ---> 0. 

This statement is called a lemma for the usual reason: its significance lies not 
in itself, but rather in the use that can be made of it elsewhere. A proof is given 
in Appendix A. 19 .  

We do not wish to linger on  these matters, but nevertheless a few brief remarks 
are in order. 

Remark 1 In the case of a function of one variable, ( 1 )  and (2) are equivalent, 
and if either condition holds it is customary to denote Lix by dx and to write dy = 

f' (x0) dx, so that dy is the change in y along the tangent line. A function z = 
f(x, y) for which fxCx0, Yo) and fy(x0, Yo) both exist is said to be differentiable at 
(x0, y0) if the conclusion of the lemma is valid- so that more is required than 
merely the existence of the partial derivatives. In this case-and only in this case! 
-we denote Llx and Lly by dx and dy, and we define the differential dz by* 

dz = !ho, Yo) dx + f,.(xo, Yo) dy. 

Under these circumstances it can be proved that the surface z = f(x, y) has a tan
gent plane at (x0, y0, zo) and that dz is the change in z along this plane, as sug
gested in Fig. 1 9.9. The differential dz is usually written in the equivalent forms 

az az dz = - d.x + -dy ax ay or a1 a1 df = ax dx + ay dy. 

Remark 2 A function z = f(x, y) which is differentiable at a point is automati
cally continuous there. This follows at once from (3), which shows that 
Liz � 0 if Lix and Lly � 0. In the single-variable case, we know that if a func
tion has a derivative at a point, then it is necessarily continuous there. However, 
this is not true for functions of more than one variable: the mere existence of the 
partial derivatives fx and fy at a point does not imply the continuity of f(x, y) at 
that point. This is shown by the example of the bizarre function discussed in Sec
tion 1 9  . 1 ,  for which fxCO, 0) = fy(O, 0) = 0 and yet the function is discontinuous 
at (0, 0). 

The concepts of a differentiable function and its differential, and also the Fun
damental Lemma, can be extended in an obvious way to functions of any finite 
number of variables .  This would involve much additional writing but no new 
ideas, and we shall not burden the reader with the details. 

•sometimes dz is called the total differential. 



1 9.5 D IRECTIONAL DERIVATI VES AND THE GRADIENT 

Let f(x, y, z) be a function (of three variables ! )  defined throughout some region 
of three-dimensional space, and let P be a point in this region. At what rate does 
f change as we move away from P in a specified direction? In the directions of 
the positive x-, y-, and z-axes, we know that the rates of change off are given by 
the partial derivatives CJf/CJx, CJf/CJy, and CJf/CJz. But how do we calculate the rate 
of change off if we move away from P in a direction that is not a coordinate di
rection? In analyzing this problem, we will encounter the very important concept 
of the gradient of a function. 

Suppose that the point P under consideration has coordinates x, y, and z, so 
that P = (x, y, z) ; let R = xi + yj + zk be the position vector of P, and let the 
specified direction be given by a unit vector u, as shown in Fig.  1 9  . 1 0. If we 
move away from P in this direction to a nearby point Q = (x + Llx, y + Liy, z + 
Liz), then the function f will change by an amount Lif. If we now divide this 
change !:::.f by the distance Lis = ILiRI between P and Q, then the quotient Lif!Lis 
is the average rate of change off (with respect to distance) as we move from P 
to Q. For instance, if the value of f at P is the temperature at this point, then 
Lif!Lis is the average rate of change of temperature along the segment PQ. The 
limiting value of Lif!Lis as Q approaches P, namely, 

df = Jim tif 
ds L'>s->O tis ' 

is called the derivative off at the point P in the direction u, or simply the di
rectional derivative off In the case of the temperature function, df/ds represents 
the instantaneous rate of change of temperature with respect to distance-roughly 
speaking, how fast it is getting hotter-at the point P as we move away from P 
in the direction specified by u .  

This i s  all very well, but how do we actually calculate df/ds in a specific case? 
To discover how to do this, we assume that f(x, y, z) has continuous partial de
rivatives with respect to x, y, and z. Indeed, to avoid the tedious repetition of hy
potheses, we make this a blanket assumption for every function we discuss, un
less we explicitly state otherwise. With this, the Fundamental Lemma enables us 
to write Lif in the form 

df df df 
t:.f = dx fix + dy tiy + dz tiz + E1tix + E2 tiy + E3 tiz, ( 1 )  

where E1 , E2, E3 � 0 as lix, Liy, and Liz -1 0 ,  that is, as Lis -1 0. Dividing ( 1 )  by 
Lis now gives 

t:.f � fix � �  � �  fix � � 
tis 

= 
dx Ts + dy tis + dz tis + Et tis + E2 tis + E3 tis ' (Z) 

and by taking the limit as tis � 0, we see that the last three terms in (2) approach 
zero and we obtain the formula 

df = df dx 
+ 

df dy + df dz 
ds dx ds dy ds dz ds · (3) 

This formula should be recognized as a special kind of chain rule, in the sense 
that as we move along the line through P and parallel to u, f is a function of x, 
y, and z, where x, y, and z are in turn functions of the distance s, and (3) shows 
how to differentiate f with respect to s. 
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Figure 1 9. 1 1  Directional derivative. 
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We observe that the first factor in each product on the right of (3) depends 
only on the function f and the coordinates of the point P at which the partial de
rivatives off are evaluated, while the second factor in each product is indepen
dent of f and depends only on the direction in which df/ds is being calculated. 
These facts suggest that the right side of (3) ought to be thought of-and writ
ten- as the dot product of two vectors, as follows: 

df = ( a1 i + a1 . + a1 k) . ( dx i + dy . + dz k) 
ds ax ay J az ds ds J ds 

= ( a1 i + a1 . + a1 k) . dR
. dx ay J az ds 

(4) 

The first factor here is a vector called the gradient off It is denoted by the sym
bol grad f, so that by definition 

gradf = a1 i + a1 j + a1 k. (S) ax ay az 
With this notation, ( 4) can be written as 

df dR - = (grad!) · -. 
ds ds (6) 

But we know that dR/ds is a unit vector, and since it has the same direction as 
u, it equals u. Formula (6) is therefore equivalent to 

is = (grad f) · u. (7) 

This tells us how to calculate df/ds, because (5) is presumably simple to com
pute from the given function f, and then to evaluate at the given point P, and the 
dot product (7) of two known vectors is easy to find. 

For a given function f and a given point P, grad f is a fixed vector which can 
be placed so that its tail lies at P. We also place the tail of u at P, as shown in 
Fig. 1 9  . 1 1 .  To understand the significance of grad f, we use the definition of the 
dot product and the fact that u is a unit vector to write (7) in the form 

is =  l gradfl cos e, (8) 

where e is  the angle between grad f and u. Since the direction of u can be cho
sen to suit our convenience, (8) immediately yields the first fundamental prop
erty of the gradient: 

Property 1 The directional derivative df/ds in any given direction is the scalar pro
jection of grad f in that direction (see Fig. 19 . 1 1 ). 

In this sense, the single vector grad f contains within itself the directional de
rivatives off at P in all possible directions. 

Next, if u is chosen to point in the same direction as grad f, so that e = 0 and 
cos 0 = 1 ,  then (8) shows that df/ds has its maximum value- that is, f increases 
most rapidly-in this direction. Also, this maximum value equals lgradf l . These 
remarks give the next two fundamental properties of the gradient: 
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Property 2 The vector grad/ points in the direction in which/ increases most rapidly. 

Property 3 The length of the vector grad f is the maximum rate of increase off. 

As these remarks show, even though formulas (7) and (8) are equivalent, they 
play very different roles in our thinking, for we use (7) to calculate df/ds and (8) 
to understand the intuitive meaning of the vector grad f 

Example 1 Iff(x, y, z) = x2 - y + z2, find the directional derivative df/ds at the 
point ( 1 ,  2, 1 )  in the direction of the vector 4i - 2j + 4k. 

Solution At the point ( 1 ,  2, 1 ), we have grad f = 2xi - j + 2zk = 2i - j + 2k. 
We obtain a unit vector u in the desired direction by dividing the given vector 
by its own length, 

4i - 2j + 4k 2 . 1 . 2 u =  = - 1 - -J + - k  
V16 + 4 + 16 3 3 3 . 

Formula (7) now gives 

ds = (grad /) · u 

= (2i - j + 2k) . (ti - fj + tk) = 3 . 

Thus, the function f is increasing at the rate of 3 units per unit distance as we 
leave ( 1 ,  2, 1 )  in the given direction. 

Example 2 Let the temperature of the air at points in space be given by the func
tion f(x, y, z) = x 2 - y + z2. A mosquito located at ( 1 ,  2, 1 )  wishes to get cool 
as soon as possible. In what direction should it fly? 

Solution We saw in Example 1 that grad / =  2i - j + 2k at the point ( 1 ,  2, 1 ) .  
Since the direction of grad f is that in which the temperature increases most 
rapidly, the mosquito should fly in the opposite direction, that of -grad f = -2i + 
j - 2k. 

The fourth fundamental property of the gradient is useful in geometry. In or
der to explain what it is, we denote the point under consideration by Po = 
(xo, Yo. zo) to emphasize that it is fixed in this discussion, and we let c0 be the 
value of our function/ at the point P0. Then the set of all points in space at which 
f(x, y, z) has the same value co constitutes, in general, a level surface through Po 
whose equation is f(x, y, z) = co. We wish to show that the vector grad f is nor
mal (perpendicular) to this level surface at the point P0, as suggested on the left 
in Fig. 1 9  . 12 .  To this end, we consider a cur.ve that lies on the surface and passes 
through P0. If we move to a nearby point Q on this curve and measure s along 
the curve, then 6.f = 0 because f has the same value at all points on the surface, 
and therefore df/ds = 0 at Po in the direction of the tangent to the curve. For
mula (6) remains valid and implies that 

dR 
(grad /) · ds = 0, (9) 
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Figure 19. 1 2  Gradient is normal to 
level surface. 

PARTIAL DERIVATIVES 

f(x, y, z) = c0 f(x, y, z) = c0 

where dR!ds is the unit tangent vector to the curve at P0. The vanishing of the 
dot product in (9) tells us that grad f is perpendicular to this tangent vector. But 
the same reasoning applies to every curve on the surface that passes through P0, 
so grad f is perpendicular to the tangent vectors to all these curves (Fig. 19 . 1 2, 
right) .  Since these tangent vectors determine the tangent plane at P0, and being 
normal to the surface means being normal to this tangent plane, we have: 

Property 4 The gradient of a function fl..x, y, z) at a point Po is normal to the level 
surface off that passes through P0. 

In the context of this discussion, we point out that the equation of any surface 
can be written in the formf(x, y, z) = c0, and can therefore be regarded as a level 
surface of the function/(x, y, z). If Po = (xo, y0, zo) is a point on this surface, then 
Property 4 tells us that the vector 

N = grad f = ( 211) i + ( of) j + ( 211) k 
dX P0 dy P0 dZ P0 

is normal to the tangent plane at P0, so if N * 0, the equation of this tangent 
plane is 

(;�)Po (x - xo) + (;{)Po ( y  
- Yo) + (��)Po (z - zo) = 0. ( 1 0) 

We observe that this equation includes equation (4) in Section 1 9.3 as a special 
case; for if the surface is given in the form z = g(x, y), then this can be written 
as g(x, y) - z = 0, so the surface is a level surface of the function f(x, y, z) = 
g(x, y) - z, and this makes the coefficients in ( 1 0) equal to gx(x0, y0), 
gy(xo, Yo), - 1 .  

Example 3 Find the equation of the tangent plane to the surface xy2z3 = 1 2  at 
the point (3 ,  -2 ,  1 ) .  

Solution This surface is a level surface of  the function f(x, y, z)  = xy2z3. The 
vector grad f at the point (3 ,  - 2, 1 )  is normal to the surface at this point. This 
vector is 

= 4i - l 2j + 36k = 4(i - 3j + 9k). 
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Therefore the equation of the tangent plane is 

(x - 3) - 3( y + 2) + 9(z - I )  = 0 
or 

x - 3y + 9z = 18 . 

Remark 1 The main uses of directional derivatives and gradients are found in 
the geometry and physics of three-dimensional space. However, these concepts 
can also be defined in two dimensions, and they have similar (but thinner) prop
erties. Thus, a curve f(x, y) = c0 can be thought of as a level curve of the func
tion z = f(x, y); and if the gradient of this function is defined by 

grad f = ]L i +  af j, ax ay 

then the value of this gradient at a point Po = (x0, y0) on the curve is a vector 
that is normal to the curve. 

Remark 2 The gradient of a function f(x, y, z) can be written in "operational 
form" as 

grad f = ( ;
x 

i + ;
y 

j + ;
z 

k) f 

The del operator preceding the function f is usually denoted by the symbol V 

(an inverted delta, read "de!" )  so that 

.,.., a . a . a 
k v = 

ax I 
+ 

ay J + 
az . 

This de! operator is similar to, but more complicated than, the familiar differen
tiation operator d/dx. When del is applied to a function f, it produces a vector, 
namely, the vector grad f In this notation, formulas (5), (6), and (7) become 

gradf = \If, df 
= 

\lj . dR 
ds ds ' 

and % = \If . u. 

We will make very substantial use of the operator \I in Chapter 2 1 .  

PROBLEMS 
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I Find the gradient off at P if 
(a) f(x, y, z) = xy + xz + yz, P = ( - I ,  3, 5); 
(b) f(x, y, z) = eXJ cos z, P = (0, 2, 0); 

(d ) f(x, y, z) = xye' + yzeX, P = ( ! ,  0, 0), vector from P 
to (2, 2, !) .  

(c) f(x, y, z) = In (x2 + y2 + z2), P = ( I ,  2, -2); 
(d ) f(x, y, z) = xy/z, P = (2, - 1 ,  5) . 

2 Find the directional derivative off at P in the direction 
of the given vector: 
(a) f (x, y, z) = xy2 + x2z + yz, P = ( l ,  I , 2), i + 2j - k; 
(b) f(x, y, z) = In (x2 + y2 + z2), P = (0, 0, I ), vector 

from P to (2, 2, O); 
( c) f (x, y, z) = x sin y + y sin z + z sin x, P = ( I ,  0, 0), 

2\/3i + 2j; 

3 Find the maximum value of the directional derivative of 
f at P, and the direction in which it occurs: 
(a) f (x, y, z) = sin xy + cos yz, P = (-3,  0, 7); 
(b) f(x, y, z) = ex cos y + eY cos z + e' cos x, 

P = (0, 0, O); 
(c) f(x, y, z) = 2xyz + y2 + z2, P = (2, I ,  ! ) ;  
(d ) f(x, y, z) = eXJ', P = (2 ,  I ,  1 ). 

4 In what direction should one travel, starting at the ori
gin, to obtain the most rapid rate of decrease of the func
tion 

f(x, y, z) = (2 - x - y)3 + (3x + 2 y - z + 1 )2? 
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5 Find the unit vectors normal to the surface xyz = 4 at the 
point (2 , -2 , - 1 ) . 

8 Find the tangent plane and normal line to the hyperboloid 
x2 + y2 - z2 = 5 at the point (4, 5, 6). 

6 If f(x, y, z) = x2 + 4y2 - 8z, find df/ds at (4, I ,  0) 
(a) along the line (x - 4)/2 = ( y  - 1 )/1 = z/(-2) in the 
direction of decreasing x; (b) along the normal to the 
plane 3(x - 4) - (y - 1) + 2z = 0 in the direction of 
increasing x; (c) in the direction in which/increases most 
rapidly. 

9 Show that the tangent plane to the quadric surface ax2 + 
by2 + cz2 = d at the point (xo, Yo, zo) has axQX + byoy + 
czoz = d as its equation. 

10 Show that the de! operator has the following properties 
that demonstrate its close similarity to the differentiation 
operator d/dx: 

7 Suppose that the temperature T at a point P = (x, y, z) is 
given by T = 2x2 - y2 + 4z2. Find the rate of change of 
T at the point ( 1, - 2, I) in the direction of the vector 
4i - j + 2k. In what direction does T increase most 
rapidly at this point? What is this maximum rate of in
crease? 

(a) V(f + g) = V/+ Vg; 
(b) V(fg) = f"ilg + g"ilf; 

(c) v (1) = g"ilf -f"ilg ; g g2 
(d) vr = nr- 1v1 

1 9 . 6 
THE CHAIN RULE FOR 
PARTIAL DERIVATIVES 

The single-variable chain rule for ordinary derivatives tells us how to differenti
ate composite functions. It says that if w is a function of x where x is in turn a 
function of a third variable t, say w = f(x) where x = g(t), then 

dw dw dx 
dt dx d( ( I ) 

We know from ample experience that this is an indispensable tool of calculus; it 
is used more frequently than any other differentiation rule. 

The simplest multivariable chain rule involves a function w = f(x, y) of two 
variables x and y, where x and y are each functions of another variable t, x = g(t) 
and y = h(t). Then w is a function of t, 

w = f [g(t), h(t)) = F(t), 
and we shall prove that the derivative of this composite function is given by the 
formula 

dw = ow dx + 
ow dy 

dt ox dt ay dt · 

This is the chain rule for this situation. 

(2) 

The proof of (2) is easy. We begin by changing t to t + At, where At * 0. This 
increment in t produces increments 6.x and Ay in x and y, which in turn produce 
an increment Aw in w. Since all the functions we discuss are assumed to have 
continuous partial derivatives, the Fundamental Lemma enables us to write Aw 
in the form 

OW ow .:lw = ax .:lx + ay .:ly + €1 .:lx + €2 .:ly, 

where E1 and E2 � 0 as 6.x and Ay � 0. On dividing (3) by At, we obtain 

.:lw ow .:lx ow .:ly .:lx .:ly 
Tr = ax& + ay-& + €1 -s:r + €2 &· 

(3) 

(4) 

If we now form the limit as 6.t � 0, then 6.x and 6.y also � 0, so E1 and E2 � 0, 
and (4) immediately yields (2). 
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Example 1 If w = 3x2 + 2.xy - y2 where x = cos t and y = sin t, find dwldt. 

Solution Formula (2) tells us that 

�� = (6x + 2 y)(- sin t) + (2x - 2 y) cos t. 

By substituting x = cos t and y = sin t, we can express this in terms of t alone, 

�� = (6 cos t +  2 sin t)( - sin t) + (2 cos t - 2 sin t)(cos t) 

= -6 sin t cos t - 2 sin2 t + 2 cos2 t - 2 sin t cos t 

= 2(cos2 t - sin2 t) - 8 sin t cos t = 2 cos 2t - 4 sin 2t. 

We can check this result by first substituting and then differentiating, which gives 

w = 3 cos2 t + 2 sin t cos t - sin2 t 

and 

as before. 

�� = 6 cos t( -sin t) + 2 sin t( -sin t) + 2 cos2 t - 2 sin t cos t 

= 2(cos2 t - sin2 t) - 8 sin t cos t = 2 cos 2t - 4 sin 2t, 

In the situation of formula (2), it is convenient to call w the dependent vari
able, x and y the intermediate variables, and t the independent variable. We no
tice that the right side of (2) has two terms, one for each intermediate variable, 
and that each of these terms resembles the right side of the single-variable chain 
rule ( 1 ) . 

Formula (2) extends in an obvious way to any number of intermediate vari
ables. For instance, if w = f(x, y, z) where x, y, and z are each functions of t, then 

dw = ow dx + ow dy + ow dz (S) 
dt OX dt Cly dt oz dt ' 

The proof of this is essentially the same as the proof of (2), except that it uses 
the Fundamental Lemma for three variables instead of two. 

Further, x, y, and z here need not be functions of only one independent vari
able, but can be functions of two or more variables. Thus, if x, y, and z are each 
functions of the variables t and u, then w is also a function of t and u, and its 
partial derivatives are given by 

and 

ow = aw ax + aw Cly + aw oz 
ot ax ot Cly ot oz ot 

aw aw ax aw Cly aw oz 
- = - - + - - + - 
au ax au Cly au oz au . 

(6) 

(7) 

We use roundback d's everywhere here because every function depends on more 
than one variable. It is necessary to be very clear about the meanings of the let
ters in formulas like these. For example, on the left side of (6), w is considered 
a function of t and u, while on the right side it i s  considered a function of x, y, 
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and z. The proofs are the same as before, and all of these formulas- (2) ,  (5), 
(6), (7), and their extensions to any number of intermediate and independent vari
ables-are collectively called the chain rule. 

In Section 1 9.4 we defined the differential dw of a function w = f(x, y, z) by 
the formula 

aw dW aw 
dw = ax dx + ay dy + -az- dz. (8) 

The chain rule (5) tells us that if x, y, z are themselves functions of a single in
dependent variable t, then it is permissible to calculate dw/dt by formally divid
ing (8) by dt. Similarly, if x, y, z are functions of the independent variables t, u 
and we want to calculate awtat, then the chain rule (6) tells us that we can find 
aw/at by dividing (8) by dt and writing roundback d's in place of ordinary d's to 
show that there is  another independent variable present which is  being held fixed. 

The individual terms on the right side of (8) are sometimes called the partial 
differentials of w with respect to x, y, z. From this point of view, the quantity dw 
defined by (8) deserves the name total differential, as we remarked in Section 
1 9.4. 

Example 2 A function of several variables is said to be homogeneous of degree 
n if multiplying each variable by t (where t > 0) has the same effect as multi
plying the original function by t". Thus, f (x, y) is homogeneous of degree n if 

f(tx, ty) = t''f (x, y). (9) 

For example,f(x, y) = x2 + 3xy is homogeneous of degree 2,  becausef(tx, ty) = 
(tx)2 + 3(tx)(ty) = t2(x2 + 3xy) = t2f(x, y). Similarly,f(x, y) = (x + y)l(x - y) is 
homogeneous of degree O,f(x, y) = (xy - x2ex1Y)/y is homogeneous of degree 1 ,  

and f(x, y, z) = Y x3 - 3xy2 + 2z3 is homogeneous of degree i. Most functions, 
for instance f(x, y) = y2 + x sin y, are not homogeneous at all. 

There is a theorem of Euler about homogeneous functions that has several im
portant applications : If.f(x, y) is homogeneous of degree n, then 

af of x ax
+ y 

dy 
= nf(x, y). ( 10) 

To prove this, we hold x and y fixed and differentiate both sides of (9) with re
spect to t. We can clarify this process by writing u = tx and v = ty, so that (9) 
becomes 

f (u, v) = t''f (x, y). 

Then by using the chain rule to differentiate with respect to t, we obtain 

or 

af au af dV _ -- + - - = nt'' 1f(x y) 
du at av di 

' 

x 
af + y 

of = nt'' - lf(x, y), 
au a v  

and putting t = I yields ( 1 0) .  Similarly, if f (x1 , x2, . . .  , x,,,) is homogeneous of 
degree n, then the same argument shows that 

af + x,,, -::;---- = nf (x i ,  x2, . . .  , x,,,). oX111 
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Euler's theorem has some interesting consequences for economics. As an ex
ample, suppose that f(x, y) is the production (measured in dollars) of x units of 
capital and y units of labor. If the amounts of capital and labor are doubled, then 
it is reasonable to expect that the resulting production will also double, that is, 
that f(2x, 2 y) = 2f(x, y). More generally, we expect that 

f(tx, ty) = tf(x, y), 

so the production function is  homogeneous of degree 1 .  [In economics, this prop
erty off (x, y) is called constant returns to scale. ] Euler 's  theorem now says that 

f(x, y) = x �� + y ��- ( 1 1 ) 

The partial derivatives af Jax and af Jay are called the marginal product of capi
tal and the marginal product of labor, respectively. In this language, ( 1 1 )  is a the
orem of quantitative economics whose verbal statement is, "The total value of 
production equals the cost of capital plus the cost of labor if each is paid for at 
the rate of its marginal product." Under these circumstances there are no surplus 
earnings, and in the real world this is a very bad thing.* 

Example 3 Many applications of the chain rule involve calculating the effect on 
some equation or expression when new variables are introduced. As an illustra
tion of a method that will be useful for solving the wave equation in Section 1 9.9, 
we now solve the partial differential equation 

aw aw a a;  = aJ' a =F 0. ( 12) 

That is, we find the most general function w = f(x, .") that satisfies this  equation. 
To do this, we introduce new independent variables u, v by writing 

u = x + ay, v = x - ay. (1 3) 

We think of w as a function of u and v, 

w = F(u, v), 

and we find the uv-equation equivalent to ( 12) by using the chain rule to write 

aw aw au aw av aw aw 
- = - - + - - = - + -

ax au ax av ax au a v '  

aw aw au aw a v  aw aw 
- = - - + - - = a - - a -

ay au ay av  ay au av · 

By substituting in these expressions, we see that ( 1 2) transforms into the partial 
differential equation 

aw 2a - = O  
av 

or aw 
a;; = 0. 

'For further information on these matters, see pp. 8 1 -84 of J. M .  Henderson and R. E Quandt, Mi
croeconomic Theory (McGraw-Hill, 1 97 1  ) ; or Chapter 1 2, "Homogeneous Functions and Euler's The
orem," in D. E. James and C. D. Throsby, Quantitative Methods in Economics (Wiley, 1 973). For an 
application of Euler's theorem to advanced theoretical mechanics, see p. 53 1  of the present writer's 
text, Differential Equations, 2nd ed. (McGraw-Hill, 199 1 ). 
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This equation is very easy to solve, because it says that the function w = F(u, v) 
is constant when u is  held fixed and v is allowed to vary, and therefore is  a func
tion of u alone. This means that our desired solution of ( 1 2) is w = g(u) = g(x + ay), 
where g(u) is a completely arbitrary (continuously differentiable) function of u. 
We apologize to students for introducing "out of the blue" the apparently un
motivated transformation equations ( 1 3) .  However, some of the developments of 
Section 19 .9 will make this procedure seem fairly natural. 

Example 4 Partial derivatives are the main mathematical tools used in thermo
dynamics. It is the universal practice in this science to avoid confusion by using 
subscripts on partial derivatives to specify the variable (or variables) held fixed 
in the differentiation. Thus, if w = F (x, y) then ow/ox would be denoted by 

This notation tells us that w is  being thought of as a function of x and y, and that 
y is held fixed and x is the variable of differentiation. This usage may seem su
perfluous, but the following situation- which is quite common in thermody
namics-shows that it is not. 

If w = f(x, y) where y is a function g(x, t) of x and another variable t, so that w is a composite function of x and t, we find its partial derivative with respect 
to x. 

This is a typical chain rule situation with x and y the intermediate variables 
and x and t the independent variables : 

w = f(x, y) where 
{x = x, y = g(x, t). 

The chain rule therefore gives 

so 

ow = ow ox + ow oy OX OX ox oy ox ' 
OW OW aw ay 

- = - + - ax ax ay ax · 

( 14) 

( 15)  

Unfortunately this equation contains two partial derivatives of w with respect to 
x. By an effort of thought one can keep in mind that aw/ax on the left of ( 1 5) is 
the derivative of the composite function, while aw/ax on the right is the deriva
tive of w = f(x, y). Nevertheless, this ambiguous notation invites confusion and 
is contrary to the overall spirit of mathematical symbols, which are intended to 
make it easy to be correct with a minimum of thought. However, if we use the 
subscript notation of thermodynamics, then ( 14) can be written as 
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Since Cdx/"CJx)1 = 1 ,  this becomes 

( 16) 

which is somewhat clumsy but much less vulnerable to misunderstanding than 
( 1 5) .* 

•students whose main interest is physics may wish to read discussions of these matters in some of 
the standard treatises. See, for example, p. 19 of Enrico Fermi, Thermodynamics (Dover, 1956); p. 28 
of Philip M. Morse, Thermal Physics (W. A. Benjamin, 1 969); or pp. 30-33, 52-55 of F. W. Sears, 
Thermodynamics (Addison-Wesley, 1 953). 

PROBLEMS 

In Problems 1-4, find dw/dt in two ways, (a) by using the 
chain rule and then expressing everything in terms of t, and 
(b) by first substituting and then differentiating. 

1 w = ex2+Y2, x = cos t, y = sin t. 
2 w = xy + yz + zx, x = 3t2, y = e', z = e -1• 

3 w = � x = t2 y = 3t x2 _ y2 ' ' · 
4 w = In (x4 + 2x2y + 3y2), x = t, y = 2t2. 

In Problems 5 and 6, find dw/dt and dw/du by the chain rule 
and check your answers by using a different method. 

5 w = x2 + y2, x = t2 - u2, y = 2tu. 

6 
x . w = -2--2, x = t cos u, y = t sm u. x + y 

7 If f is any (continuously differentiable) function, show 
that w = f (x2 - y2) is a solution of the partial differ
ential equation 

dW dW Y ax + x ay = 0. 

Hint: Write w = f(u) where u = x2 - y2 and apply the 
chain rule with only one intermediate variable. 

8 If a and b are constants and w = f(ax + by), show that 

b dw _ dw 
dx - a dy · 

9 If w = f(x2 - y2, y2 - x2), show that 

dw dw Y ax + x ay = 0. 

10 If w = f ( y - x , z 
- y ) , show that xy yz 

dW dW dW x2 ax + y2 ay + z2 az = 0. 

1 1  The differential dw of a function w = f (x, y, z) is de
fined by (8) only for the case in which x, y, z are inde
pendent variables. If x, y, z are not independent, but in-

stead are functions of independent variables t, u, then 
dw must be defined by 

dw dw dw = Tt dt + � du . 

Show that the definition implies (8), so that (8) remains 
valid regardless of whether x, y, z are independent or 
not. 

12 If  u and v are both functions of x, y ,  z, show that 
(a) d(c) = 0, c a constant; 
(b) d(cu) = c du; 
(c) d(u + v) = du + dv; 
(d) d(uv) = u dv + v du; 

( e) d (!!.) = v du - u dv
; 

v v2 
(f) if w = f(u), then dw = f'(u) du. 

1 3  Verify Euler's theorem ( 1 0) for each o f  the following 
functions: 
(a) f(x, y) = xy2 + x2y - y3; 
(b) f(x, y) = exly; 
(c) f(x, y) = Y

�
x2
_

+
_

y-2; 

(d ) f(x, y) = �. x 
1 4  If w = f(x, y) where x = r cos e and y = r sin e, show 

that 

(�:)2 + (�;)2 = (�;)2 + :2 (�;y. 
1 5  I f  a is a constant and w = f (x, y) where x = u cos a -

v sin a and y = u sin a +  v cos a, show that 

1 6  If w = f(x, y )  where x = e" cos v and y = e "  sin v, 
show that 
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17  Obtain formula ( 1 6) by using differentials, a s  follows: 
(a) Write 

(b) If the internal energy E of the quantity of gas un
der discussion is a function of V and T, then, since 
T is a function of p and V, E is indirectly a func
tion of p and V. Show that 

dw = (�:\ cU + (�;)x dy, 

dw = (�:), cU + (�)x dt, 

dy = (��), cU + (�)x dt. 

(b) Substitute dy from the third formula into the first, 
and compare the result with the second. 

* 18 Let the pressure, volume, and temperature of a given 
quantity of a certain gas be denoted (as usual) by p, V, 
T. These variables are not independent, but are con
nected by an equation of the general form 

f( p, V, T )  = 0, 

which is called the equation of state. This equation de
termines any one of the variables as a function of the 
other two. 
(a) By calculating dp and dV, and eliminating dV, show 

that 

( ap ) ( av) + ( ap ) _ 
av r ar p ar v 

- o, (j/!_) ( av) ( ar) = - l  
av r ar p ap v 

· 

It is sometimes necessary to work with functions of the form 

w = F(u, V, x) = r f (x, y) dy, 

where u = u(x) and v = v(x) are functions of x. The chain rule 
yields 

dw dw du dw dv aw - = -- + -- + 
cU du fil av fil dx ' 

and by applying the Fundamental Theorem of Calculus and 
differentiating under the integral sign (Problem 32 in Section 
1 9 .2), we obtain 

d lv 
fil u f(x, y) dy 

du dv lv [ a ] = -f(x, u) 
cU 

+ f(x, v) dx + u aJ<x, y) dy. 

This is known as Leibniz 's formula. 
1 9  Verify Leibniz's formula i n  the following cases: 

(a) u = x, v = x2, f(x, y) = x + y; 
(b) u = x, v = x2, f(x, y) = x3y2 + x2y3; 
(c) u = x, v = x2, f(x, y) = In y. 

1 9 . 7  
MAXIMUM AND 

MINIMUM PROBLEMS 

In the case of functions of a single variable, one of the main applications of de
rivatives is to the study of maxima and minima. In Chapter 4 we developed var
ious tests involving first and second derivatives, and we used these tests for graph
ing functions and attacking a wide variety of geometric and physical problems. 
Maximum and minimum problems for functions of two or more variables can be 
much more complicated.  We confine ourselves here to an introduction to such 
problems, including a two-variable version of the second derivative test (Remark 
3, Section 4.2). 

Suppose that a function z = f(x, y) has a maximum value at a point Po = 
(x0, y0) in the interior of its domain. This means that f (x, y) is defined, and also 
f(x, y) :::; f(xo, y0), throughout some neighborhood of P0, as shown on the left in 
Fig. 1 9 . 1 3 .* If we hold y fixed at the value y0, then z = f(x, y0) is a function of 
x alone, and since it has a maximum value at x = x0, its derivative must be zero 
there, as in Chapter 4. That is, az1ax = 0 at this point. In just the same way, 
az1ay = 0 at this point. The equations 

� = O dx and �= O dy ( I )  

*In this discussion we are considering only a so-called relative (or local) maximum, which takes into 
account only points near to Po, but for simplicity we drop the adjective. 
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z 

I 
I 

I y y 
• x Po = (xo . Yo ) x x 

are therefore two equations in two unknowns that are satisfied at the maximum 
point (x0, y0). In many cases we can solve these equations simultaneously to find 
the point (x0, y0), and thus the actual maximum value of the function. 

Exactly the same considerations apply to the minimum value shown in the cen
ter of the figure. However, when we try to locate maximum or minimum values 
of a function by solving equations ( 1 ), it is necessary to keep in mind that these 
equations are also satisfied at a saddle point like that shown on the right, where 
the function has a maximum in one direction and a minimum in some other di
rection. Equations ( 1 )  mean only that the tangent plane is horizontal, and it is 
then up to us to decide what significance this fact has. 

By  analogy with our earlier definition in Chapter 4 for functions of one vari
able, we call a point (x0, y0) where both partial derivatives are zero a critical point 
ofj (x, y). 

Example I Find the dimensions of the rectangular box with open top and a fixed 
volume of 4 ft3 which has the smallest possible surface area. 

Solution If x and y are the edges of the base, and z is the height, then the area 
is 

A = xy + 2xz + 2 yz. 
Since xyz = 4, we have z = 41.xy, and the area to be minimized can be expressed 
as a function of the two variables x and y, 

8 8 A =  xy + - + -. y x 
We seek a critical point of this function, that is, a point where 

oA 8 
- = y - - = 0  ox x2 ' 

To solve these equations simultaneously, we first write them as 

x2y = 8, xy2 = 8. 

(2) 

Dividing gives xly = 1 ,  so y = x and either equation becomes x3 = 8 .  Therefore 
x = y = 2, and it follows from this that z = 1 ,  so the box with minimum surface 
area has a square base and a height one-half the edge of the base. 

In this example it is geometrically clear that the critical point (2, 2) is actually 
a minimum point, and not a maximum or saddle point. However, in a more com
plicated situation we might find a critical point and yet be completely unable to 
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state its nature, based on commonsense considerations alone. A useful tool for 
classifying critical points is provided by the second derivative test: 

If fl.x, y) has continuous second partial derivatives in a neighborhood of a critical 
point (x0, y0), and if a number D (called the discriminant) is defined by 

then (xo. Yo) is 
D = fxxCxo. Yo)fyy(xo, Yo) - [fxy(xo, Yo)]2, 

(i) a maximum point if D > 0 and f xx(Xo, Yo) < O; 
(ii) a minimum point if D > 0 and f xx(xo, Yo) > O; 
(iii) a saddle point if D < 0. 

Further, if D = 0, then no conclusion can be drawn, and any of the behaviors 
described in (i) to (iii) can occur. 

(3) 

A complete proof of this theorem requires machinery that is  not available to us. 
We refer interested students to more advanced books. • 

Example 1 (continued) As an illustration of the use of the second derivative test, 
we apply it to verify that the critical point (2, 2) found in Example 1 is a mini
mum point of the function (2). Here we have 

16 Axx = 3· x 
1 6  Ayy = 3• y Axy = I , 

so the discriminant (3) has the value D = 2 · 2 - 12 = 3 > 0. Since Axx is also 
positive at the point (2, 2), the test tells us that this critical point is indeed a min
imum point, as claimed. 

Example 2 Find the critical points of the function 

z = 3x2 + 2xy + y2 + ! Ox + 2 y + I ,  

and use the second derivative test to classify them. 

Solution Here we have 

iJz 
iJx = 6x + 2 y  + I O = 0 and 

so the system of equations we must solve is 

3x + y = - 5 , 

x + y = - 1 . 

iJz 
iJy = 2x + 2 y  + 2 = 0, 

By simple manipulations we easily see that x = -2 and y = 1 ,  so there is a sin
gle critical point ( - 2, 1 ) . At this point we have 

D = ZxxZyy - Zxy 2 = 6 · 2 - 22 = 8 > 0, 
and since Zxx = 6 > 0, the critical point is  a minimum point. 

•see, for example, pp. 1 57-159 of R. C. Buck, Advanced Calculus (McGraw-Hill, 1978). 
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Success in finding maximum and minimum points for a function z = f(x, y) 
clearly depends on our ability to solve the two simultaneous equationsfx = 0 and 
fy = 0. In Examples 1 and 2 these equations were very easy to solve. However, 
as students can readily imagine, there are many complicated situations that arise 
in which routine methods of solving simultaneous equations are quite useless. 
The only general advice we can give is to try to solve one of the equations for 
one of the unknowns in terms of the other, substitute this in the second equation, 
and try to solve the result. Apart from this, make good guesses and be ingenious 
-advice that is easier to give than to follow ! 

PROBLEMS 

In Problems 1-8, find the critical points and classify them by 
means of the second derivative test. 

1 z = 5x2 - 3xy + y2 - 15x - y + 2. 
2 z = 2x2 + xy + 3y2 + I Ox - 9y + 1 1 .  
3 z = x5 + y4 - 5x - 32y - 3 .  
4 z = x2 + y3 - 6xy. 
5 z = x2y + 3xy - 3x2 - 4x + 2 y. 
6 z = 3xy2 + y2 - 3x - 6y + 7. 
7 z = x3 + y3 + 3xy + 5 .  
8 z = xy(2x + 4y + 1 ) . 
9 For each of the following functions z = f(x, y), show 

that fx, fy, and D are all 0 at the origin. Also show that 
at the origin (a) has a minimum, (b) has a maximum, 
and ( c) has a saddle point. 
(a) f(x, y) = x4 + y4. 
(b) f(x, y) = -x4 - y4. 
(c) f(x, y) = x3y3. 

10 Show that a rectangular box with a top and fixed vol
ume has the smallest surface area if it is a cube. 

1 1  Show that a rectangular box with a top and fixed sur
face area has the largest volume if it is a cube. 

1 2  If the equations f(x) = 0 and f'(x) = 0 have n o  com
mon roots, show that any critical points of z = yf (x) + 
g(x) must be saddle points. 

1 3  If the sum of three numbers x, y, and z i s  1 2, what must 
these numbers be for the product of x, y2, and z3 to be 
as large as possible? 

*1 4  The function z = (y  - x2)( y - 2x2) has a saddle point 
at (0, 0). 
(a) Verify that (0, 0) is the only critical point. 
(b) Show that the second derivative test fails to estab

lish that this critical point is a saddle point. 
(c) Show that this critical point is a saddle point by di

rect examination of the sign of the function near 
(0, 0). 

( d )  It seems reasonable to suppose that a critical point 
Po = (xo, Yo) of z = f(x, y) will necessarily be a 
minimum point for this surface if every vertical sec
tion of the surface through Po has Po as a minimum 
point. Show that this idea is false by examining the 

15  

1 6  

1 7  

1 8  

1 9  

20 

21  

22 

23 

*24 

*25 

vertical section of z = (y - x2)( y - 2x2) in the 
plane y = mx. 

A rectangular box has three faces in the coordinate 
planes and one vertex P = (x, y, z) in the first octant on 
the plane ax + by + cz = 1 .  Find the volume of the 
largest such box. 
Solve Problem 15 if P lies on the ellipsoid x2/a2 + 
y2!b2 + z2/c2 = 1 .  Hint: Use implicit differentiation. 
Solve Problem 1 5  if P lies on the paraboloid z = I -
x2 - y2. 
If z = f(s, t) is the square of the distance between a vari
able point on the line 

X = -2 + 4s, y = 3 + S, z = - 1  + 5s 
and a variable point on the line 

x = - I - 2t, y = 3t, z = 3 + t, 
show that this function has one critical point which is a 
minimum. In this way find the distance between the lines. 
Find the distance from the origin to the plane x + 2 y + 
3z = 14 . Hint: Minimize w = x2 + y2 + z2 by treating 
y and z as the independent variables. 
The sides of an open rectangular box cost twice as much 
per square foot as the base. Find the relative dimensions 
of the largest box that can be made for a given cost. 
Find the equation of the plane through (2, 2, 1 )  that cuts 
off the smallest volume from the first octant. 
If (xi, Yi), (x2, Y2) , and (x3, y3) are the vertices of a tri
angle, find the point (x, y) such that the sum of the 
squares of its distances from the vertices is as small as 
possible. 
If a, {3, y are the angles of a triangle, find the maxi
mum value of sin a + sin f3 + sin y. 
Among all triangles with given fixed perimeter, show 
that the equilateral triangle has the largest area. Hint: 
Let the perimeter be 2s, use Heron's formula 

A = V s(s - a)(s - b)(s - c), and maximize In A. (Can 
you solve this problem without calculation, by merely 
thinking about it?) 
Among all triangles inscribed in a given circle, show 
that the equilateral triangle has the greatest area. Hint: 
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If a, {3, y are the central angles subtending the sides of 
the triangle, so that a + f3 + y = 2 Tr, observe that the 
area of the triangle is a constant multiple of sin a + 
sin f3 - sin (a + {3). 

26 When an electric current of magnitude I flows through 
a wire of resistance R, the heat generated is proportional 
to J 2R. Two terminals are connected by three wires of 
resistances R1 ,  R2, R3. A given current flowing between 
the terminals will divide in such a way as to minimize 
the total heat produced. Show that the currents /1, Ji, h 
in the three wires will satisfy the equations /1R1 = 
/2 R2 = /3R3. 

*27 A pentagon consists of an isosceles triangle on top of 
a rectangle. If the perimeter P is fixed, find the dimen
sions of the rectangle and the height of the triangle that 
yield the maximum area. 

*28 Show that the surface z = (2x2 + y2)e I -x2-Y2 looks like 
two mountain peaks joined by two ridges with a hol
low depression between them. 

29 A laboratory scientist performs an experiment n times 
and obtains n pairs of data, 

The theory underlying her experiment suggests that 
these points should lie on a straight line y = mx + b, 
but they do not because of experimental error. She then 
determines the line that gives the "best fit" for the data 
in the sense of the method of least squares (see Prob
lem 30 in Section 4.4): She chooses m and b to mini
mize the sum of the squares of the vertical deviations 
(Fig. 19. 1 4), 

,, 

S = S(m, b) = L (mx; + b - y;)2. 
i = I  

y 

I 
I 
• 

(x 1 , Y 1 ) 

mx · + b - Y · {i I 
I I 

• 
(X;, Y;) 

Figure 19. 1 4  
x 

Show that m and b are determined as the simultaneous 
solution of the equations 

m I x;2 + b I X; =  I x;y;, 

m I x; + nb = I Yi· 
30 Use the method of least squares explained in Problem 

29 to find the line that best fits the data ( l ,  1 .7), (2, 1 .8),  
(3, 2.3), ( 4, 3 .2). 

':'3 1 Use the second derivative test to verify that S in Prob
lem 29 is actually minimized by the stated values of m 
and b. Hint: It is necessary to use the fact that (2:x;)2 < 
n2:x;2 unless the x;'s are all equal; as a start toward es
tablishing this, show that the maximum value of 
f (x, y, z) = x + y + z on the sphere x2 + y2 + z2 = a2 
is \13a, and conclude that (x + y + z)2 ::; 3(x2 + y2 + 
z2) for any three numbers x, y, z. 

1 9 .8  
CONSTRAINED 

MAXIMA AND MINIMA. 

In this section we explain the method of Lagrange multipliers by means of intu
itive ideas that depend on the geometric meaning of gradients. This method is 
used for maximizing or minimizing functions of several variables subject to one 
or more constraints. It is  an important tool in economics, differential geometry, 
and advanced theoretical mechanics. 

LAGRANGE 
MULTIPLIERS 

We begin with the s implest case, that of two variables and one constraint. 
In Section 1 9.7 we learned how to calculate maximum and minimum values 

of a function z = f(x, y) of two independent variables x and y. However, in many 
problems x and y are not independent, but instead are connected by a side con
dition or constraint in the form of an equation 

g(x, y) = 0. ( l )  

In Chapter 4 we became thoroughly familiar with situations of this kind. The fol
lowing is a simple illustration. 

Example I Find the d imensions of the rectangle of maximum area that can be 
inscribed in a semicircle of radius a. 
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Solution It is c lear from Fig. 1 9  . 1 5  that the problem is to maximize the func
tion 

A =  2.xy (2) 

subject to the constraint 

x2 + y2 = a2. (3) 

In Example 3 of Section 4.3 we solved this problem by using the constraint (3) 
to express A as a function of only one variable, Figure 19. 15  

y = y' a2 - x2, so that A = 2xYa2 - x2. 

We then calculated dA/dx, set it equal to zero, solved the resulting equation, and 
so on. This example will be continued after some remarks and explanations. 

The procedure we have just described works well enough for this problem, but 
as a general method it has two defects. First, in this particular case equation (3) 
is easy to solve for y, but in another problem the constraint ( 1 )  might be so com
plicated that it would be difficult or impossible to solve. The other defect lies in 
the fact that even though the variables x and y play equal roles in the problem, 
they are handled differently in the solution : We singled out one variable, x, to be 
the independent variable, and the other, y, to be the dependent variable. It is of
ten more convenient, and certainly more elegant, to treat such problems in a sym
metric form, in which no preference is given to any one of the variables over the 
others. * 

We now return to the general problem of maximizing a function f(x, y) sub
ject to the constraint g(x, y) = 0. To understand what is going on, we sketch the 
graph of g(x, y) = 0 (Fig. 19 . 1 6) together with several level curves f(x, y) = c of 
the function f(x, y), noting the direction in which c increases. In the figure, for 
instance, we suppose that c 1  < c2 < c3 < c4. To find the maximum value of f 
(x, y) along the curve g(x, y) = 0, we look for the largest c for which f(x, y) = c 

intersects g(x, y) = 0. At such an intersection point (Po in the figure) the two 
curves have the same tangent line, so they also have the same normal line. But 
the vectors 

and 

gradf = a1 i + a1 j ax dy 

d ag .  ag . 
gra g = - 1 + - J ax dy 

are normal to these curves, and are therefore parallel to each other at the point 
P0. Hence one vector is a scalar multiple of the other at P0, that is, 

grad f = A  grad g (4) 

for some number A. (This argument assumes that grad g * 0 at P0, so that the 
curve g(x, y) = 0 actually has a tangent at this point.) 

The great physicist Einstein once said-probably in a fit of impatience with mathematicians and 
their ways-that "Elegance is for tailors," but he was wrong. For mathematicians and theoretical 
physicists alike, the aesthetic factor in their thinking is as indispensable as the senses of taste and 
smell are for a master chef. 

y 

Figure 19.16 
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The vector equation (4), together with g(x, y) = 0, yields the three scalar equa
tions 

g(x, y) = 0. (5) 

Accordingly, we have three equations that we can try to solve simultaneously for 
the three unknowns x, y, and ,.\. The points (x, y) that we find are the only pos
sible locations for the maximum (or minimum) values of f(x, y) with the con
straint g(x, y) = 0. The corresponding values of ,.\ may emerge from the process 
of solving (5), but they are usually not of much interest to us. The final step is 
to calculate the value of f(x, y) at each of the solution points (x, y) in order to 
distinguish maximum values from minimum values. 

The method of Lagrange multipliers is simply the following handy device for 
obtaining equations (5) :  Define a function L(x, y, ,.\) of the three variables x, y, 
and ,.\ by 

L(x, y, A) = f(x, y) - Ag(x, y), (6) 

and observe that equations (5) are equivalent, in the same order, to the equations 

aL = O ax , aL = O ay ' 
aL 
aA = O. (7) 

The variable ,.\ is called the Lagrange multiplier. Thus, to find the constrained 
maximum or minimum values of f(x, y) with the constraint g(x, y) = 0, we look 
for the unconstrained (or free) maximum or minimum values of the function L 
defined by (6). We emphasize that this method has two maj or features that can 
be of practical value, and are often important for theoretical work: It does not 
disturb the symmetry of the problem by making an arbitrary choice of the inde
pendent variable, and it removes the constraint at the small expense of introduc
ing ,.\ as another variable. 

Example I (continued) To solve the inscribed rectangle problem by this new 
method, we first express the constraint (3) in the form x2 + y2 - a2 = 0 and then 
write down the function 

The equations (7) are 

L = 2xy - A(x2 + y2 - a2). 

aL - = 2y - 2Ax = 0 
ax ' 

aL ay = 2x - 2,\y = 0, 

aL 
aA = -(x2 + y2 - a2) = 0. 

(8) 

(9) 

( 10) 

Equations (8) and (9) yield y = ,\x and x = ,\y, and substituting in ( 1 0) gives 

A2(x2 + y2) = a2. 
But ( 1 0) tells us that x2 + y2 = a2, so ,\2 = 1 and ,.\ = ± 1 .  The value ,.\ = - 1  
would imply that y = -x, which is impossible because both x and y are positive 
numbers, so ,.\ = l and y = x. This gives the shape of the largest inscribed rec
tangle, namely, twice as long as it is wide, because 



1 9.8 CONSTRAlNED MAXIMA AND MINIMA. LAGRANGE MULTIPLIERS 

length = 2x = 2y = 2(width). 

If we want the actual dimensions of this largest rectangle, we substitute y = x 
into x2 + y2 = a2 to find that x = y = � v'2a, so the length = 2x = Vla and the 
width = y = _i_Vla 2 • 

One of the merits of the method of Lagrange multipliers is that it extends very 
easily to situations with more variables or more constraints. For instance, to max
imize f (x, y, z) subject to the constraint g(x, y, z) = 0, the gradient 

grad / = a1 i + a1 j + a1 k 
ax ay az 

must be normal to the surface g(x, y, z) = 0 ( Fig. 1 9 . 1 7), so gradf must be par
allel to grad g, and again we have 

The four equations 

a1 = A  ag ax ax ' 

grad f = A grad g. 

a1 = A  ag az az , g(x, y, z) = 0, 

in the four unknowns x, y, z, A are again equivalent to the simpler equations 

aL = O ax , 
aL = O ay , 

where L = f(x, y, z) - Ag(x, y, z). 

aL = O az , aL 
aA = O, 

Similarly, suppose we want to maximize or minimize f(x, y, z) subject to two 
constraints g(x, y, z) = 0 and h(x, y, z) = 0. Each constraint defines a surface, and 
in general these two surfaces have a curve of intersection. As before, a point Po 

wheref(x, y, z) has a maximum or minimum value on this curve is a point where 
a level surface off is tangent to the curve, that is, a point where grad f is normal 
to the curve (Fig. 1 9 . 1 8) .  But the vectors grad g and grad h determine the nor
mal plane to the curve at P0, and since grad f lies in this plane, there must be 
scalars A and µ. (two Lagrange multipliers this time) with the property that 

grad/ = A grad g + µ, grad h. 

(This argument assumes that grad g * 0 and grad h * 0, and that these vectors 
are not parallel. )  Just as before, this vector equation and the two constraint equa
tions are easily seen to be equivalent to the following five equations in five un
knowns: 

aL = O ax , aL = O ay , aL = O az , 

where L = f(x, y, z) - Ag(x, y, z) - µ.h(x, y, z). 

aL 
aA 

= O, 

We illustrate these methods with two examples. 

aL = O aµ , 

Example 2 Find the point on the plane x + 2 y + 3z = 6 that is closest to the 
origin. 

Solution We want to minimize the distance Y x2 + y2 + z2 subject to the con
straint x + 2 y + 3z - 6 = 0. If the distance is a minimum, its square is a mini-

Figure 19.17 

�grad f 

,./.� 

,.f' \ , � 1-sg = 0, '1· % 
lh = 0 

Figure 19.18 
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mum, so we simplify the calculations a bit by minimizing x2 + y2 + z2 with the 
same constraint. Let 

L = x2 + y2 + z2 - A(x + 2 y + 3z - 6). 

Then the equations we must solve are 

()L 
dX = 2x - ,\ = 0, 

()L aJ = 2y - 2A = 0, 

()L Tz = 2z - 3A = 0, 

()L 
(),\ = - (x + 2y + 3z - 6) = 0. 

Substituting the values for x, y, and z from the first three equations into the fourth 
gives 

tA + 2A + f A = 6 or .lf-A = 6 or A = t. 
It now follows that x = t, y = �' and z = t, so the desired point is (t, �' t). 
Example 3 Find the point on the line of intersection of the planes x + y + z = 
1 and 3x + 2 y + z = 6 that is closest to the origin. 

This time we want to minimize x2 + y2 + z2 subject to the two constraints x + 
y + z - 1 = 0 and 3x + 2 y + z - 6 = 0. If we write 

L = x2 + y2 + z2 - A(x + y + z - 1 )  - µ,(3x + 2 y  + z - 6), 

then our equations are 

()L 
dX 

= 2x - ,\ - 3µ, = 0, 

()L 
()y 

= 2y - ,\ - 2µ, = 0, 

()L az = 2z - ,\ - J.L = 0, 

()L (),\ = -(x + y + z - 1 )  = 0, 

()L 
()µ, = -(3x + 2 y  + z - 6) = 0. 

The first three equations give 

x = i(A + 3µ,), y = t<A + 2µ,), z = t(A + µ,). 

When these expressions are substituted in the fourth and fifth equations and the 
results are simplified, we get 

3,\ + 6µ, = 2, 

3A + 7µ, = 6, 
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so µ, =  4 and A =  -¥. These values give x = f, y = t, z = -t, so the desired 
point is (f, t, -t). 

Remark 1 In economics, Lagrange multipliers are used to analyze the problem 
of maximizing the total production of a manufacturing firm subject to the con
straint of fixed available resources. For example, let 

P = f (x, y) = Ax "y/3, a +  {3 = 1 ,  
be the production (measured in dollars) resulting from x units of capital and y 
units of labor. Then this function-known to economists as the Cobb-Douglas 
production function-is homogeneous of degree 1 in the sense explained in Ex
ample 2 of Section 19.6 .  If the cost of each unit of capital is a dollars, and of 
each unit of labor is b dollars, and if a total of c dollars is available to cover the 
combined costs of capital and labor, then we want to maximize the production 
P = f(x, y) subject to the constraint ax + by = c. In Problem 23 we ask students 
to show that production is maximized when x = acla and y = {3c!b.* 

Remark 2 At the beginning of this section we said that Lagrange multipliers 
also have applications to differential geometry and advanced theoretical me
chanics. These applications are too complicated to describe here, but the details 
can be found on pp. 52 1-523 and 529 of the present writer's text, Differential 
Equations, 2nd ed. (McGraw-Hill, 199 1 ) . 

··For further details, interested students can look up Cobb-Douglas production functions in the in
dexes of the books mentioned in the first footnote of Section 19.6. 

PROBLEMS 

Solve all of the following problems by Lagrange multipliers. 
A rectangle with sides parallel to the axes is inscribed 
in the region bounded by the axes and the line x + 2 y = 
2. Find the maximum area of this rectangle. 

2 Find the rectangle of maximum perimeter (with sides 
parallel to the axes) that can be inscribed in the ellipse 
x2 + 4y2 = 4. 

3 Find the rectangle of maximum area (with sides paral
lel to the axes) that can be inscribed in the ellipse x2 + 
4y2 = 4. 

*4 On each of the following curves, find the points that are 
closest to the origin and those that are farthest from the 
origin: 
(a) x2 + .xy + y2 = 3 ; (b) x4 + 3xy + y4 = 2. 

5 If a cylinder has fixed volume V0, find the relation be
tween the height h and the radius of the base r that min
imizes the surface area. 

6 Find the maximum and minimum values of f (x, y) = 
2x2 + y + y2 on the circle x2 + y2 = 1 . 

7 Find the maximum and minimum values of f (x, y) = 
x2 - xy + y2 on the circle x2 + y2 = 1 .  

8 Find the ellipse x2/a2 + y2/b2 = 1 that passes through 
the point (4, 1 )  and has the smallest area. Hint: The area 
of this ellipse is TTab. 

*9 Find the ellipsoid x2/a2 + y2!b2 + z2/c2 = I that passes 
through the point ( I ,  2, 3) and has the smallest volume. 
Hint: The volume of this ellipsoid is �7Tabc. 

10 Find the maximum value of f(x, y, z) = 2x + 2 y  - z 
on the sphere x2 + y2 + z2 = 4. 

n Find the minimum value off(x, y, z) = x2 + 2y2 + 3z2 
on the plane x - y - z = I . 

1 2  Find the maximum value of f (x, y ,  z) = x + y + z o n  
the ellipsoid x2/a2 + y2!b2 + z2/c2 = I .  

13  Find the maximum volume o f  a rectangular box i f  the 
sum of the lengths of its edges is 1 2a. 

14 Find the maximum volume of a rectangular box if the 
sum of the areas of its faces is 6a2 . 

1 5  (a) Show that o f  all triangles inscribed i n  a given cir
cle, the equilateral triangle has the maximum 
perimeter. Hint: If a is the radius of the circle and 
a, {3, y are the central angles subtending the three 
sides, what is the perimeter? 
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(b) In part (a), show that the inscribed equilateral tri
angle also has the maximum area. 

16 Find the point on the line of intersection of the planes 
x + 2 y + z = l and - 3x - y + 2z = 4 that is closest 
to the origin. 

17 (a) Find the point on the plane ax + by + cz + d = 0 
that is closest to the origin, and use this informa
tion to write down a formula for the distance from 
the origin to the plane. 

(b) Adapt the method used in part (a) to show that the 
distance from an arbitrary point (x0, y0, zo) to the 
given plane is 

laxo + byo + czo + di 
\!a2 + b2 + c2 

18 (a) Show that the triangle with the greatest area A for 
a given perimeter is equilateral. Hint: If x, y, z are 
the sides, then A = '\/ s(s - x)(s - y)(s - z), where 
2s = x + y + z. 

(b) Show that the triangle with the smallest perimeter 
for a given area is equilateral. 

19 If the sum of 11 positive numbers x1 , x2, . . .  , x,, has a 
fixed value s, show that their product x1x2 · · · x,, has 
s"/n" as its maximum value, and conclude from this that 
the geometric mean of n positive numbers can never ex
ceed their arithmetic mean: 

*20 (a) Find the maximum value of 
n 

I X; Y; 
i= I 

with the constraints 

n n 
L x;2 = 1 and I y;2 = i .  
i= l i= I 

(b) Use part (a) to prove that for any numbers a 1 ,  a2, 
. . .  , a,, and b 1 ,  b2, . . . , b11, 

n ( 11 ) \/2( n ) 1 12 I a;b; :s I a;2 I b;2 . 
t = l  1 = 1  1 = l  

Hint: Put 
a; 

and X; = ( i a;2
) 1 /2 

t = I 

Y; = 
b; 

The inequality in (b) is an important fact in higher math
ematics called the Schwarz inequality. 

*21 Use the method of Problem 20 to establish Holder's in
equality: If l lp + llq = 1 and the a;'s and b;'s are non
negative numbers, then 

n ( 11 ) \ Ip( n ) liq ;� a;b; :s � a;P � b;q . 

Observe that when p = q = 2, Holder's inequality re
duces to the Schwarz inequality. 

22 Refer back to Example 4 in Section 4.4, and the nota
tion in Fig. 4.28, to obtain Snell's law of refraction by 
minimizing the total time of travel, 

T =  a + b 
Va COS Q' Vw COS {3 ' 

subject to the constraint a tan a + b tan f3 = a constant. 
23 Show that to maximize the Cobb-Douglas production 

function P = f(x, y) = Ax<>y.B (a + f3 = 1 )  subject to 
the constraint of fixed total costs, ax + by = c, we must 
put x = ac/a and y = f3c/b. 

19 . 9 
A very large part of mathematical physics is concerned with three classic partial 
differential equations: Laplace 's equation, 

(OPTIONAL) LAPLACE'S 
EQUATION, THE HEAT 
EQUATION, AND THE 

WAVE EQUATIO N .  
LAPLACE AND FOURIER 

the heat equation, 

and the wave equation, 

o2w o2w o2w 
ox2 + oy2 + oz2 = O; 

2 ( <12w o2w o2w ) - o2w a ox2 + oy2 + oz2 - ot2 . 

( 1 )  

(2) 

(3) 

As the notation indicates, in (2) and (3) the variable w is understood to be a 
function of the time t and the three space coordinates x, y, z of a point P, and 
in ( 1 )  w depends only on x, y, z and is independent of t. The quantity a is a 
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constant. Each of our three equations also has simpler two- and one-dimensional 
versions, depending on whether two space coordinates are present, or only one. 
Thus, 

d2w d2w dx2 + dy2 = 
0 

is the two-dimensional Laplace equation, and 

a2 d2w = dw dx2 dt and 

are the one-dimensional heat equation and wave equation. 

(4) 

A full study of these equations can occupy years, because their physical mean
ing is extraordinarily rich, and also much concentrated thought is necessary to 
master the various branches of advanced mathematics that are needed to solve 
and interpret them. In this section we consider several aspects of these equations 
that do not require too much technical background. 

LAPLACE'S EQUATION 

If a number of particles of masses m 1 ,  m2, . • •  , mn, attracting according to the 
inverse square law of gravitation, are placed at points Pi ,  P2, . . .  , P n• then the 
potential due to these particles at any point P (that is, the work done against their 
attractive forces in moving a unit mass from P to an infinite distance) is 

Gm1 Gm2 Gmn w =-- + -- + . . · + --PP1 PP2 PPn ' (5) 

where G is the gravitational constant.* If the points P, P1 ,  P2, . . .  , Pn have rec
tangular coordinates (x, y, z), (xi , Y J .  z 1 ) ,  (x2, Y2, z2) ,  . . .  , (xn, Yn, Zn) ,  so that 

PP1 = Y(x - x1 )2 + ( y - Y1)2 + (z - z1 )2, 
with similar expressions for the other distances, then it is quite easy to verify that 
the potential w satisfies Laplace's equation ( 1 ) .  This equation does not involve 
either the particular masses or the coordinates of the points at which they are lo
cated, so it is satisfied by the potential produced in empty space by an arbitrary 
discrete or continuous distribution of mass. 

The function w defined by (5) is called a gravitational potential. If we work 
instead with electrically charged particles of charges q i ,  qi, . . .  , qm then their 
electrostatic potential has the same form as (5) with the m's replaced by q's and 
G by Coulomb's constant, so it also satisfies Laplace's equation. In fact, this 
equation has such a wide variety of applications that its study is a branch of math
ematics in its own right, known as potential theory. 

THE HEAT EQUATION 

When we study the flow of heat in thermally conducting bodies, we encounter 
an entirely different type of problem leading to a partial differential equation. 

•see Example 2 in Section 7.7. In this example we show that if two particles of masses M and m are 
separated by a distance a, then the work done in separating them to an infinite distance is GMmla. 
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PARTIAL DERIVATIVES 

In the interior of a body where heat is flowing from one region to another, the 
temperature generally varies from point to point at any one time, and from time 
to time at any one point. Thus, the temperature w is a function of the space co
ordinates x, y, z and the time t, say w = f(x, y, z, t). The precise form of this func
tion naturally depends on the shape of the body, the thermal characteristics of its 
material, the initial distribution of temperature, and the conditions maintained on 
the surface of the body. The French physicist-mathematician Fourier studied this 
problem in his classic treatise of 1822, Theorie Analytique de la Chaleur (Ana
lytic Theory of Heat). He used physical principles to show that the temperature 
function w must satisfy the heat equation (2). * We shall retrace his reasoning in 
a simple one-dimensional situation, and thereby derive the one-dimensional heat 
equation. 

The following are the physical principles that will be needed. 

(a) Heat flows in the direction of decreasing temperature, that is, from hot re
gions to cold regions. 

(b) The rate at which heat flows across an area is proportional to the area and 
to the rate of change of temperature with respect to distance in a direction 
perpendicular to the area. (This proportionality factor is denoted by k and 
called the thermal conductivity of the substance. )  

(c) The quantity of heat gained or lost by a body when its temperature changes, 
that is, the change in its thermal energy, is proportional to the mass of the 
body and to the change of temperature. (This proportionality factor is de
noted by c and called the specific heat of the substance.) 

We now consider the flow of heat in a thin cylindrical rod of cross-sectional 
area A (Fig. 19. 1 9) whose lateral surface is perfectly insulated so that no heat 
flows through it. This use of the word "thin" means that the temperature is as
sumed to be uniform on any cross section, and is therefore a function only of the 
time and the position of the cross section, say w = f (x, t). We examine the rate 
of change of the heat contained in a thin slice of the rod between the positions 
x and x + Ax. 

If p is the density of the rod, that is, its mass per unit volume, then the mass 
of the slice is 

!::i.m = pA !::i.x. 

Furthermore, if Aw is the temperature change at the point x in a small time in
terval !it, then (c) tells us that the quantity of heat stored in the slice in this time 
interval is 

t::i.H = c !::i.m t::i.w = cpA t::i.x !::i.w, 

so the rate at which heat is being stored is approximately 

t::i.H t::i.w 
Tt = cpA t::i.x tll. (6) 

We assume that no heat is generated inside the slice- for instance, by chemical 
or electrical processes- so that the slice gains heat only by means of the flow 

The same partial differential equation also describes a more general class of diffusion processes, 
and is sometimes called the diffusion equation. 
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of heat through its faces. By (b) the rate at which heat flows into the slice through 
the left face is 

-kA ow l . 
ax x 

The negative sign here is chosen in accordance with (a), so that this quantity will 
be positive if 'dw/'dx is negative. Similarly, the rate at which heat flows into the 
slice through the right face is 

kA ow l OX x+iix' 

so the total rate at which heat flows into the slice is 

kA aw I - kA aw I dX x+lix dX x' 

If we equate the expressions (6) and (7), the result is 

or 

kA ow l - kA ow l = cp A Lix Liw 

OX x+lix ax x Lit ' 

_15__ [ dwloxlx+lix - owloxlx J = Liw 
cp Lix Lit · 

Finally, by letting Lil and 6.t � 0 we obtain the desired equation, 

2 Cl2w _ ow 
a ox2 -

dt ' 

(7) 

where a2 = k/cp. This is the physical reasoning that leads to the one-dimensional 
heat equation. The three-dimensional equation (2) can be derived in essentially 
the same way. 

THE WAVE EQUATION 

All phenomena of wave propagation, for example, of light or sound or radio 
waves, are governed by the wave equation (3). We shall consider the simple case 
of a one-dimensional wave described by the one-dimensional wave equation 

()2w ()2w 
a2 ox2 = ()r2 . (8) 

Such a wave involves some property w = f(x, t), such as the position of a parti
cle, the intensity of an electric field, or the pressure in a column of air, that de
pends not only on the position x but also on the time t. 

In order to understand the connection between waves and equation (8), we 
consider a function w = F(x - at). At t = 0, it defines the curve w = F(x), and 
at any later time t = t 1 ,  it defines the curve w = F(x - at1 ) . It is easy to see that 
these curves are identical except that the latter is translated to the right through 
a distance at1 , and therefore with velocity 

at1 v = - = a. 
ti 
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Figure 19.20 A traveling wave. 
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w 

w = F(x) w = F(x - at) 

x 

This shows that the function w = F(x - at) represents a traveling wave that moves 
to the right with velocity a, as suggested in Fig. 1 9.20. If we assume that w = 
F(u) has a second derivative, then by the chain rule applied to w = F(u) where 
u = x - at, we have 

�: = F ' (u), 

()2w = F "( ) ax2 u ' 

�� = F ' (u) · (-a) = -aF ' (u), 

�t� = -aF"(u) · (-a) = a2F "(u). 

It is clear from this that w = F(x - at) satisfies the one-dimensional wave equa
tion (8) . 

Similarly, the function w = G(x + at) represents a traveling wave that moves 
to the left with velocity a, and it is equally easy to show that this function is a 
solution of (8). By the linearity of differentiation, it follows that the sum 

w = F (x - at) + G(x + at) (9) 
is also a solution. In fact, it can be shown (see Problem 8) that if F and G are 
arbitrary twice-differentiable functions, then (9) is the general solution of (8), 
in the sense that every solution of (8) has the form (9). It is fairly clear that the 
function (9) represents the most general one-dimensional wave, and this result 
confirms it. 

!Al NOTE ON LAPLACE m Pierre Simon de Lapfaoo ( 1 749-1 827) w" 
a French mathematician and theoretical astronomer who was 
so famous in his own time that he was known as the New
ton of France. His main scientific interests throughout his 
life were celestial mechanics and the theory of probability. 

ance elsewhere, and succeeded in proving that the ideal so
lar system of mathematics is a stable dynamical system that 
will endure unchanged for all time. This achievement was 
only one of the long series of triumphs recorded in his mon
umental treatise Mecanique Celeste (published in five vol
umes from 1 799 to 1 825), which summed up the work on 
gravitation of several generations of illustrious mathemati
cians. Many anecdotes are associated with this work. One 
of the best known describes the occasion on which Napoleon 
tried to get a rise out of Laplace by protesting that he had 
written a huge book on the system of the world without once 
mentioning God as the author of the universe. Laplace is 
supposed to have replied, "Sire, I had no need of that hy-

At the age of 24 he was already deeply engaged in the 
detailed application of Newton's law of gravitation to the 
solar system as a whole, in which the planets and their satel
lites are not governed by the sun alone but interact with one 
another in a bewildering variety of ways. Even Newton had 
been of the opinion that divine intervention would occa
sionally be needed to prevent this complex mechanism from 
degenerating into chaos. Laplace decided to seek reassur-



1 9.9 (OPT IONAL) LAPLACE'S EQUATION, THE HEAT EQUATION, AND THE WAVE EQUATION. LAPLACE AND FOURIER 707 

pothesis." The principal legacy of the Mecanique Celeste to 
later generations lay in Laplace's wholesale development of 
potential theory, with its far-reaching implications for a 
dozen different branches of physical science ranging from 
gravitation and fluid mechanics to electromagnetism and 
atomic physics. Even though the concept of the potential is 
due to Lagrange, Laplace exploited it so extensively that ever 
since his time the fundamental differential equation of po
tential theory has been known as Laplace's equation. 

His other masterpiece was the treatise Theorie Analytique 
des Probabilites ( 1 8 1 2), in which he incorporated his own 

IAI NOTE ON FOURIER m J0<m B•pti•t<o Jo.oph Fomi« ( 1 768-1 830), 
an excellent mathematical physicist, was a friend of 
Napoleon (so far as such people have friends) and accom
panied his master to Egypt in 1 798. On his return he be
came prefect (governor) of the district of Isere in south
eastern France, and in this capacity built the first real road 
from Grenoble to Turin. He also befriended the boy Cham
pollion, who later deciphered the Rosetta Stone as the first 
long step toward understanding the hieroglyphic writing of 
the ancient Egyptians. 

During these years he worked on the theory of the con
duction of heat, and in 1 822 published his famous Theorie 
Analytique de la Chaleur, in which he made extensive use 
of the series that now bear his name. These series were of 
profound significance in connection with the evolution of 
the concept of a function. The general attitude at that time 
was to call f(x) a function if it could be represented by a 
single expression like a polynomial, a finite combination of 
elementary functions, a power series �;=O a,,xn, or a trigono
metric series of the form 

-

�o + L (an cos nx + bn sin nx). 
n= l  

PROBLEMS 

1 (a) Verify that the function 

satisfies Laplace's equation ( I ) . 

discoveries in probability from the preceding 40 years. This 
book is generally agreed to be the greatest contribution to 
this part of mathematics ever made by one man. In the in
troduction he says, "At bottom, the theory of probability is 
only common sense reduced to calculation." This may be 
so, but the following 700 pages of intricate analysis-in 
which he freely used Laplace transforms, generating func
tions, and many other highly nontrivial tools-has been said 
by some to surpass in complexity even the Mecanique 
Celeste. 

If the graph of f(x) were "arbitrary" -for example, a poly
gonal line with a number of comers and even a few gaps -
then f(x) would not have been accepted as a genuine func
tion. Fourier claimed that "arbitrary" graphs can be repre
sented by trigonometric series and should therefore be  
treated as  legitimate functions, and i t  came as  a shock to 
many that he turned out to be right. It was a long time be
fore these issues were completely clarified, and it was no 
accident that the definition of a function that is now almost 
universally used was first formulated by Dirichlet in 1 837 
in a research paper on the theory of Fourier series. Also, the 
classical definition of the definite integral due to Riemann 
was first given in his fundamental paper of 1 854 on the sub
ject of Fourier series. Indeed, many of the most important 
mathematical discoveries of the nineteenth century are di
rectly linked to the theory of Fourier series, and the appli
cations of this subject to mathematical physics have been 
scarcely less profound. 

Fourier himself is one of the fortunate few: his name has 
become rooted in all civilized languages as an adjective that 
is well known to physical scientists and mathematicians in 
every part of the world. 

(b) A differential equation is called linear if the sum of 
two solutions is a solution, and any constant times a 
solution is a solution. Verify that Laplace's equation 
( I )  is linear, and conclude from part (a) that the po
tential (5) is a solution. 
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2 (a) Determine whether or not the function 

w = -----;:======= 
Y(x - x1 ) 2  + (y - Y1 )2 

is a solution of Laplace's equation (4) in two di
mensions. 

(b) Show that the function w = In [(x - x1)2 + ( y  -
y1 )2] is a solution of Laplace's equation (4) in two 
dimensions. 

3 Verify that each of the following functions satisfies 
Laplace's equation ( I ) : 
(a) w = x2 + 2y2 - 3z2; 
(b) w = x2 - y2 + 57z; 
(c) w = 4z3 - 6(x2 + y2)z; 
(d ) w = e -2x sin 2y + 3z; 
(e) w = e3xe4Y cos 5z; 
(f) w = e i 3x sin 12y cos 5z. 

*4 If w = f (x, y) is transformed into w = F(r, (}) by the 
equations x = r cos e, y = r sin (} (these are the trans
formation equations from rectangular to polar coordi
nates), show that the two-dimensional Laplace equation 

becomes 

Cl2w o2w 
()x2 + oy2 = 0 

o2w + _!_ aw + J__ o2w = 0 
or2 r or r2 ae 2 . 

5 Use Problem 4 to show that each of the functions w1 = 
r" sin n(} and w2 = r" cos n(}  satisfies Laplace's equation 
in two dimensions. 

6 Suppose that a solution w = f (x, t) of the one-dimen
sional heat equation 

a2 o2w = ow 
ox2 ot 

has the form f (x, t) = g(x)h(t), that is, is the product of 
a function of x and a function of t. 
(a) Show that a2g"(x)h(t) = g(x)h' (t). 
(b) Part (a) implies that 

g"(x) h' (t) 
g(x) = a2h(t) ' 

where the left side is a function of x alone and the 
right side is a function of t alone. Deduce that there 
is a constant A such that g"!g = A and h' l(a2h) = A. 

(c) Assume that the constant A in part (b) is negative, 
and can therefore be written in the form A = -k2 for 
some positive number k. Show that g(x) = 
c1 sin kx + c2 cos kx is a solution of the equation 
g"lg = -k2 for every choice of the constants c1 and 
Cz. 

(d ) Show that h(t) = ce-a'k'r is a solution of the equa
tion h' l(a2h) = -k2 for every choice of the constant 
c. Thus all of the functions 

w = f(x, t) = ce-a'k'1(c 1  sin kx + c2 cos kx) 
are solutions of the heat equation, and any sum of 
such solutions is a solution. 

7 A steady-state solution of the heat equation (2) is one 
that does not depend on t, and in this case the heat equa
tion reduces to Laplace's equation ( 1 ) . Solve the one
dimensional Laplace equation. 

*8 Use the chain rule to show that under the change of vari
ables specified by u = x - at, v = x + at, the equation 

Cl2w o2w a2 __ = --Clx2 ot2 becomes 

Hint: See Example 3 in Section 19 .6 . Use this result to 
show that w = F(x - at) + G(x + at) is the most gen
eral solution of the one-dimensional wave equation. 

1 9 . 1 0 In Section 3 . 5  we stated that when we are given an equation 

F(x, y) = 0, ( 1 )  
(OPTIONAL) IMPLICIT 

FUNCTIONS 
there usually exists at least one function 

y = f(x) (2) 

that "solves" ( 1 ) ,  in the sense that (2) reduces ( 1 )  to an identity in x. With the 
idea in mind that y in ( 1 )  stands for this function of x, we then differentiated the 
identity ( 1 )  with respect to x and went on to solve the resulting equation for dy/dx, 
calling the process "implicit differentiation." For instance, if we have the equa
tion 

x2y5 - 2xy + 1 = 0, 

then by differentiating with respect to x we obtain 

(3) 
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dy dy x2 · 5y4 dx + 2xy5 - 2x dx - 2y = 0, 

dy 2y - 2xy5 dx = Sx2y4 - 2x · 

(4) 

(5) 

Most students feel slightly uncomfortable about implicit differentiation, and with 
good reason. For one thing, in this particular case we have no idea whether (3)  
actually defines y as a function of x or not; and if it doesn' t, then the subsequent 
calculation leading to (5) has no meaning at all. Also, the procedure itself is a 
bit clumsy, because it requires us to keep in mind the different roles played by 
the variables x and y .  We are now in a position to clarify the meaning of this 
process, and also to give a precise statement of the conditions under which an 
equation of the form (1 ) defines a differentiable function (2). 

We broaden the discussion slightly, and instead of ( 1 )  consider an equation of 
the form 

F(x, y) = c, (6) 

whose graph is a level curve of the function z = F(x, y). For example, the graph 
of 

x2 + y2 = 1 (7) 

is a circle about the origin (Fig. 19 .2 1 ,  left), and this is a level curve of the func
tion F(x, y) = x2 + y2. Generally, as in this case, the graph of (6) will be some 
sort of curve that is not the graph of a single function. However, even though the 
entire graph of (7) is not the graph of a single function, it is clear that every point 
(xo, Yo) on this graph with Yo * 0 lies on a portion of the graph that is the graph 
of a function-indeed, of a differentiable function. Specifically, if y0 > 0 then 
(xo, Yo) lies on the graph of the function 

y = fi(x) = �, (8) 

and if Yo < 0 then (xo, Yo) lies on the graph of the function 

y =h(x) = -�. (9) 

Similarly, the graph of (6) might consist of the graphs of two or more differen
tiable functions y = f(x), as suggested on the right in the figure. 

y = f1 (x) = � 
__ ...,.._ ..... 
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Figure 19.2 1 
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We next point out that the function z = F(x, y) has the constant value c along 
the graph of any such function y = f (x), 

z = F[x,f(x)] = c. 

As usual, we assume that F(x, y) has continuous partial derivatives, so it is per
missible to write 

or equivalently, 

dz dy dx = Fx(x, y) + Fy(x, y) dx = 0. ( 1 0) 

The middle term here is just the chain rule evaluation of dz)dx when z = F(x, y)  
and y is a function of x, and the result i s  zero because z is constant as a function 
of x. If Fy(x, y) =F 0, equation ( 10) can be solved for dy/dx, 

dy = dx 
Fx (x, y) 
Fy (x, y) . ( 1 1 )  

In the language of Section 3 .5 ,  any differentiable function y = f(x) with the prop
erty that 

F[x,f(x)] = c 

is an implicit function defined by (6), and ( 1 1 )  provides a general formula for the 
derivative of such a function. 

If we apply formula ( 1 1 )  to equation (7), where F(x, y) = x2 + y2, we obtain 

Fx = 2x and Fy = 2y, so dy = _ Fx x dx 
Fy y ' y * 0. ( 1 2) 

In this case we know from (8) and (9) that (7) actually determines two implicit 
functions y = f(x), so the calculations ( 12) are legitimate and apply to either func
tion as long as we avoid points where y = 0. However, suppose that instead of 
(7) we have one of the equations 

x2 + y2 = - I  or x2 + y2 = 0. ( 1 3) 

By acting blindly without thinking, we can write down the calculations ( 12) j ust 
as before and "find" dy/dx. The difficulty with this is obvious: S ince the graph 
of ( 1 3) is either empty or consists of a single point, no implicit function y = f(x) 
exists, and these calculations would be nothing more than a kind of mathemati
cal doubletalk, which seems to be saying something but really says nothing at 
all. 

In order to avoid committing such nonsense, it is necessary to have definite 
knowledge that implicit functions exist. This is the purpose of the 

Implicit Function Theorem Let F(x, y) have continuous partial derivatives through
out some neighborhood of a point (xo, Yo), and assume that F(xo, Yo) = c and Fy(xo, Yo) -:f. 
0. Then there is an interval I about xo with the property that there exists exactly one 
differentiable function y = f (x) defined on I such that Yo = f(xo) and 

F [x,f(x)] = c. 
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Further, the derivative of this function is given by the formula 
dy = _ Fx 
dx 

and is therefore continuous. 
F '  y 

It should be understood that this theorem is a purely theoretical statement to 
the effect that the specified implicit function y = f(x) does in fact exist, and it 
has no bearing on the issue of whether a simple formula can be found for this 
function. A proof is given in Appendix A.20. 

Example 1 We consider once more the equation mentioned earlier, 

F(x, y) = x2y5 - 2xy + 1 = 0. (3) 

It is clear that the point ( 1 ,  1) lies on the graph, so the graph is not empty. Since 
Fx = 2.xy5 - 2y and Fy = Sx2y4 - 2x, our theorem guarantees that equation (3) 
determines an implicit function y = f (x) about any point of the graph where Fy = 
Sx2y4 - 2x =f. 0, for instance the point ( 1 ,  1 ) .  It is instructive to write down equa
tion ( 1 0) for this case, 

dy (2xy5 - 2 y) + (5x2y4 - 2x) d.x = 0, ( 1 4) 

and to compare the result with (4), where implicit differentiation is carried out 
by the old method. Equation ( 14) evidently yields 

just as before. 

dy 2 y - 2xy5 
d.x = 5x2y4 - 2x' 

The simplicity of our present method is even more c learly visible when there 
are three variables in the given equation. 

Thus, suppose an equation F(x, y, z) = c defines a certain implicit function z = 
f(x, y), and let us find dvdx in terms of the function F(x, y, z). The equations 

w = F(x, y, z), 
x = x, y = y, z = f(x, y), 

give w as a composite function of x and y. Also, 

w = F[x, y,f (x, y)] = c, 

so if we differentiate this with respect to x, the chain rule yields 

dw = dF dx + dF dy + dF dz = dF + dF � = O dx dx dx dy dx dz dx dx dz dx · 

We therefore obtain 
dz dFldx 
dx dF/dz ' ( 15) 

and this formula is valid wherever dF/dz =f. 0. In just the same way, we also have 

dz _ dF/dy 
dy dF/dz . ( 1 6) 

7 1 1 
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As students have surely guessed, there is also an Implicit Function Theorem that 
covers this situation. Briefly, it says that if aF/az * 0 at a point (x0, y0, z0) on a 
surface F(x, y, z) = c, then in a neighborhood of this point the surface defines a 
unique implicit function z = f(x, y) such that zo = f(xo, Yo), and furthermore the 
partial derivatives of this function are given by ( 1 5) and ( 16). 

Example 2 It is easy to verify that the point ( 1 ,  2, - 1 ) lies on the graph of the 
equation 

x2z + yz5 + 2xy3 = 1 3 , ( 17 )  

so this graph is not empty. If the equation defines an implicit function z = f(x, y) 
in a neighborhood of this point, then we can calculate az1ax by implicit differ
entiation in the old way. This means we differentiate ( 17) implicitly with respect 
to x, thinking of y as a constant, which gives 

so 

az az x2 - + 2xz + y · 5z4 - + 2 y3 = 0, ax ax 

az 2xz + 2y3 
ax x2 + 5yz4 . 

This procedure is unsatisfactory because we don't know in the beginning whether 
any such function z = f(x, y) actually exists-after all, ( 17) is a fifth-degree equa
tion in z-and also because in the implicit differentiation each of the three vari
ables has to be treated in a different way, and it is quite easy to lose track of what 
is going on. Our present ideas provide a much better method. We have 

so 

F(x, y, z) = x2z + yz5 + 2 .xy3, 

aF - = 2xz + 2 y3 ax and 
aF 
Tz = x2 + 5yz4. 

It is easy to see that aF/az = 1 1  * 0 at ( 1 ,  2, - 1 ), so the Implicit Function The
orem guarantees that z = f(x, y) exists. Also, by ( 1 5) we have 

az aFtax 2xz + 2 y3 
ax aF!az x2 + 5yz4 ' 

which avoids the messy implicit differentiation. 

Remark The two-variable version of the Implicit Function Theorem enables us 
to complete a long-standing piece of unfinished business. In the earlier chapters 
of this book we gave quite a bit of attention to the important problem of finding 
the inverse function of a given function g(y) = x, in other words, the problem of 
solving the equation 

F(x, y) = g(y) - x = 0 ( 1 8) 

for the variable y. Specifically, this is the way the familiar functions y = ln x, 
y = sin - 1 x, and y = tan - 1 x were defined. Each of these inverse functions was 
discussed earlier in an ad hoc but perfectly legitimate way. We are now in a po-
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sition to draw the general inference that when g(y) has a continuous derivative 
and aFJay = g'( y) * 0, then ( 1 8) can indeed be solved for y, y = j(x), and also 
that this function has a continuous derivative given by 

dy = aF!ax 
dx aF1ay 

- 1  
g ' (y) dx!dy " 

This completes the line of thought that was briefly described in Remark 2 of Sec
tion 9.5. 

PROBLEMS 

In Problems l-6, use formula ( 1 1 )  to compute dyldx. 
1 y2 - 3x2 - I = 0. 
2 x6 + 2y4 = l .  
3 x sin y = x + y. 
4 sin y + tan y = x2 + x3. 
5 exy = 2xy2. 
6 ex sin y = eY cos x. 

In Problems 7-10, use formulas ( 1 5) and ( 1 6) to compute 
az1ax and az1ay. 

7 In z = z + 2 y - 3x. 
8 tan- I x + tan - I  y + tan - I  z = 9. 
9 z = xy sin xz. 

10 sin xy + sin yz + sin xz = 1 .  

1 1  Use formulas ( 1 5) and ( 1 6) to find the largest value of z 

on the ellipsoid 2x2 + 3y2 + z2 + yz - xz = 1 .  
12 The folium of Descartes (Problem 16 in Section 17 . 1 )  

has x3 + y3 = 3 axy  as its equation. Use formula ( 1 1 )  to 
find the highest point on the loop. 

13 If F(x, y) has continuous second partial derivatives and 
the equation F(x, y) = c defines y = f (x) as a twice-dif
ferentiable function, show that if Fy * 0, 

14 Compute d2y!dx2 by using Problem 1 3  if 
(a) x4y5 = I ;  (b) eY = x + y. 

CHAPTER 19 REVIEW: DEFINITIONS, METHODS 

Think through the following. 
1 Domain, continuity, and level curves for z = f (x, y). 
2 Definition and geometric meaning of partial derivatives of 

z = f(x, y). 
3 Equality of mixed partial derivatives. 
4 Equation of tangent plane to z = f(x, y). 

5 Directional derivative and gradient. 
6 The del operator. 
7 The chain rule. 
8 Method of Lagrange multipliers for constrained maxima 

and minima. 



20 . 1 
VOLUMES AS ITERATED 

INTEGRALS 

MULTIPLE 
INTEGRALS 

A continuous function f(x, y) o f  two variables can be integrated over a plane re
gion R in much the same way that a continuous function of one variable can be 
integrated over an interval. The result is a number called the double integral of 
f(x, y) over R and denoted by 

f
f f(x, y) dA R or JJt(x, y) dx dy. R 

A different but closely related concept is that of an iterated (or repeated) inte
gral. We discuss iterated integrals in this section, and in the next section return 
to the topic of double integrals and explain what they are and how they are re
lated to iterated integrals. 

In Section 7 .3 we discussed the "method of moving slices" for finding vol
umes. Thus, if A (x) is the area of the section cut from a solid by a plane per
pendicular to the x-axis at a distance x from the origin, then the formula 

V = Jb A(x) dx 
" 

( 1 )  \ 

gives the volume of the solid between the planes x = a and x = b. The essence 
of this formula lies in the idea that 

dV = A(x) dx 

is the volume of a thin slice of the solid of thickness dx. The total volume ( 1 )  is 
then found by adding together (or integrating) these elements of volume as our 
typical slice sweeps through the complete solid, that is, as x increases from a 
to b. 

However, if the section itself has curved boundaries-as happens in many 
cases-then the determination of A(x) also requires integration. For instance, the 
section shown in Fig. 20. 1 extends from the xy-plane z = 0 up to the curved sur
face z = f(x, y). By considering x to be arbitrary but momentarily fixed between 
a and b, we see that the area of this section is 

Jy,(x) A(x) = f (x, y) dy, y, (x) (2) 

where y = y 1 (x) and y = y2(x) are the equations of the curves that bound the base 

714 
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A (x) 

y 

y = y1 (X) 

on the left and right. To find the total volume V, we now insert (2) in ( 1 )  and ob
tain the iterated integral 

V = f(x, y) dy dx. Lb [iy2(x) ] 
a Y1(x) (3) 

Students should notice particularly that in (3) we first integrate f(x, y) with re
spect to y, holding x fixed. The limits of integration depend on this fixed but ar
bitrary value of x, and so does the resulting value of the inner integral. This in
ner integral is precisely the function A(x) given by (2), which we then integrate 
with respect to x from a to b to obtain the iterated integral (3) . To summarize, 
we start with a positive function f(x, y) of two variables; we first "integrate y 
out," which gives a function of x alone; and then we "integrate x out," which 
gives a number-the volume of the solid. 

On the other hand, in some cases it may be more convenient to cut the solid 
by a plane perpendicular to the y-axis and to form the iterated integral in the 
other order, first integrating x and then y, 

V = f(x, y) dx dy. Ld [Lx,(y) ] 
c x1(y) (4) 

These two possible orders of integration are suggested in Fig. 20.2, representing 
the base of the solid, with (3) shown on the left and (4) on the right. The iter
ated integrals (3) and (4) are usually written without brackets, as 

y y 

a x b x x 

7 1 5  

Figure 20.1 

Figure 20.2 
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x 
Figure 20.3 

y 

- 1  
Figure 20.4 

y 

x x 

MULTIPLE INTEGRALS 

Lb fy2(
x) f(x, y) dy dx 

a y1(x) and Id lx,<y) f(x, y) dx dy; 
c x1(y) 

however, we can always retain the brackets for additional clarity if we wish to 
do so. The order in which the integrations are carried out ( first with respect to 
y and then with respect to x, or the reverse) is determined by the order in which 
the differentials dx and dy are written in these iterated integrals: We always work 
from the inside out. 

Example 1 Use an iterated integral to find the volume of the tetrahedron bounded 
by the coordinate planes and the plane x + y + z = I .  

Solution The section in the plane x = a constant is the triangle shown in Fig. 
20.3, with base extending from y = 0 to the line y = 1 - x. Its area is 

( 1 -x ( 1 -x 
A(x) = Jo z dy = Jo ( I  - x - y) dy. 

We now find the desired volume by integrating this from x = 0 to x = 1 ,  

V = ( I  - x - y) dy dx = y - xy - - y2 dx 1 1 1 1 -x LI [ 
J ] 1 -x 

0 0  0 . 2 0 

= fo
1 ( t - x + t x2) dx = i· 

The correctness of this result can be verified by elementary geometry, from the 
fact that the volume of any tetrahedron is one-third the area of the base times the 
height. 

Example 2 Determine the region in the xy-plane over which the iterated inte
gral 

extends. 

f 1 J; f(x, y) dy dx 

Solution In the inner integral, with x fixed between - 1  and 2, y varies from the 
curve y = x2 up to the line y = 4 (see Fig. 20.4). In the second integration x in
creases from - 1  to 2. The region is that shown in the figure, and is bounded by 
the curve y = x2 and the lines y = 4 and x = - 1 .  Students should notice partic
ularly how we determine what the region is by examining the limits of integra
tion. 

Example 3 The iterated integral 

(5) 

extends over a certain region in the xy-plane. Write an equivalent integral with 
the order of integration reversed, and evaluate both integrals. 
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Solution We see that the given integral extends over the region shown in Fig .  
20.5, between the curves y = x2 and y = x,  where 0 :'.S x :'.S 1 .  With the order of 
integration reversed, y is first held fixed between y = 0 and y = 1, and x increases 
from x = y to x = y112 . The required integral is therefore 

L
I fy'" LI In L I 2 2y dx dy = [2xy]Y dy = (2 y312 - 2 y2) dy = -. 0 y 0 y 0 1 5  

y 

y 

I 
I 
I 
I 
I 

The given integral (5) has the same value, �y = x2 
I 

r 1 Lx r 1 r 1 2 Jo x2 2 y dy dx = Jo [y2]�2d.x = Jo (x2 - x4) d.x = IS, 0 x 
Figure 20.5 

x 
because both iterated integrals give the volume of a certain solid, and this vol
ume must be the same regardless of how it is calculated. In computational prob
lems of this kind, we are naturally free to use any methods of integration we wish 
from our past experience-trigonometric substitution, integration by parts, etc. 

PROBLEMS 

Determine the regions over which the iterated integrals in 
Problems 1 and 2 extend. 

1 f J: f (x, y) dx dy. (4 (Yx 
2 Jo Jo f (x, y) dy dx. 

Evaluate each of the iterated integrals in Problems 3-14. Also 
sketch the region R over which the integral extends. 

3 L1 J; (2x + 2y) dy dx. 4 LI LI xy2 dy dx. 
5 

7 

9 

1 1  

13  

14  

r J; 3vJZ+9 dx dy. 
r/2 rs x 
0 0 y dy dx. 
r ry I o yex dx dy. 
L'7T t x cos y dy dx. 
r rx dy dx 
I x (x + y)2 •  

6 

8 

1 0  

1 2  

L'7T r-y sin ex +  y ) dx dy. 

rr I y' dx dy. 
f' ry I O exy dx dy. 

f Jvl=Y2 0 -vH y dx dy. 
r rn x 2 y dy dx. 0 0 

In Problems 15-18, write an equivalent iterated integral with 
the order of integration reversed. 

1 5  L1 ff (x, y) dx dy. 
( 1 (Y2-2x' 1 6  Jo Jo f(x, y) dy dx. 

1 7  r J;2J(x, y) dx dy. 

1 8  J2 J±x _2 I -� f(X, y) dy dx. 
In Problems 19-24, write an equivalent iterated integral with 
the order of integration reversed, and evaluate both integrals .  

19 L1 t; 2x3 dx dy. 20 L2 L4-x' 2xy dy dx. 
21 L2 L1 (5 - 2x - y) dy dx. 
22 (•' (3 dx dy. J 1 Ji n y 

23 f 4 Jt(y+2) -5 2-v'4=; dx dy. 

Lv'2 f V4-2x' 24 x dy dx. o -V4-2x2 
In Problems 25-28, use iterated integrals to find the volumes 
of the given regions of space. Sketch each region. 

25 The region in the first octant bounded by the coordinate 
planes and the plane 

� + l. + � = 1 a b c ' 

where a, b, c are positive numbers. 
26 The region in the first octant bounded by the plane x + y = 1 and the cylinder z = 1 - x2. 
27 The region in the first octant bounded by the plane y = x and the cylinder z = 4 - y2. 
28 The region in the first octant bounded by the surface 

z = 4 - x - y2. 
*29 Use any method to find the volume of the region 

bounded by the surface x213 + y213 + z213 = a213. 
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20 . 2 
DOUBLE INTEGRALS 

AND ITERATED 
INTEGRALS 

Figure 20.6 

MULTIPLE INTEGRALS 

The double integral of a function of two variables is the two-dimensional analog 
of the definite integral of a function of one variable. It is convenient here to call 
this latter type of integral a single integral, in contrast to the term double inte
gral. 

As we know, the value of the single integral fgf (x) dx is determined by the 
function f(x) and the interval [a, b]. In the case of a double integral, the interval 
[a, b] is replaced by a region R in the xy-plane, and the double integral of 
f(x, y) over R is denoted by the symbol 

J J f(x, y) dA. ( I )  R 
The reason for the dA notation will be explained below. 

We recall that in Section 6.4 a single integral was defined as the limit of cer
tain sums. We now define the double integral ( 1 )  in much the same way. 

Consider a continuous function f(x, y) defined on a region R in the xy-plane. 
It is necessary to assume that R is bounded, in the sense that it can be enclosed 
in a sufficiently large rectangle and doesn't go off to infinity in any direction; 
otherwise, just as in the case of a single integral where a or b is infinite, the dou
ble integral will be improper. 

We begin by covering R with a network of lines parallel to the axes, as shown 
in Fig. 20.6, where the distances between consecutive parallel lines are permit
ted to be equal or unequal. These lines divide the plane into many small rectan
gles. Some rectangles will lie entirely or partly outside of R, and these we ig
nore. Other rectangles will lie entirely inside R, and if there are n of these 
altogether-we assume there is at least one-then we number them in any or
der from 1 to n, denoting by LlAk the area of the kth rectangle. We now choose 
an arbitrary point (xk> Yk) in the kth rectangle and form the sum 

n L f(xk. Yk) �Ak. (2) 
k= I 

Finally, suppose that many more parallel lines are added to produce a network 
that divides the given rectangles into even smaller rectangles, and consider the 
sum (2) corresponding to this finer partition of the plane. If these sums approach 
a unique limit as n becomes infinite and the maximum diagonal of the rectan
gles (that is , the longest diagonal of any of the rectangles) approaches zero-in-

y 

I "' 
--; i---I .,.,... 

Area = c.A k  R 

I I \ 

x 
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dependent of the choice of dividing lines and the points (xb Yk) in the rectangles 
-then the double integral ( 1 )  is defined to be this limit: 

J J f(x, y) dA = lim I f(xk> Yk) �Ak. 
R k= l 

(3) 

So far, it appears that the definition (3) differs very little from the corresponding 
definition of a single integral. However, there are certain technical difficulties in 
two dimensions that do not arise in one dimension. For one thing, plane regions 
can be much more complicated than intervals [a, b] . Nevertheless, the existence 
of double integrals can be rigorously proved under assumptions that are general 
enough for all practical purposes. In particular, it is enough to assume that the 
regions we consider contain their boundaries and that these boundaries consist 
of a finite number of smooth curves. 

We shall not attempt a careful theoretical treatment of double integrals. This 
is a difficult subject, and is best left to courses in advanced calculus. *  Instead, 
we prefer to emphasize the intuitive meaning of double integrals, and to con
centrate our attention on their geometric and physical applications. 

As an illustration of this point of view, suppose that z = f(x, y) is the equa
tion of a surface in .xyz-space that lies above the region R, so thatf(x, y) > 0 in 
R, as shown in Fig. 20.7. Thenf(xb Yk) Mk is approximately the volume (height 
times area of base) of the thin column in the figure; the sum (2) is the sum of 
many such volumes and therefore approximates the total volume of the solid un
der the surface; and the limit (3), which is the double integral 

ff f(x, y) dA, 
R 

gives the exact volume of this solid.I 

( 1 )  

*Even at this level, one needs an advanced calculus course of the traditional kind. For example, see 
Philip Franklin, A Treatise on Advanced Calculus (Wiley, 1 940); or Angus E. Taylor, Advanced Cal
culus (Ginn, 1 955). 
tTue double integral (I) is actually the volume of a region in three-dimensional space, but it seems 
to be more natural to speak of the volume of a solid. 

z 
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Figure 20.7 
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It is clear that if f(x, y) has a constant value, say f(x, y) = c, then 

ff f (x, y) dA = cA, R 
where A is the area of the region R. In particular, if f(x, y) = 1 we have 

ff dA = A. R 
We also point out that in the definition (3) there is no requirement that f(x, y) 
must be positive. If f(x, y) takes both positive and negative values, then the dou
ble integral represents an algebraic volume instead of a geometric volume; that 
is, the volume between the surface z = f(x, y) and the xy-plane counts positively 
when f(x, y) > 0 and negatively when f(x, y) < 0. 

Since the area of a rectangle with sides parallel to the axes can be written as 
M = Ll.x Liy, it is reasonable to use 

ff f (x, y) dx dy R (4) 

as an alternative notation for the double integral ( 1 ) . In this form the double in
tegral resembles an iterated integral, and in fact, as we next explain, when the 
region R has a certain simple shape the double integral ( 1 )  is always equal to a 
suitably chosen iterated integral. This equality often misleads students into think
ing that double integrals are essentially the same as iterated integrals, but they 
are not. We shall say more below about the distinction between these two types 
of integrals .  

A region R is called vertically simple if it can be described by inequalities of 
the form 

a ::5 x :5 b, Y1 (x) :5 Y :5 )'2(x), (5) 

where y = y 1 (x) and y = y2(x) are continuous functions on [a, b]. A region of 
b x this kind is shown in Fig .  20.8. Similarly, a region R is called horizantally sim

ple if it can be described by inequalities of the form 

x 

c $ y $ d, X1 ( Y) ::5 X :5 Xz( y), (6) 

where x = x1 ( y) and x = x2( y) are continuous functions on [c, d] . The region in 
Fig. 20.9 has this property. 

The following are the basic facts about the use of iterated integrals to com
pute double integrals: if R is the vertically simple region given by (5), then 

ff (b (Y2(x) f(x, y) dA = J, J, f(x, y) dy dx; R a Y , (x) 
and if R is the horizantally simple region given by (6), then 

ff rd Lx,(y) f(x, y) dA = J, f(x, y) dx dy. 
R 

c x1(y) 

(7) 

(8) 

In addition to their obvious practical value for the computation of double in
tegrals, these equations also serve to clarify the conceptual distinction be
tween double integrals and iterated integrals. A double integral is a number 
associated with a function f(x, y) and a region R, and this number exists and 
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has a meaning independently of any particular method of computing it. On 
the other hand, an iterated integral is a double integral plus a built-in compu
tational procedure. Thus, every iterated integral is a double integral, but not 
vice versa. 

Example 1 Compute the double integral J JR 2xy dA in two different ways, where 
R is the region bounded by the parabola x = y2 and the straight line y = x. 

Solution It is essential to always sketch the region R of integration before try
ing to evaluate a double integral. In this case the region is shown in Fig. 20. 10. 
It i s  clear that R i s  vertically simple with a =  0, b = 1 ,  y1 (x) = x, y2(x) = x 1 12, 
so by (7) 

ff 2xy dA = L1 rn 2xy dy dx = fo1 [xy2]�1n dx 
R 

= L1 (x2 - x3) dx = + - ± = -k· 
The region R is also horizontally simple with c = 0, d = 1 ,  x1 (y) = y2, x2(y) = 
y, so by (8) 

y 
x = y2 ,  y = x l/2 ---r------

0 

ff 2xy dA = fo1 J;, 2xy dx dy = L1 [x2y]�, dy 
R 

Figure 20. 1 0  

L1 I I I 
= ( y3 - y5) dy = - - - = -0 4 6 1 2 "  

Exam�le 2 Compute JI R ( 1  + 2x) dA ,  where R i s  the region bounded by 
x = y and x - y = 2.  

Solution This region is shown in Fig. 20. I 1 .  In order to integrate first with re- Y 

spect to y and then with respect to x, we would need to compute two separate 
integrals, one to the left of the line x = 1 and the other to the right, because the 
limits of the y-integration are different in these two parts of the region: 

ff ( I  + 2x) dA = fo' f_� ( 1  + 2x) dy dx + r l� ( 1 + 2x) dy dx. 
R 

The other order is easier, and yields 

ff ( 1  + 2x) dA = [ J;,+2 ( I  + 2x) dx dy = fi [x + x2]�i2 dy 
R 

f2 1 89 = (6 + Sy - y4) dy = -. 

- 1 I O  

Example 2 shows that even when the region R is both vertically and horizon
tally simple, it may be easier to integrate in one order than in the other, and we 
naturally prefer to do things in the easiest way. Sometimes the choice of the or
der of integration is determined by the nature of the integrandf(x, y), for it may 
be difficult-or even impossible-to compute an integral in one order, but easy 
to do so if the order of integration is reversed. 

Figure 20. 1 1  

72 1 

( I ,  1 )  

x 
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Example 3 Compute 

y 

11 L2 , 4e' dx dy. 0 2y 
Solution We cannot integrate in this order because J ex' dx is not an elemen
tary function. We therefore try the other order. This requires us to sketch the re-

(2, I )  gion R by examining the limits on the given iterated integral. R is shown i n  Fig. 
20. 1 2, and in the other order the underlying double integral has the value 

ff (2 rx/2 (2 [ ]x/2 
R 

4e' dA = Jo Jo 4ex' dy dx = Jo 4 yex' 0 dx 
-0-fl"���������2>---+-X 
Figure 20.12 

PROBLEMS 

In Problems 1-6, use double integrals to find the areas of the 
regions bounded by the given curves and lines. 

1 The parabola x = y2 and the line y = x - 2. 
2 The parabola y = x - x2 and the line x + y = 0. 
3 The axes and the line 2x + y = 2a (a > 0). 
4 The y-axis, the line y = 3x, and the line y = 6. 
5 The x-axis, the curve y = e-x, and the lines x = 0, 

x = a  (a > 0). 
6 The parabolas y = x2 and y = 2x - x2. 

In Problems 7-10, find the volumes above the xy-plane 
bounded by the given surfaces. 

7 The paraboloid z = x2 + y2 and the planes x = ::!:: 1 ,  
y = ::!:: I .  

8 The cylinder x2 + y2 = I and the plane x + y + z = 2. 
9 The cylinder y = 4 - x2 and the planes y = 3x, z = 

x + 4. 
10 The cylinder x2 + y2 = a2 and the paraboloid az = 

x2 + y2. 
1 1  Find the volume of the solid bounded by the coordinate 

planes, the planes x = 2 and y = 5, and the surface 
2z = xy. 

(2 2 '
]2 4 

= Jo 2xex dx = ex 0 = e - 1 . 

12 Find the volume of the solid in the first octant bounded 
by the cylinder 4y = x2 and the planes x = 0, z = 0, 
y = 4, and x - y + 2z = 2 . 

In Problems 1 3-16, set up a double integral whose value is 
the stated volume, express this double integral in two ways as 
an iterated integral, and evaluate one of these. 
13 The volume under the plane z = 2 y and above the first

quadrant region bounded by y = 0, x = 2, x2 + y2 = 1 6. 
14 The volume under the plane z = x + y and above the 

first-quadrant region inside the ellipse 9x2 + 4y2 = 36. 
15 The volume under the cylinder x = z2 and above the 

region in the xy-plane bounded by x = 0 and y2 + 
9x = 9. 

16 The volume in the first octant bounded by the cylinder 
z = 4 - y2 and the planes x = 0, y = 0, z = 0, 3x + 
4y = 12 .  

17 Calculate the value of J JR x dA if R i s  the first-quadrant 
part of the ring between the circles x2 + y2 = a2 and 
x2 + y2 = b2, where a <  b. Do this two ways, corre
sponding to the two possible orders of integration. 

18 Compute the double integral in Example 2 in the other 
order, requiring two separate iterated integrals. 

20 . 3 
We have seen that the double integral 

PHYSICAL 
APPLICATIONS 

OF DOUBLE 
INTEGRALS 

ff f(x, y) dA 
R 

( I )  

gives the volume of  a certain solid if f(x, y )  2". 0. This integral has many other 
useful interpretations that arise by making special choices of the functionf(x, y). 
Before we discuss these, it will be convenient to return to the way of thinking 
about integration that was described and extensively illustrated in Chapter 7 .  
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(a) 
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y 

R 

Element of area 
dA = dx dy 

y y 

d, :-@. CJ 
I I I I I I I I 

x dx - x 

(b) (c) 

The limit-of-sums definition of ( 1 )  that was given in Section 20.2 is necessary 
from the point of view of logic and mathematical legitimacy. However, for work
ing with applications it is better to think of the volume given by ( 1 )  as composed 
of infinitely many infinitely thin columns, as suggested in Fig. 20. 1 3a .  A typical 
column stands on an infinitely smaB rectangular element of area dA whose sides 
are dx and dy, so that 

dA = dx dy = dy dx. 

The height of this column is f(x, y), so its volume is 

dV = f(x, y) d.A. 

(2) 

The total volume V is now obtained by adding together-or integrating-all of 
these infinitely small elements of volume, 

V = ff dV = ff f (x, y) dA. (3) R 
We understand here that the complete double integral ( 1 )  is produced by allow
ing dA to sweep in any manner over the whole of the region R. In parts (b) and 
(c) of Fig. 20. 1 3  we indicate the two ways of calculating (3) as an iterated inte-. 
gral: in (b), we first allow dA to move across R along a thin horizontal strip, cor
responding to integrating first x and then y; and in (c), we first allow dA to move 
across R along a thin vertical strip, integrating first y and then x. As suggested 
by formula (2), the double integral (3) can be written in either of the forms 

J J f(x, y) dx dy or fJ f(x, y) dy dx, R R 
depending on which iterated integral we wish to consider; and to apply these 
ideas to a particular problem, all that remains is to insert suitable limits of inte
gration and carry out the calculations. 

This description of the intuitive meaning of the double integral ( 1 )  expresses 
the essence of the Leibniz approach to integration: to find the whole of a quan
tity, imagine it to be judiciously divided into a great many small pieces, and then 
add these pieces together. This is the unifying theme of the following applica
tions, and also of many further developments in the rest of this chapter. And here 
again, as so often before, the superb Leibniz notation almost does our thinking 
for us. 

Figure 20.13 Two orders of 
integration. 

723 



724 

y 

Figure 20.14 

Element of area ; dA 
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MULTIPLE INTEGRALS 

In Chapter 1 1  we discussed the concepts of moment, center of mass, and mo
ment of inertia for a thin plate of homogeneous material that occupies a given 
region R in the .xy-plane. The word "homogeneous" meant that the density 8 of 
the material ( = mass per unit area) was assumed to be constant, that is, to have 
the same value at every point P = (x, y) in R. We are now in a position to allow 
8 to be a function of x and y, 8 = o(x, y), so that thin plates of varying density 
can be brought within the scope of our methods. 

I. MASS 

If 8 = o(x, y) is the density of our thin plate, then o(x, y) dA is the mass con
tained in the element of area dA, and the total mass of the plate is 

M = ff o(x, y) dA. (4) 
R 

II .  MOMENT 

The moment of the element of mass o(x, y) dA with respect to the x-axis is the 
mass multiplied by the "lever arm" y, namely, yo(x, y) dA, and the total moment 
of the plate with respect to the x-axis is 

Mx = ff y8(x, y) dA. 
R 

See Fig. 20. 14. Similarly, the total moment with respect to the y-axis is 

My = ff xo(x, y) dA. 
R 

I I I. CENTER OF MASS 

This is the point (:X, }i) whose coordinates are defined by 

- My ff R xo(x, y) dA x = - = M Jf R O(x, y) dA 

and 

- Mx f fR yo(x, y) dA y = - = 
M Jf R O(x, y) dA . 

(5) 

(6) 

(7) 

(8) 

Physically, this is the point at which the total mass of the plate could be con
centrated without changing its moment with respect to either axis. When the den
sity 8 is constant so that the mass of the plate is uniformly distributed, then the 
o's can be removed from the integrals in (7) and (8) and canceled away. In this 
case the center of mass becomes the geometric center of the region R, and for 
this reason is usually called the centroid. 

IV. MOMENT OF INERTIA 

When the square of the lever arm distance is used instead of its fust power [as 
in (5) and (6)], we get the moment of inertia of the plate about the correspond
ing axis. Thus, the moment of inertia Ix about the x-axis is defined by 
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Ix = J J y28(x, y) dA. R 
Similarly, the moment of inertia ly about the y-axis is 

ly = J J x28(x, y) dA. R 

(9) 

( 1 0) 

Also of interest is the moment of inertia of the plate about the z-axis. This is of
ten called the polar moment of inertia, and is defined by 

I, = J J r28(x, y) dA, R ( 1 1 ) 

where r2 = x2 + y2. As we explained in Section 1 1 .4, the moment of inertia of 
a body about an axis is its capacity to resist angular acceleration about that 
axis; this quantity plays the same role in rotational motion as mass does in lin
ear motion. 

Students should explicitly notice that in each of the formulas (4), (5), (6), (9), 
( 10), ( 1 1 )  we obtain the total quantity under discussion by adding together-or 
integrating-the "infinitesimal" parts of it associated with the element of area 
dA, as dA sweeps over the region R. 

Example A thin plate of material of variable density occupies the square R whose 
vertices are (0, 0), (a, 0), (a, a), (0, a). The density at a point P = (x, y) is the 
product of the distances from P to the axes, 8 = xy. Find the mass of the plate, 
its center of mass, and its moment of inertia about the x-axis. 

Solution A sketch of the situation is shown in Fig. 20. 15 .  We have 

M = J J a dA = J: J: xy dy dx = J: [ � xy2 J: dx 

= _!_a2 la x  dx = _!_ a4 
2 0 4 . 

The x-coordinate of the center of mass is 

M
y 

4 ff 4 la la x = - = - x8 dA = - x2y dy dx M a4 a4 o o  R 
= - -x2y2 dx = - x2 dx = - a, 4 la [ 1 ]a 2 la 2 

a4 o 2 0 a2 o 3 

and by symmetry we have x = y = fa .  The desired moment of inertia is 

Ix = fl y28 dA = J: J: xy3 dy dx = J: [ ± xy4 J: dx 

= _!_ a4 la x dx = _!_ a6 
4 0 8 . 

It is customary to express the moment of inertia of a body about an axis in terms 
of its total mass M, which in this case gives 
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Remark 1 We emphasize that the symbols dA, dx, and dy in formula (2) do not 
designate differentials in the sense discussed in Section 19.4. Instead, they are 
merely notational aids that enable us to write down appropriate double integrals 
directly, without repeatedly going back to the complicated limit-of-sums defini
tions of these integrals .  

Remark 2 A surprising application of our present ideas is given in the Appen
dix at the end of this chapter, where Euler's formula � I 7r2 I - = -n=l n2 6 
is obtained by evaluating a certain double integral. 

PROBLEMS 

In Problems 1-8,  find the total mass M and the center of mass 
(X, y) of the thin plate of material that lies in the given region 
R and has the given density 8. Use symmetry wherever pos
sible to simplify calculations. 

1 R is the square with vertices (0, 0), (a, 0), (a, a), (0, a); 
8 = x + y. 

2 R is the first-quadrant region bounded by the axes and 
the circle x2 + y2 = I ;  8 = xy. 

3 R is the region bounded by the parabola x = y2 and the 
line x = 4; 8 = x. 

4 R is the region bounded by the axes and the line x + y = 
a; 8 = x2 + y2. 

5 R is the region bounded by x = 0 and the right half of 
the circle x2 + y2 = a2; 8 = x. 

6 R is the region bounded by the parabola y = x2 and the 
line y = x; 8 = Yx. 

7 R is the region between y = sin x and the x-axis from 
x = 0 to x = 7r; 8 = x. 

8 R is the region bounded by the parabola y = x2 and the 
line y = x + 2; 8 = x2. 

9 Find the moment of inertia Ix for the square plate con
sidered in the text if the density 8 is constant. 

10 Show that I, = Ix + ly. Use this and the result of Prob
lem 9 to find the moment of inertia of a uniform (con
stant density) cube of edge a and mass M about one of 
its edges. 

11  I f  the density 8 is constant, find the moment of inertia Ix 
of the thin triangular plate bounded by the line x + y = 
a and the axes x = 0, y = 0. 

1 2  Solve Problem 1 1  for the triangular plate bounded by the 
lines x + y = a, x = a, y = a. 

13 Solve Problem 1 1  if the density is 8 = xy. 

14 Find the polar moment of inertia I, of the circular plate 
bounded by x2 + y2 = a2 if the density 8 is constant. 

20 . 4 
DOUBLE INTEGRALS IN 

POLAR COORDINATES 

It is often more convenient to describe the boundaries of a region by using po
lar coordinates r, 8 than by using rectangular coordinates x, y. In these circum
stances we can usually save ourselves a lot of work by expressing a double 
integral 

JI t<x. y) dA ( I )  R 
in terms of polar coordinates. The integrand is easy to transform by using the 
equations x = r cos 8, y = r sin 8 to write f(x, y) as a function of r and 8, 

f(x, y) = f(r cos (}, r sin (}). 

For example, if f(x, y) = x2 + y2, this becomes (r cos 8)2 + (r sin 8)2 = 
r2 (cos2 8 + sin2 8) = r2. But what do we do about the element of area dA? 

The answer to this question is suggested by Fig. 20. 1 6. We recall that the el
ement of area in rectangular coordinates, 

dA = dx dy, 
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is intended to remind us of the small rectangles with sides parallel to the axes 
that were used to define the double integral ( 1 )  in Section 20.2. In working with 
polar coordinates it is natural to subdivide the plane in another way, by a series 
of circles with centers at the origin and a series of rays emanating from the ori
gin. These circles and rays form many small cells that resemble rectangles, as 
shown by the shaded part of the figure. The double integral ( 1 )  can now be given 
an equivalent definition by means of a limit-of-sums process that uses these small 
"polar rectangles." However, we omit the details and use Fig. 20. 1 6  only to sug
gest the line of thought we should follow, as we now explain. 

The element of area dA = dx dy in rectangular coordinates is the area of the 
small rectangle swept out by an increase dx in x and an increase dy in y (see Fig. 
20. 1 7a). Figure 20. 1 6  suggests the approach to be used with polar coordinates: 
If r increases to r +  dr and e increases to e +  de (Fig. 20. 17b), then a small po
lar rectangle is swept out whose sides are dr, the change in r, and r de. * The area 
of the small polar rectangle is therefore approximately 

y 

dA = (dr)(r d8) = r dr d8. 

y 

dA = dx dy 

---
x
--�

-

1LJ I dx 1 
y l  I I 

(a) 
x 

(2) 

dA = r dr de 

x 

(b) 

This is the basic formula of this section. It gives the element of area in polar co
ordinates, and it enables us to write the double integral ( 1 )  in polar form, as 

ff f(x, y) dA = ff f(r cos 8, r sin 8) r dr d8. 
R R 

(3) 

Many of the regions R we deal with are radially simple, in the sense that they 
can be described by inequalities of the form 

a :s 8 :s (3, 

Figure 20. 1 8  shows a region of this kind, and also suggests how the figure can 
be used to write the double integral (3) as an iterated integral, 

f.J (/3 f,r,(9) f (x, y) dA = ), f (r cos 8, r sin 8) r dr d8. 
R 

a r1(9) 

Here we integrate first r and then e, working from the inside out as always. 
We visualize the element of area dA as first moving out across R along the in
dicated radial strip, from the inner curve r = r1 ( e) to the outer curve r = r2( e). 
The resulting strip is then rotated from e = a to e = {3 in order to sweep 

*The second side of this polar rectangle is a short arc of a circle of radius r that is cut off by a cen
tral angle dO, and its length s is given by the formula s = r · dO, because the angle is measured in 
radians. 
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2a 

Figure 20.19 

MULTIPLE I NTEGRALS 

over all of R. Iterated integrals can also be set up in the other order, but these 
are seldom used. 

Example 1 Find the area of the region R enclosed by the cardioid r = 
a( l + cos 8). 

Solution This cardioid is shown in Fig. 20. 19, and we find the area by inte
grating the element of area dA = r dr d8 over the region, 

A = J J dA = J J r dr d8. R R 
For fixed 8, we allow r to increase from r = 0 to r =  a ( l  + cos 8). As usual, we 
exploit all available symmetry, so we next allow 8 to increase from 0 to 7r and 
obtain the total area by multiplying by 2, 

A =  2 r J:(l +cos 8) r dr d8 = 2 r [ + r2r 1 +cos 8) d8 
= 2 L7T + a2( 1 + cos 8)2 d8 = a2 r (I + 2 cos 8 + cos2 8) d8 

= a2 L 7T ( i + 2 cos 8 + + [ 1 + cos 28]) d 8 
= a2[ 8 + 2 sin 8 + � 8 + ± sin 28 J: = % ?Ta2. 

This problem can also be solved by the method of Section 16.5, which would 
have started with the third integral in our calculation. However, our present 
method has much greater flexibility. It allows us, for example, to find the cen
troid of the region R by thinking of it as a thin plate of material of constant den
sity o = 1 .  It is clear by symmetry that y = 0, and we find x by writing 

- My 2 ff x = M = 3?Ta2 x dA. R 
We ask students to complete the details of this calculation in Problem 25 . 

Example 2 Derive the formula for the volume of a sphere of radius a by our 
present methods. 

Solution If the sphere has center at the origin, its equation is x2 + y2 + z2 = 
a2 or r2 + z2 = a2, and the equation of the upper hemisphere is z = V a2 - r2. 
By symmetry, we calculate the volume in the first octant (Fig. 20.20) and mul
tiply by 8. The region R over which we integrate is defined by 0 :5 8 :5 7r/2 and 
0 :S r :5 a, so 

a v = 8 ff z dA = 8 r12 r � r dr d8 �:---t-IH-���..--+-y R 
R 

x 

Figure 20.20 

= 8 - - (a2 - r2) 112(-2r dr) d8 = -4 - (a2 - r2)312 d8 L7T/2 La J L7T/2 [ 2 ]a 
0 0 2 0 3 0 

(7Tl2 ( 2 ) 4 = -4 Jo - 3a3 d8 = 3?Ta3. 
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Students should notice particularly how the presence of the r in the inner inte
gral makes this calculation work out smoothly. 

Example 3 As we learned in Section 1 2.5, the improper integral 

is important in the theory of probability and elsewhere. We shall find its value 
by a clever device that depends on an improper double integral in polar coordi
nates. Write 

Since it doesn't matter what letter we use for the variable of integration, we have 

By moving the first factor past the second integral sign, this can be written in 
the form 

This double integral is extended over the entire first quadrant of the .xy-plane. In 
polar coordinates it becomes 

/2 = e- r r dr d(} = - - e-r d(} = - d(} = -L7T/2 L� 2 L7T/2 [ I ']� L7T/2 I 7T 
0 0 0 2 0 0 2 4 '  

so I =  +v; or 

J� l 
O 

e -x1 dx = 2y;· (4) 

This formula is especially remarkable because it is known that the indefinite 
integral 

is impossible to express as an elementary function. *  

*There i s  a famous story about the nineteenth-century Scottish physicist Lord Kelvin. "Do you know 
what a mathematician is?" Kelvin once asked a class. He stepped to the blackboard and wrote 

which is clearly equivalent to (4). "A mathematician," he continued, "is one to whom that is as ob
vious as twice two makes four is to you." As a matter of fact, this formula is not obvious, either to 
the present writer or to any of the many mathematicians he has known. The conclusion seems to be 
that Kelvin was both showing off and trying to put down his class in a rather mean-spirited way. 
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PROBLEMS 

In Problems 1- 13, use double integrals in polar coordinates 
to find the areas of the indicated regions. 

1 The circle r = a. 
2 The circle r = 2a cos 0. 
3 The region common to the circles r = a and r = 

2a cos e. 
4 One loop of r = a cos 20. 
5 The right loop of the lemniscate r2 = 2a2 cos 20. 
6 The region inside the curve r = 2 + sin 30. 
7 The region inside the lemniscate r2 = 2a2 cos 20  and 

outside the circle r = a. 
8 The region inside r = tan (j and between (j = 0 and 

(j = 7r/4. 
9 The region inside the cardioid r = a( l + cos 0) and out

side the circle r = a. 
1 0  The region inside the circle r = a and outside the car

dioid r = a( 1 + cos 0). 
1 1  The region inside the cardioid r = 2a( I + cos 0) and 

outside the circle r = 3a. 
* 1 2  The region between r = Trl4 and r = Trl2, between r = 

(j and r = t (j ( (j � 0). 
1 3  The region inside the cardioid r = I + cos (j and to the 

right of the line x = l 
* 14 If R is the region bounded by the lines y = x, y = 0, 

x = I, evaluate the double integral 

ff dx dy 
( 1  + x2 + y2)312 

R 

by changing to polar coordinates. 
15 Evaluate the integral 

by changing to polar coordinates. 
In Problems 16-22, write the given integral in the form 

l{3 f.''(0) z r dr de. 
" r1(0) 

1 6  (2 (\."hi Jo Jo z dy dx. 

Jo J\/1-? 1 8  - I -\/I-? Z dx dy. 

L4 LY4-(x-2)
2 

20 z dy dx. 0 0 

L2
 
L
Y2y-y' 22 z dx dy. 0 0 

17 f3 J� z dy dx. Jo -� 

1 9  r i Lx z dy dx. Jo x2 

L
V212 J

Vi.7 
21 z dx dy. 0 y 

23 A cylindrical hole of radius b is drilled through the cen
ter of a sphere of radius a. 

(a) Find the volume of the hole. Notice that this for
mula gives the volume of the sphere when b = a. 

(b) Find the volume of the ring-shaped solid that re
mains. Express this volume in terms of the height 
h of the ring. Notice the remarkable fact that this 
volume depends only on h, and not on either the ra
dius a of the sphere or the radius b of the hole. 

*24 Find the centroid of the region enclosed by the loop of 
r = a cos 20 that lies in the first and fourth quadrants. 

25 Find the centroid of the region enclosed by the cardioid 
r = a( I + cos 0). 

*26 Find the centroid of the region enclosed by the right 
loop of the lemniscate r2 = 2a2 cos 20. 

27 Find the centroid of the semicircular disk x2 + y2 :s a2, 
y � O. 

28 Find the volume of the solid cone 0 :s z :s h(a - r)la. 
29 Find the volume of the solid under the cone z = 

2a - r whose base is bounded by the cardioid r = 
a( l + cos 0). 

30 Find the volume cut out of the sphere x2 + y2 + z2 = 
4a2 by the cylinder x2 + y2 = 2ax. 

31 For the solid bounded by the xy-plane, the cylinder 
x2 + y2 = a2, the paraboloid z = b(x2 + y2) with b > 
0, find (a) the volume, (b) the centroid. 

32 Find the polar moment of inertia lz of the circular plate 
bounded by r = a if the density o is constant. (Com
pare this very easy calculation with the work needed to 
solve the same problem using rectangular coordinates, 
in Problem 14 in Section 20.3.) 

33 Find the polar moment of inertia lz of a thin plate of 
constant density o that has the shape of the circle r = 
2a cos e. 

34 Solve Problem 33 for a plate that has the shape of the 
cardioid r = a( 1 + cos 0). 

35 A thin plate is bounded by the circle r = a and has den
sity o = a2/(a2 + r2). Find its mass M and polar mo
ment of inertia lz. 

36 The center of a circle of radius 2a lies on a circle of ra
dius a. Find the centroid of the region between the two 
circles. 

37 A thin plate of constant density a has the shape of a cir
cular sector of radius a and central angle 2a. Find the 
moment of inertia about the bisector of the angle. 

38 Find the centroid of the circular sector described in 
Problem 37. Obtain the result of Problem 27 as a spe
cial case of this. 

*39 Use the fact that f0e-x' dx = ty:;;: to show that 

(a) r e-2x' dx = i \12;; 

(b) r e-3x' dx = i Th; 



(c) r e-4x' dx = ± \/';; l7T/2 e-tan'x - 1 ' I . (d )  --2- dx - -2 v 'TT , 
0 cos x 

(e) r � dx = \/';; 

(f) r x2e-x' dx = ± \/';; 

(g) r Yx e-x dx = ±\/';; 
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and 

J J e-r' dA = : ( I  - e -2a') . 
R3 

(b) Show that 

fJ e-r' dA = J: J: e-<x'+y') dx dy 
R, 

(c) Use (a) and (b) to show that 

73 1 

(h) f dx = \/';; o � 

(i) LI � dx = ±\1';· 

'TT 2 (la 2 )2 'TT 2 2 4( 1  - e-a ) < o e-x dx < 4 ( 1  - e- a ) . 

(d )  Use (c) to conclude that 
40 Use the method of Example 3 to evaluate 

r� r� dx dy 
Jo Jo ( I  + x2 + y2)2 . 

41 There is a slight difficulty with the calculation of 12 
in Example 3, because we have not discussed improper 
double integrals . In this problem we outline a somewhat 
less cavalier approach to formula (4). In Fig. 20.2 1  we 
show a quadrant of a circle of radius a, which is inside 
a square of side a, which in tum is inside a quadrant 
of a circle of radius Via. Denote these regions by RI > 
Rz, R3. 
(a) Show that 

l� e-x' dx = _!_y; 
0 2 . 

J J e-r' dA = : ( I  - e-a') 
R1 Figure 20.21 

The definition of a triple integral follows the same pattern of ideas that was used 

2 o 5 to define a double integral in Section 20.2. We shall therefore confine ourselves 
• 

to a very brief explanation. 
TRIPLE INTEGRALS A triple integral involves a function f(x, y, z) defined on a three-dimensional 

region R. We divide R into many small rectangular boxes (and parts of boxes) 
by planes parallel to the coordinate planes, and we denote the volume of the kth 
box that lies wholly inside R by Ll Vk. Next, we evaluate the function at a point 
(xk, Yk> Zk) in the kth box and form the product/(xk> Yk> Zk) Ll Vk. Finally, we form 
the sum of, these products over all the boxes that lie inside R, 

n 
I f <xk> Yk> zk) � vk. k= I 

The triple integral of f(x, y, z) over R is now defined to be the limit of these sums 
as n becomes infinite and the maximum diagonal of the boxes (that is, the longest 
diagonal of any of the boxes) approaches zero, 

ff f f(x, y, z) dV = lim f f(xk, Yk> Zk) � Vk. ( 1 )  
R k= I 
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Jx2+yi J�--!! 
/ -.... 

'xi f -y- 1 dV = dx dy dz 
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x 

I 
I 1 z  I R 
I 
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y 

Figure 20.22 
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Sometimes we use the alternative notation 

III f (x, y, z) dx dy dz, 
R 

(2) 

with no implication intended about the order of integration. This arises from the 
fact that since the volume of a box with faces parallel to the coordinate planes 
can be written as /J,. V = /J...x /J..y /J..z, we have the element of volume formula 

dV = dx dy dz. (3) 

Figure 20.22 suggests the way the triple integral can be formed directly from the 
function f (x, y, z) and the element of volume dV, in the manner explained in the 
previous two sections: that is, we multiply dV by f(x, y, z) and integrate (or add 
together) the quantities f(x, y, z) dV as the element of volume dV sweeps over 
the entire region R. As before, this way of thinking is merely a convenient ab
breviation of the complex limit-of-sums process that constitutes the actual defi
nition of the triple integral. 

The main theoretical fact is that the triple integral ( 1 )  [or (2)] exists if 
f (x, y, z) is continuous and the boundary of R is reasonably well behaved. We 
shall not pursue this issue any further. And the main practical fact is that triple 
integrals can often be calculated as iterated integrals. 

Before we discuss iterated triple integrals, we quickly extend the ideas of Sec
tion 20.3 to the present context. First, if the region R is thought of as a solid body 
of variable density 8 = o(x, y, z) [ = mass per unit volume] , then OdV is the ele
ment of mass-that is, the mass contained in the element of volume-and the 
total mass is 

M = III 8dV. 
R 

Similar considerations lead to formulas for the moments with respect to the var
ious coordinate planes, denoted by Myz, Mxz• and Mxy; and also to formulas for 
the moments of inertia about the various axes, denoted by Ix, ly, and lz- These 
formulas (see Fig. 20.22) are 

Myz = III X 8dV, 
R 

and 

Mxz = III Y 8dV, 
R 

Mxy = ff I z 8dV; 
R 

Ix = III ( y2 + z2) 8dV, 
R 

fy = III (xz + z2) 8dV, 
R 

I, = III (x2 + y2) 8dV. 
R 

Also, the equations 

- Myz x = M, y = �z, _ Mxy z = M, 

define the center of mass of the body, or the centroid if 8 is constant. 
Just as we did with double integrals, we usually evaluate triple integrals by it

eration. For example, if R is described by inequalities of the form 

a ::::: x ::::: b, 

as shown in Fig. 20.23, then 
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z 

I I 
I I 
I I 
I 

Z = Z1 (X, y )  

y y 

__ __,�y = yz (X) 

JJ.f (b [ (Y,(x) (lz,<x.y) ) ] f (x, y, z) dV = ), ;, f (x, y, z) dz dy dx. 
R 

a y1 (x) z,(x,y) 
We usually omit the parentheses and brackets, and write this in the form 

Lb iy,Cx) lz,(x,y) a y1(x) z1(x,y) f (x, y, z) dz dy dx. 

As always, we integrate from the inside out, here�ntegrating first with respect to 
z, then with respect to y, and finally with respect to x. Other orders of integra
tion are often possible, and the order we choose in any specific problem is de
termined by a little foresight and our preference for easy calculations over hard 
ones. 

Example 1 Find the centroid of the tetrahedron bounded by the coordinate planes 
and the plane x + y + z = 1 .  

Solution We can treat the tetrahedron (Fig. 20.24) as a solid of density 8 = 1 
so that mass equals volume. By geometry the volume of the tetrahedron is V = i, and z is defined by 

z = t fff z dV. 
R 

z 

(0, 0, 1 ) 

z = l - x - y 

dV = dx dy dz 

(0, I ,  0) 

y 

x 

7 3 3  

Figure 20.23 

Figure 20.24 
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If we integrate first z, then y, then x, this means that we must write 

z = t Jf J z dz dy dx, R 
with suitable limits of integration inserted. To find the z-limits we use the indi
cated equation of the slanting plane and imagine that the element of volume 
shown in the figure-like an elevator car in an elevator shaft-moves up from 
z = 0 to z = 1 - x - y. Next, the resulting column generates a slice by moving 
across the solid from left to right, from y = 0 to y = 1 - x. And finally, the slice 
moves through the solid from back to front, from x = 0 to x = 1 .  Thus, 

z = + f r-x r-x-y z dz dy dx = 6 r r -x [-2
1 z2] 1 -x-

y 
dy dx 6 0 0  0 0 0  0 

= 3 fo1 L1-x (1 - X - y)2 dy dx = 3 L1 [-t ( 1  - X - y)3]�-x dx 

= fl ( 1  - x)3 dx = _ _!_ ( 1 - x)4 J I = l. Jo 4 o 4 

By the symmetry of the situation we see that the centroid is the point C±, ±, ±). 
We could also have found z by integrating in any other order, for instance, first 
x, then y, then z, 

_ _  _!_ ll 1 1-z 11-y-z Z - I Z dx dy dz, - 0 0 0 6 

where the limits of integration are determined as they are above, that is, by ex
amining the figure. Students should verify that this integral gives the same result 
as before. 

Example 2 Use a triple integral to find the volume of the sphere x2 + y2 + z2 = 
a2. 

Solution The total volume is 8 times the volume in the first octant, so by inte
grating in the order z, y, x (see Fig. 20.25) we have 

la l� lVa'-x2-y2 
V = 8  dz dy dx 0 0 0 

(a (� 
= 8 Jo Jo 

\/ a2 - x2 - y2 dy dx. (4) 

To calculate the inner integral here, we use the method of trigonometric substi
tution with y = A sin e, dy = A cos 8 d8 to obtain the auxiliary formula 

LA , ;-:-;;------;; 
l 7T/2 1 l 7T/2 v A2 - y2 dy = A2 cos2 e d6 = - A2 (1 + cos 26) de 0 0 2 0 

1 [ I ]7712 I = 2 A2 6 +2 sin 2e o = 4 7TA2. 

With A = Y a2 - x2, this enables us to write (4) as 

V = 8 - 1T(_a2 - x2) dx = 27T a2x - - x3 = - Tra3 
la I [ 1 ]a 4 
0 4 3 0 3 ' 
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z = Jai - x2 - y2 

dV = dx dy dz 

y 

y = � 
Figure 20.25 

and the calculation is complete. Of course, we are thoroughly familiar with this 
result, which we have already obtained by a number of different methods. Our 
purpose here is to provide another illustration of the technique of triple integra
tion. 

PROBLEMS 

In Problems 1-10, evaluate the given iterated integral. 

fo1 J: r' 1 8x3y2z dz dy dx. 

2 fol D fol-x x dz dx dy. 

3 
(a (b (c 

sin 7TX dz dy dx. Jo Jo Jo a 

4 fo1 Jo1-y J:+y' y dz dx dy. 

S Jo2 fo7T I�n 4 
x3 cos � e' dz dy dx. 

6 fol fol -x fo2-x xyz dz dy dx. 

7 L2 lvh' 14-y2-z2 , , dx dy dz. O O y +z -4 (I (v'3z (Y3�2+z2) 
8 Jo Jo Jo xyzYx2 + y2 + z2 dx dy dz. 

L2 LV4=1 L4-x'-y' 9 y dz dx dy. 
0 0 0 

1 0  fo1 e I: ex +  2z) dz dx dy. 

1 1  Change the order of integration by putting suitable lim
its on the right side: 

r I: I: 1cx. y, z) dz dy dx = ff I 1 ex. y, z) dx dy dz. 

12  Evaluate both integrals in Problem 1 1  if f(x, y, z) = I .  
13 Evaluate both integrals in Problem 1 1  if f (x, y, z)  = x. 

14 Evaluate both integrals in Problem 1 1  ifj(x, y, z)  = yz. 
15 Change the order of integration by putting suitable lim

its on the right side: J I f � ( I -x'-y' _ 1 -vl=:;2 Jo f(x, y, z) dz dy dx 

= III f (x, y, z) dx dy dz. 

16 Same directions as Problem 1 5 : 

fo6 r-x fo6-x-y f(x, y, z) dz dy dx 

= Jf I f(x, y, z) dx dy dz. 

In Problems 1 7-24, use triple integration to find the volumes 
of the given regions. 

17 The region in the first octant bounded by the cylinder 
x = 4 - y2 and the planes y = z, x = 0, z = 0. 

18 The region above the xy-plane bounded by the surfaces 
z2 = l 6y, z2 = y, y = x, y = 4, and x = 0. 

19 The region bounded by the paraboloids z = x2 + 9y2 
and z = 1 8  - x2 - 9y2. 

20 The region bounded by the paraboloids z = 8 - x2 -
y2 and z = x2 + 3y2. 

21  The region bounded by the ellipsoid 
x2 y2 z2 
2 + -b2 + 1 = I .  
a c 

22 The region bounded by the cylinder z = 4 - y2 and the 
paraboloid z = x2 + 3y2. 
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23 The tetrahedron bounded by the coordinate planes and 
the plane 

� + Z + 3- = 1 a b c ' 
where a, b, c are positive numbers. 

24 The region bounded by the cylinder x2 + y2 = 4x, the 
xy-plane, and the paraboloid 4z = x2 + y2. 

25 The density of a cube is proportional to the square of 
the distance from one corner. Show that the mass is what 
it would be if the density were constant and equal to 
the original density at another corner adjacent to the 
first. 

26 If the density 8 = xy, find the moment with respect to 
the xy-plane of the part of the sphere x2 + y2 + z2 ::5 a2 
that lies in the first octant. 

27 The cube bounded by the coordinate planes and the 
planes x = a, y = a, z = a has density 8 = cz where c 
is a constant. Find its moment of inertia lz about the 
z-axis. 

*28 Show that 

J: fob J: cos (x + y + z) dz dy dx 

8 . a . b . c  a + b + c  = sm 2 sm 2 sm 2 cos 
2 

. 

*29 Show that the four-dimensional "sphere" x2 + y2 + z2 + u2 = a2 has volume 

V = 1 6  I: LVa'-x' L\/a'-x'-y' L\/a'-x'-y'-z' du dz dy dx 

l = 27T2a4. 
Hint: Notice that the inner triple integral is the volume 
of the first octant of a three-dimensional sphere of ra
dius Va2 - x2. 

*30 Use the result of Problem 29 to find the volume of the 
five-dimensional "sphere" x2 + y2 + z2 + u2 + v2 = a2. 

20 . 6  
CYLINDRICAL 

COORDINATES 

If a solid has axial symmetry-that is, symmetry about a line in space- it is of
ten convenient to place its axis of symmetry on the z-axis and use cylindrical co
ordinates r, e, z (Fig. 20.26) for the calculation of triple integrals. Instead of the 
element of volume in rectangular coordinates, 

' ..... 
'- ,  ' ' --rp = (r, e, z ) 

x 
'--.... r I x 

- -� - --=-::J. y 
Figure 20.26 Cylindrical co
ordinates. 

y 

Figure 20.27 The cylindrical element 
of volume. 

dV = dx dy dz, 
we use the element of volume in cylindrical coordinates, 

dV = r dr d8 dz. ( 1 ) 
I t  is easy to  understand this formula by starting at a point (r, e, z )  and giving the 
coordinates small increments dr, de, dz. These increments sweep out a small cell 
in space which is approximately a rectangular box with edges r de, dr, and dz, 
as shown in Fig. 20.27, and dV as given by ( 1 )  is simply the product of these 
edges. Triple integrals now have the form 

J J J f (x, y, z) dV = J J J f (r cos 8, r sin 8, z) r dr d8 dz. R R 

x 

dV = r dr de dz 

dz�tf:;;, 
r d8 � 

: I '\J i i /  �dr 

1 1  : I 
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We can often calculate such an integral by writing it as an iterated integral, in 
the manner illustrated in the following examples. 

Example 1 Use a triple integral in cylindrical coordinates to find the moment 
of inertia of a uniform solid cylinder of height h, base radius a, and mass M about 
its axis. 

Solution Place the cylinder in the position shown in Fig. 20.28. The word "uni
form" in this context means that the density o is constant. The mass contained 
in dV is &iV, and the moment of inertia of this mass about the z-axis is r2 &iV. 
The total moment of inertia of the cylinder about its axis is therefore 

JJJ r2 odV = JJJ r2 o r dr d(J dz 
R R 

(27T {a (h 
= 0 Jo Jo Jo r3 dz dr d(J 
= oh r3 dr d(J = oh . - a4 d(J J27T La 1 J27T 0 0 4 0 

l 1 = o · - 1Ta4h = - Ma2 2 2 , 

since M = 8 · 1Ta2h. That the limits on these integrals are all constants is a con
sequence of the fact that cylindrical coordinates are perfectly suited to this prob
lem. 

Example 2 Use a triple integral in cylindrical coordinates to find the volume of 
the sphere x2 + y2 + z2 = a2. 

Solution The cylindrical equation of the sphere is r2 + z2 = a2, so the equation 
of the upper hemisphere is z = Y a2 - r2. We multiply the volume above the xy
plane by 2, and find this volume by integrating in the order z, r, (), as suggested 
in Fig. 20.29: 

(27T ra (� (27T ra ' � V = 2 Jo Jo Jo r dz dr d(J = 2 Jo Jo r V a2 - r2 dr d(J 

= 2 --(a2 - r2)3/2 d(J = 2 - a3 d(J = - 1Ta3. J27T [ 1 ]a J27T 1 4 
0 3 0 0 3 3 

Of course, we obtain the same result as in Example 2 in  Section 20.5 ,  but the 
calculation is much easier here because cylindrical coordinates are better than 
rectangular coordinates for working with spheres. 

Example 3 Find the moment of inertia of a uniform solid sphere of radius a and 
mass M about a diameter. 

Solution We may assume that our present sphere occupies the region bounded 
by the sphere r2 + z2 = a2 in Example 2. If the constant density is denoted by 
o, then the moment of inertia about the z-axis is 
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z = � 

a 

y 

Figure 20.29 
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L27T La L� L27T La . � I = 2 r2 · or dz dr d(} = 28 r3 v a2 - r2 dr d(} z 0 0 0 0 0 

(In the last step here we integrated out of the indicated order for the purpose of 
disposing of the simple 8-integral so that we could concentrate our attention on 
the harder r-integral. Students will become accustomed to this type of shortcut.) 
To evaluate this integral we use the substitution r = a sin </J, dr = a cos <jJ d</J to 
write 

J r3� dr = as J sin3 </> cos2 </> d</> 

= as J (cos2 </> - cos4 </>) sin </> d</> 

= as ( + coss </> - t cos3 </>) . 
This gives 

I = 8 · 47Tas - coss "' - - cos3 "' = 8 · - 7Tas = - Ma2 [ 1 1 ]"'12 8 2 
l 5 'I' 3 'I' 0 1 5 5 , 

since M = 8 · -}-7Ta3. 

PROBLEMS 

Use cylindrical coordinates to solve the following problems. 
l Find the volume of the solid bounded above by the pa

raboloid z = I - x2 - y2 and below by the xy-plane. 
2 Find the mass of the solid in Problem I if the density 

is 
(a) proportional to the distance from the xy-plane, 8 = 

cz; 
(b) proportional to the distance from the z-axis, 8 = er; 
(c) proportional to the square of the distance from the 

origin, 8 = c(r2 + z2). 
3 A uniform solid cone of height h and base radius a rests 

on the xy-plane with its vertex on the positive z-axis. 
Find its center of mass. 

4 If the mass of the cone in the preceding problem is M, 
find its moment of inertia I, about the z-axis 
(a) by integrating first with respect to z; 
(b) by integrating first with respect to r. 

S A cylindrical hole of radius b is bored through the cen
ter of a uniform solid sphere of radius a. If the density 
is denoted by 8, find the mass of the ring-shaped solid 
that remains, and also its moment of inertia about the 
axis of the hole. Notice that this result generalizes the 
result of Example 3. 

6 A wedge is cut from a uniform solid cylinder of radius 

a by a plane tangent to the base and inclined at a 45° 
angle to the base. Find its moment of inertia about the 
axis of the cylinder. 

7 A uniform solid cone has height h, radius of base a, and 
mass M. Find its moment of inertia about an axis 
through the vertex and parallel to the base. Hint: Let 
the cone have its vertex at the origin and its axis on the 
z-axis, and find Ix. 

8 A uniform solid cone has height h, radius of base a, and 
mass M. Find its moment of inertia about a diameter of 
the base. Hint: Let the cone have its base in the xy-plane 
and its axis on the z-axis, and find Ix. 

9 A uniform solid hemisphere is bounded above by the 
sphere x2 + y2 + z2 = a2 and below by the xy-plane. 
Find its center of mass. (The result of this problem is 
a theorem of Archimedes.) 

I 0 Find the mass of a cylindrical solid of height h and base 
radius a if the density at a point is proportional to the 
distance from the axis of the cylinder. 

1 1  A cylindrical hole of radius a i s  bored through the cen
ter of a solid sphere of radius 2a. Find the volume of 
the hole. 

12 Find the volume of the region bounded above by the 
plane z = 2x and below by the paraboloid z = x2 + y2. 
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1 3  Find the volume of the solid bounded above by the plane 
z = x and below by the paraboloid z = x2 + y2. 

1 4  Find the mass of the solid in Problem 13  i f  the density 
at each point is proportional to the square of the dis
tance from the z-axis. 

1 5  Find the volume of the region bounded above by  the 
plane z = x + y, below by the xy-plane, and on the sides 
by the cylinder x2 + y2 = a2 and the planes x = a, y = 
a. 

* 1 6  Find the volume of the region bounded above by the 
paraboloid z = x2 + y2, below by the .xy-plane, and on 
the side by the hyperboloid 

z2 x2 + y2 = 1 + -4 · 
17 Find the volume of the region bounded above and be

low by the sphere x2 + y2 + z2 = 4a2 and on the side 
by the cylinder (x - a)2 + y2 = a2. 

* 1 8  If the region i n  Problem 17 i s  filled with matter o f  con
stant density 8 = 1 ,  find the moment of inertia of this 
solid about the z-axis. 

1 9  Find the moment of  inertia of  a uniform solid cylinder 

of radius a and mass M about a generator. Hint: Place 
the cylinder so that a generator lies on the z-axis. 

20 Find the volume of the region bounded above by the 
sphere x2 + y2 + z2 = 2a2 and below by the paraboloid 
az = x2 + y2. 

*21  Find the moment of inertia of a uniform solid sphere of 
radius a and mass M about a tangent line. Hint: Place 
the sphere with its center at the origin and let the tan
gent line be the line of intersection of the planes x = a, 
y = 0.  

22 Find the volume of the region inside the cylinder r = 
a sin 8 which is bounded above by the sphere x2 + y2 + 
z2 = a2 and below by the upper half of the ellipsoid 
x2!a2 + y2ta2 + z2/b2 = I where b < a. 

23 Find the volume of the region bounded above by the 
sphere x2 + y2 + z2 = a2 and below by the cone z = r 
cot a. Use this result to find the volume of a hemisphere 
of radius a. 

*24 Find the volume of the spherical segment of height h 
which is cut from a sphere of radius a by a plane at a 
distance a - h from the center. 

Just as cylindrical coordinates help us deal with problems involving symmetry 
about a line, spherical coordinates are designed to fit situations with symmetry 
about a point, as in the case of a solid sphere whose density is proportional to 
the distance from its center. We became acquainted with the spherical coordi
nates p, </>, 8 (see Fig. 20.30) in Section 1 8.7. We now put them to use in the cal
culation of certain triple integrals .  

20 . 7  
SPHERICAL 
COORDINATES .  
GRAVITATIONAL 
ATTRACTIO N  

In order to express a triple integral 

J J J f (x, y, z) dV 
R 

in spherical coordinates, we need to be able to write x, y, z as functions of p, </>, 
8. This is easy to do by simply looking at Fig. 20.30: 

z = p cos <f>, 
r = p sin </>, 
x = p sin </> cos 8, 
y = p sin </> sin 8. 

We must now find a formula for the element of volume dV in terms of p, </>, 8. 
To do this we start at a point P = (p, </>, 8) and give small increments dp, d<f>, d8 
to its spherical coordinates. As we see in Fig. 20. 3 1 ,  the displacement of P in the 
p-direction has length dp, that in the </>-direction has length p d</>, and that in the 
8-direction has length p sin </> d8. These three lengths are the edges of the "spheri
cal box" shown in the figure, so the volume of this box is (dp) (p d<f>) (p sin </> d8) 
and we have 

dV = p2 sin </> dp d</> d8. 

z 

P =  (p, t/J, 6 )  

p 

x 

Figure 20.30 Spherical coordinates. 
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Figure 20.31 The spherical element 
of volume. 

y 

Figure 20.32 
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p sin q, de 
dV = p2 sin q, dp dq, de 

p dq, 

- -j.._ I "'°5- I I 
' I -J de {'-.J,,4-p sin q, de 

p sin q, 

To calculate a triple integral in spherical coordinates we therefore write 

JJJ f(x, y, z) dV = JJJ f(p sin <P cos (}, p sin <P sin (}, p cos <f>)p2 sin <P dp d</> de. 
R R 

In any particular problem we try to express this as an iterated integral in such a 
way that dV sweeps over the region R in a convenient manner. In most cases the 
nature of the region R will suggest an appropriate order of integration, together 
with corresponding limits of integration. 

Example 1 Use a triple integral in spherical coordinates to find the volume of 
the sphere x2 + y2 + z2 = a2. 

Solution The equation of this sphere in spherical coordinates is p = a. We cal
culate the integral 

V = JJJ dV = JJJ p2 sin <P dp d<f> d(} 
R R 

by integrating in the order p, <f>, (}. The first integration, as p increases from 0 to 
a, adds the elements of volume dV to give the volume of the "spike" shown in 
Fig. 20.32; the second, as </> increases from 0 to 1T, adds the volumes of these 
spikes to give the volume of the wedge in the figure; and the third, as (} increases 
from 0 to 27T, adds the volumes of these wedges around the z-axis to give the 
volume of the entire sphere. The actual calculation is 

(21T (1T (a 
V = Jo Jo Jo p2 sin <P dp d<jJ d(} 

= [r p2 dp ][r sin <P d<jJ ][L27T d(}] 
1 4 = - a3 · 2 · 27T = - 7Ta3 3 3 ' 

as expected. This problem is perfectly suited to spherical coordinates, as we see 
from the simplicity of this calculation compared with those given in the corre
sponding examples in Sections 20.5 and 20.6. 

Example 2 Find the centroid of the region bounded by the sphere p = a and the 
cone </> =  a. 
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Solution This region (Fig. 20.33) is shaped like a filled ice cream cone. Its vol
ume is 

(2 7T (" (a 
V = Jo Jo Jo P2 sin </> dp d</> d() 

I I" = - a3 • 271' sin </> d</> 3 0 

2 
= 3 1Ta3(1 - cos a). 

As a check, this gives f ?Ta3 as the volume of the sphere when a = 7T. Now for 
the centroid. It is clear by symmetry that x = y = 0. To find z, we must first find 
the moment of the region with respect to the xy-plane, 

Mxy = JJJ z dV = f 7T L" fo0 (p cos </>) p2 sin </> dp d</> d() 
R 

Finally, we have 

1 (
" = 2 1Ta4 Jo sin </> cos </> d<f> 

= ..!. 1Ta4 sin2 a 
4 

. 

_ MX) 3 . _!_ 4 · 2 _ l z = V = 
21Ta3( 1 _ cos a) 4 

1Ta sin a - 8 a( l + cos a). 

When a = 7T!2 this specializes to z = ia, which is the result of Problem 9 in 
Section 20.6. 

In our next example we discuss an idea with important implications for sev
eral branches of physical science. 

Example 3 The gravitational attraction of a thin spherical shell. Suppose that 
matter of total mass M is uniformly distributed on the surface of a sphere of ra
dius a centered at the origin (Fig. 20.34). Show that the gravitational force F ex
erted by this thin spherical shell on a particle of mass m located at a point (0, 0, 
b), with b > a, is exactly what it would be if all the mass of the shell were con
centrated at its center. That is, show that 

Mm [Ff = G f;2, ( 1 )  

where G i s  the constant of gravitation. 

Solution By  symmetry it is clear that the vector F is directed downward, so 
F = Fzk where Fz is negative. By Fig. 20.3 1 the element of area on the surface 
of the sphere is 

dA = a2 sin </> d<f> d(); (2) 

and since the mass per unit area on the surface is M/47Ta2, the mass contained in 
dA is 

dM = � sin </> d<f> d(). 

74 1 

p = a 

r/i = ex 
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Figure 20.33 
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m 

Newton' s  law of gravitation states that the magnitude of the force this element 
of mass exerts on m (see Fig. 20.34) is 

G dM · m = GMm . "' d"' d() w2 4mv2 sm "' "' ' 
with downward component 

dM · m  GMm . G --2- cos a =  -4 2 cos a sin </> d<f> d(). w mv 

We now find the magnitude of the total force the shell exerts on m by integrat
ing this expression over the surface of the sphere, 

IF I = L21T r �!� cos a sin </> d<f> d() 

GMm (1T 1 . = -2
- Jo w2 cos a sm </> d<f>. (3) 

To calculate this integral we change the variable of integration from <P to w and 
integrate from w = b - a to w = b + a (see the figure). The reason for this strat
egy will become clear as we proceed. To accomplish the necessary transforma
tion of the integral in (3), we first use the law of cosines to write 

w2 = a2 + b2 - 2ab cos </>, 

so 

2w dw = 2ab sin </> d<f> 

or 

. ,,, d"' w dw sin "' "' = ----;;b. 

To write cos a as a function of w, we use the fact that 

or 

w cos a + a cos <f> = b 

b - a cos </> cos a = . w 

(4) 

(5)  
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With the aid of (4), this becomes 

b - [(a2 + b2 - w2)/2b] cos a = w b2 - a2 + w2 
2bw 

When (5) and (6) are substituted in (3), we obtain 

JF J = GMm (b+a __!_ (b2 - a2 + w2 ) w dw 
2 Jb-a w2 2bw ab 

_ GMm Lb+a ( b2 - a2 ) - 4 b2 2 + l dw. a b-a w 
The value of the integral here is 

- + w = [- (b - a) + (b + a) + (b + a) - (b - a)] [ (b2 _ a2) ]b+a 

so (7) becomes 

W b-a 
= 4a, 

GMm Mm 
JFJ = 4ab2 · 4a = Gy, 

and the proof of ( 1 )  is complete. 

(6) 

(7) 

The conclusion reached in this example implies one of Newton's greatest the
orems in mathematical astronomy: Under the inverse square law of gravitation, 
a uniform solid sphere attracts an outside particle as if its mass were concen
trated at its center; for such a sphere can be thought of as if it were composed 
of a great many concentric thin spherical shells, like the layers of an onion, and 
each shell attracts in this way. Indeed, our discussion proves even more, namely, 
that the same statement holds for a solid sphere of variable density, provided that 
the density depends only on the distance from the center. Newton's theorem shows 
that in computing the mutual gravitational attraction of various bodies in the so
lar system, like the sun, the earth, and the moon, it is legitimate to replace these 
huge bodies by equal point masses-that is, particles-located at their centers. 
It is believed by some historians of science that Newton delayed the publication 
of his theory of the solar system for 20 years until he was able to prove this the
orem. 
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Use spherical coordinates to solve the following problems. 
1 If the region in Example 2 is filled with matter of con

stant density 8, find the moment of inertia of the result
ing solid about the z-axis. Use this result to show that 
the moment of inertia of a uniform solid sphere of ra
dius a and mass M about a diameter is f Ma2 

gion bounded by the concentric spheres p = b, p = a and 
the cone </> = a. 

2 In Example 2, z ---'> �a as a ---'> 0. Explain this, in view of 
the fact that the region approaches a line segment as 
a ---'> 0 and the centroid of a line segment is its midpoint. 

3 Find the volume of the torus p = 2a sin </> (see Fig. 1 8 .42). 
4 If 0 < b < a and 0 < a < 7r, find the volume of the re-

S Find the centroid of the hemispherical shell 0 < b ::::; p ::::; 
a, z 2'.: 0. 

6 Find the moment of inertia about the z-axis of the shell 
in Problem 5 if it is a solid of constant density 8. 

7 A wedge is cut from a solid sphere of radius a by two 
planes that intersect on a diameter. If a is the angle be
tween the planes, find the volume of the wedge. 

8 Find the mass of a solid sphere of radius a if the density 
at each point equals the distance from the surface . 

*9 Use a triple integral (in spherical coordinates) to verify 
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that the volume of a cone of height h and base radius r 
is +7Tr2h. 

1 0  If the density of a solid sphere of  radius a is proportional 
to the distance from the center, o = cp, show that its mass 
is c7Ta4. 

1 1  Let n be a nonnegative constant, and consider a solid 
sphere of radius a centered at the origin whose density 
is proportional to the nth power of the distance from the 
center, o = cpn. 
(a) Find the moment of inertia of this sphere about the 

z-axis. 
(b) Show how the result obtained in (a) yields the con

clusion that the moment of inertia, about a diameter, 
of a uniform solid sphere of radius a and mass M is 
tMa2 . 

1 2  In Problem 1 1 , allow the exponent n to be negative and 
determine what restriction must be placed on n if the 
mass of the sphere is to be finite. Hint: Find the mass 
between concentric spheres p = b and p = a with 0 < 
b < a, and then let b � 0. 

1 3  Sketch the region bounded by the surface p = a( I -

cos </>), and find its volume. 
14  Find the mass of a solid sphere of radius a centered at 

the origin if the density at a point P equals the product 
of the distances from P to the origin and to the z-axis. 

15 Consider a solid sphere of radius a centered at the ori
gin with variable density 0 = o(p, </>. (}). 
(a) Set up an iterated integral for the mass M with the 

integrations in the order e. </>. p. 
(b) Simplify the integral in (a) as much as possible for 

the special case in which the density is a function of 
p alone, say 8(p, </>, 8) = ftp). 

(c) Show that the formula in (b) can be obtained directly 
by using thin spherical shells, without any use of it
erated integrals. 

1 6  Apply formula (2) to find the area of the polar cap on a 
sphere of radius a which is defined by 0 � </> � a, and 
use this result to find the total surface area of the sphere. 

17  In Example 3, assume that the particle m lies inside the 
spherical shell, so that b < a, and show that in this case 

the integral in (7) has the value zero. This proves the re
markable fact that a uniform thin spherical shell of mat
ter exerts no gravitational force whatever on bodies lo
cated inside its cavity. Further, the same conclusion is 
also true for any nonthin spherical shell in which matter 
of variable density fills the space between two concen
tric spheres, provided that the density depends only on 
the distance from their common center. 

1 8  Assume that the earth is spherical and o f  constant den
sity, and imagine that a small tunnel is bored through the 
center. Neglecting the effect of this removal of matter, 
show that the gravitational attraction of the earth on a 
particle in the tunnel is directly proportional to the dis
tance from the particle to the center of the earth. Is this 
necessarily true if the density is variable but depends only 
on the distance from the center? 

1 9  Assume that the region discussed in Example 2 is filled 
with matter of constant density 8, and find the gravita
tional attraction it exerts on a particle of mass m placed 
at the origin. 

20 If the rounded top is cut off the solid in Problem 1 9, leav
ing a cone of height h = a cos a, what now is the grav
itational attraction exerted on a particle of mass m placed 
at the origin? 

2 1  Assume that matter of constant density o (= mass per 
unit area) is spread over the entire xy-plane and that a 
particle of mass m is located at the point (0, 0, b) on the 
z-axis. Show that the gravitational attraction exerted by 
the planar mass on the particle is given by the following 
improper integral in polar coordinates, 

ff GMob 
(r2 + b2)312 r dr de, 

R 

where R is the entire xy-plane. Evaluate this integral by 
computing it over a circle of radius a centered at the ori
gin and then letting a � =. Notice the remarkable fact 
that the value of this integral does not depend on b, so 
that the attractive force of the infinite plane on the par
ticle is independent of the distance from the plane. Why 
is this obvious without calculation? 

20 . 8  
AREAS OF CURVED 

SURFACES.  LEGENDRE' S  
FORMULA 

In Section 7 .6 we discussed the problem of finding the area of a surface of rev
olution. We now consider the area problem for more general curved surfaces, 
specifically, those that have equations of the form 

z = f(x, y), 

where both partial derivatives fx(x, y) and fy(x, y) are continuous functions. 
The method we describe rests on the simple fact that if two planes intersect at 

an angle y (see Fig. 20.35), then all areas in one plane are multiplied by cos y 
when projected on the other, 

A =  S cos y. 
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This is clearly true for the area of a rectangle with one side parallel to the line 
of intersection of the planes, and it follows for other regions by a limiting process. 
In just the same way, we project an element of surface area dS down from the 
given curved surface z = f(x, y) onto an element of area dA in the xy-plane, as 
shown in Fig. 20.36 .  Here we have 

dA = dS cos y, 
where y is the angle between the vertical line in the figure and the upward-point
ing normal to the surface. This equation yields 

dS = �, cos 'Y 
so the total area of the curved surface is given by the formula 

S = ff dS = ff c:: y ' 
R 

( I )  

where R i s  the region in  the xy-plane that lies under the part of  the surface z = 
f(x, y) whose area we wish to find. The element of area dA in Fig. 20.36 is drawn 
without any special shape, because the double integral ( 1 )  is sometimes used with 
rectangular coordinates and sometimes with polar coordinates. 

In order to make ( 1 )  into a practical tool for actual calculations, we need a for
mula for cos y. We find this formula from the fact that the vector fxi + fyj - k 
is normal to the surface, as we saw in Section 1 9.3 .  This particular normal vec
tor points downward, because its k-component is negative. If we reverse the di
rection and divide by the length, then we see that the vector 

-!xi -fyj + k 
u = -=====-

Yfx 2 + !/ + 1 
is the upward-pointing unit normal, and therefore cos y is its k-component, 

1 cos y =  . 
VJ} + fl +  1 

This enables us to write ( 1 )  in the form 

s = ff Yf} +fl + I dA, (2) 
R 

which is the basic formula of this section. 

Example 1 Find the area of the upper half of the sphere x2 + y2 + z2 = a2 (Fig. 
20.37). 

Solution The upper hemisphere is represented by the equation z = 

Y a2 - x2 - y2, so we have 
-x 

fx = ---::==== Ya2 - x2 - y2 ' 
with a similar formula for fy· The integrand in (2) is therefore 

�-�-� + + l = ---::=====-( x2 y2 ) 112 a 
a2 - x2 - y2 a2 - x2 - y2 ya 2 - x2 - y2 

so the area of the hemisphere is 

S = ff a 
dA, 

R Ya2 - x2 - y2 (3) 
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where R is the region in the xy-plane bounded by the circle x2 + y2 = a2. [It is 
worth noticing that in this particular case the figure tells us directly that cos y = 
z/a, so the integrand in ( 1 )  is 

a a 
cos /' z y a2 _ x2 _ y2 

and the integral (3) can be written down at once, without calculation. ]  We now 
evaluate the integral (3) by introducing polar coordinates, 

S = a = a -Va< - r< d() L21T La r dr d(} L2" [ . �2Ja 
o o Ya2 _ r2 o o 

(2 " = a2 Jo d() = 27Ta2. 

This result is in agreement with Archimedes' formula from elementary geome
try, which states that the surface area of a sphere of radius a is 47Ta2. 

Example 2 Find the area of the part of the paraboloid z = x2 + y2 that lies in
side the sphere x2 + y2 + z2 = 6. 

Solution The boundary of the base region R is the projection on the xy-plane 
of the curve of intersection of the two surfaces. See Fig. 20.38 .  This is most eas
ily determined by writing the surfaces in cylindrical coordinates, z = r2 and r2 + 
z2 = 6. When z is eliminated, we find that the boundary of R is the circle r2 = 2 
or r = Yl. In this case we have f(x, y) = x2 + y2, so fx = 2x and fy = 2y, and 
therefore the desired surface area is 

S = J JV 4x2 + 4y2 + I dA. 
R 

Again we carry out the calculation by using polar coordinates, which gives 

(21T (Yz . � 
S = Jo Jo v 4r2 + I r dr d(} 

= (2" [_!_(4r2 + 1 )312JV2 d(} Jo 1 2  o 

1 1 3 = 27T . -(27 - 1 )  = -7T 1 2 3 . 

y 
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Formulas ( 1 )  and (2) are the standard formulas of calculus for actually find
ing the areas of specific curved surfaces. They work well, and we hope they seem 
reasonable to students. Nevertheless, the theory of surface area is very difficult, 
in particular, the problem of giving a fully satisfactory definition of the concept 
itself. This problem has occupied the attention of mathematicians for almost a 
hundred years, and research on these matters continues to this day. Anyone who 
wishes to understand the nature of the difficulty should study the classic exam
ple of H. A. Schwarz ( 1 890), which jolted the mathematical world of the time 
out of its complacency. Schwarz's example is a simple and familiar curved sur
face whose area can be computed in several equally reasonable ways to yield 
wildly different results .* 

*This example is described in many places. See, for instance, p. 204 of D.  V. Widder, Advanced Cal
culus, 2nd ed. (Prentice-Hall, 1 96 1 ). 

PROBLEMS 

Solve Problems 1-6 by using the ideas of this section but with
out integration. 

I Find the area of the triangle cut from the plane x + 
2 y + 3z = 6 by the coordinate planes. 

2 Find the area above the xy-plane cut from the cone z2 = 
x2 + y2 by the cylinder x2 + y2 = 2ax. 

3 Find the area cut from the plane x + y + z = 7 by the 
cylinder x2 + y2 = a2 

4 Find the area cut from the plane z = by by the cylinder 
x2 + y2 = a2. 

5 Find the area of the part of the cone z2 = x2 + y2 that 
lies between the xy-plane and the plane 2z + y = 3. 
Hint: What is the area of an ellipse? 

6 In Problem 5, find the area of the ellipse in which the 
plane intersects the cone. 

7 Find the area of the part of the sphere x2 + y2 + z2 = 
a2 that lies above the xy-plane and inside the cylinder 
x2 + y2 = ax. 

8 In Problem 7, find the area of the part of the cylinder 
above the xy-plane that lies inside the sphere. Hint: Find 
fh ds, where h is the height of the cylinder and ds is 
the element of arc length in the xy-plane. 

9 Find the area cut from the paraboloid z = x2 + y2 by 
the plane z = 1 .  

1 0  Find the area of the part of the surface z2 = 2xy that 
lies above the xy-plane and is bounded by the planes 
x = 0, x = 2 and y = 0, y = 1 . 

1 1  Find the area cut from the saddle surface az = x2 - y2 
by the cylinder x2 + y2 = a2. 

1 2  Find the area of the part of the sphere x2 + y2 + z2 = 
2a2 that lies inside the upper half of the cone z2 = 
x2 + y2. 

1 3  If R is any region i n  the xy-plane, show that the area of 
the part of the paraboloid z = ax2 + by2 that lies above 
R is equal to the area of the part of the saddle surface 
z = ax2 - by2 that lies above (or below) R. Show that 

this statement is also true for the pairs of surfaces z = 
x2 + y2, z = 2xy and z = Jn (x2 + y2) , z = 2 tan- 1 x/y. 

1 4  Find the area o f  the part of the paraboloid z = 4 - x2 -
y2 that lies above the xy-plane. 

* 1 5  Find the area o f  the part of the cylinder z = 1 - x3 that 
is cut out by the planes y = 0, z = 0, and y = ax where 
a >  0. 

1 6  Find the area o f  the part of the cylinder x2 + y2 = a2 
that is cut out by the cylinder y2!a2 + z2!b2 = 1 .  

1 7  Find the area o f  the part of the c y  tinder x2 + z2 = a2 
that lies in the first octant and between the planes 
y = 3x and y = 5x. 

18 Find the area of the part of the cylinder y2 + z2 = a2 
that lies inside the cylinder x2 + y2 = a2. 

19 The cylinder r2 = 4 cos 2() intersects the xy-plane in a 
lemniscate. Find the area of the part of the paraboloid 
4z = x2 + y2 that lies inside this cylinder. 

*20 In Section 7.6 we used the formula 

to find the area of the surface of revolution obtained 
when the curve y = f(x) is revolved about the x-axis. 
Show that our new method is consistent with the old, 
by deriving this formula from (2). Hint: The equation 
of the surface of revolution is y2 + z2 = f(x)2. 

*2 1  A spherical triangle is the figure o n  the surface of a 
sphere which is bounded by arcs of three great circles 
(Fig. 20.39). If a is the radius of the sphere, then Le
gendre 's formu[a t for the area of such a triangle is 

tA. M. Legendre ( 1752-1 833) was an able French mathematician 
who had the bad luck to see most of his life's work rendered obso
lete by the discoveries of younger and more brilliant men. In spite 
of this, he retained his amiable and generous disposition. 
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Figure 20.39 A spherical triangle. 

S = a2(a + f3 + y - 7T), 

where a, {3, y are the angles between the sides. (The 
quantity a + f3 + y - 7T is called the spherical excess 
of the triangle.) Thus, on a given sphere the area of a 
triangle depends only on its angles. Prove Legendre's 
formula by the following steps. 
(a) In the special triangle cut from the sphere x2 + y2 + z2 = a2 by the planes y = 0, y = x tan a, z = 

x tan µ,, show that the angles between the sides are 
a, 7T/2, and {3, where cos f3 = sin a sin µ,. Hint: Use 
vectors. 

(b) Show that the projections on the .xy-plane of the 
sides of the right triangle in (a) are (} = 0, (} = a, 
and r = a!Y 1 + tan2 µ, cos2 (}, and that the area of 
this triangle is 

s = a2 r [ 1 - sin µ, cos (} ] d(}. 0 Yl - sin2 µ, sin2 (} 
(c) Carry out the integration in (b) and thereby show 

that the area of the right triangle is 

(d ) Complete the proof of Legendre's formula by di
viding an arbitrary triangle into two right triangles 
and using (c). 

Apply Legendre's formula to show that the area of the 
complete sphere is 47Ta2. Hint: Divide the surface into 
convenient triangles. 

CHAPTER 20 REVIEW: METHODS, FORMULAS 

Think through the following. 5 Cylindrical coordinates: dV = r dr d(} dz. 
1 Iterated integrals and double integrals : dA = dx dy. 6 Spherical coordinates: dV = p2 sin ¢ dp d</J d(}.* 
2 Mass, moment, center of mass, and moment of inertia for 

thin plates of variable density. 7 dS = � = Yf ;2 + f,2 + I dA. cos y x y 

3 Polar coordinates: dA = r dr d(}. 
4 Triple integrals: dV = dx dy dz. 

APPENDIX: 
E ULER'S FORMULA 

00 1 7r2 

I � = 6  n= l 
BY DOUBLE 

INTEGRATION 

*In Appendix A.2 1 we describe some general ideas that provide a uni
fied view of the three formulas dA = r dr d8, dV = r dr d8 dz, and 
dV = p2 sin </> dp d<P d8. 

The geometric series 1/( 1 - r) = 1 + r + r2 + · · · enables us to write 

L
I 
L
I dx dy 

L I L
I --- = (l + .xy + x2 y2 + · · - ) dx dy 0 0 1 - .xy 0 0  

= x + -x2y + -x3y2 + · · - ) dy L
I ( l l J I 0 2 3 0 

(1 ( y y2 ) = Jo 
l + 2 + 3 + . . . dy ( y2 y3 )] I l ] = y + 22 +32 + · · ·  0 = 1 + 22 + 32 + · · · .  

The sum of Euler's series L l ln2 is therefore the value of the double integral 

I =  (1 ( 1  dx dy . Jo Jo 1 - .xy 
We evaluate this integral-and thereby determine the sum of the series-by 
means of a rotation of the coordinate system through the angle 8 = 1Tl4. 
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n = I  

If we rotate the .xy-system into the uv-system through an arbitrary angle 8, as 
shown in Fig. 20.40, then the transformation equations are 

x = u cos (} - v sin (}, 
y = u sin (} + v cos e. 

When 8 = 1T/4 these equations become 

so we have 

I xy = - (u2 - v2) 2 

x = tV2cu - v), 

y = tV2cu + v), 

and 2 - u2 + v2 I - xy = -----2 

By inspecting Fig. 20.4 1 ,  we see that the integral I can be written in the form 

JVv2 Ju dv du Jv2 1v2-u dv du / = 4  + 4  . o o 2 - u2 + v2 v212 o 2 - u2 + v2 

If we denote the integrals on the right by /1 and Ii, then 

JVv2 
[Jc" dv ] /1 = 4 2 2 2 du. o o - u + v  

- 4 tan- 1 du JVv2 [ 1 ( v )]" 
- o � � o 

fVv2 1 - I ( v ) = 4 Jr , � tan , ;;;----z du. o v 2  - u2 v 2  - u� 

To continue the calculation, we use the substitution 

Then 

u = V2 sin (}, � = Ylcos (}, du = Vz cos (} d(}, 
tan - I  = tan- I = (}. ( u ) 

( V2 sin (} ) 
� Vzcos (J 

(1Tl6 I , r;:: ] 1Tt6 1T2 !1 = 4 Jo , r,; · (} · v 2 cos (} d(} = 2e2 = -1 8 . 
V L COS (} 0 

To calculate /2 we write 

Ii = 4 J.'::2212 [ f Yz-u 2 
�v 

2 ] du 
V l Jo - U + V 

--- tan- 1 du. = 4 Jv2 1 ( Vz - u ) v212 � � 

y 

x 
Figure 20.40 

y 

Figure 20.41 
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P = (x, y ) = (u, v) 
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To continue the calculation, we use the same substitution as before, with the ad
ditional fact that 

- I ( V2 - u ) - I ( V2 - V2 sin e) - I ( I - sin e) tan = tan = tan 
� V2 cos e cos e 

This enables us to write 

= tan = tan - I ( COS {j ) 
_ I ( Sin ( TT/2 - fl) ) 

1 + sin {j 1 + COS ( TT/2 - 8) 

_ 
( 2 sin t( TTl2 - 8) cos t( TTl2 - 8) ) 1 ( TT ) = tan I = - - - 8 

2 cos2 t( TT/2 - 8) 2 2 · 

(7Tl2 1 ( TT  1 ) • r::: [ TT I ]7Ti2 
1z = 4 r - - - e v 2 cos e de = 4 -e - - e2 

7T/6 V2 cos e 4 2 4 4 7T/6 
We complete the calculation by putting these results together, 

It is interesting to observe that 

( ' ( ' ( ' dx dy dz = � _!_ ,  
Jo Jo Jo 1 - xyz ,;:-, n3 

so that any person who can evaluate this triple integral will thereby discover the 
sum of the series on the right-which has remained an unsolved problem since 
Euler first raised the question in 1 736. 



1 LINE AND 
SURFACE 

INTEGRALS . 
GREEN' S THEOREM , 

GAUS S ' S  THEOREM , AND 
STOKE S ' THEO REM 

This chapter brings together into a unified package several topics in multivari
able calculus that are important for physical science and engineering, as well as 
for mathematics itself. The main focal points of our work are the concepts of line 
integral and surface integral, which provide yet other ways (in addition to dou
ble and triple integrals) of extending ordinary integration to higher dimensions. 
Line integrals are used, for example, to compute the work done by a variable 
force in moving a particle along a curved path from one point to another. In their 
origin and applications, these integrals are therefore associated with mathemati
cal physics as much as they are with mathematics. The main result of the first 
part of this chapter (Green 's  Theorem) uses partial derivatives to establish a con
necting link between line integrals and double integrals ,  and this in tum enables 
us to distinguish those vector fields that have potential energy functions from 
those that do not. Here again, as so often in our earlier work, mathematics and 
physics constitute a seamless fabric in which neither ingredient has much mean
ing or value without the other. 

Throughout this chapter we assume that the functions under discussion have 
all the continuity and differentiability properties that are needed in any given sit
uation. 

Our first problem is to formulate a satisfactory concept of work. If we push a 
particle along a straight path with a constant force F (constant in both direction 
and magnitude), then we know that the work done by this force is the product 
of the component of F in the direction of motion and the distance the particle 
moves. It is convenient to use the dot product to write this in the form 

W =  F · �R, ( 1 )  

where Ll R  i s  the vector from the initial position of the particle to its final posi

2 1 . 1  
LINE INTEGRALS IN 
THE PLANE 

tion (Fig. 2 1 . 1 ) .  Now suppose that the force F is not constant, but instead is a Figure 21 . 1  
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Figure 2 1 .2 

Figure 2 1 .3 

LINE AND SURFACE INTEGRALS. GREEN'S THEOREM. GAUSS'S  THEOREM. AND STOKES' THEOREM 

vector function that varies from point to point throughout a certain region of the 
plane, say 

F = F(x, y) = M(x, y)i + N(x, y)j . (2) 

Suppose also that this variable force pushes a particle along a smooth curve C 
in the plane (Fig. 2 1 .2), where C has parametric equations 

x = x(t) and y = y(t), (3) 

What is the work done by this force as the point of application moves along the 
curve from the initial point A to the final point B? 

Before answering this question, we remark that the vector-valued function (2) 
is usually called a force field. More generally, a vector field in the plane is any 
vector-valued function that associates a vector with each point (x, y) in a certain 
plane region R. In this context a function whose values are numbers (scalars) is 
called a scalar field. For example, the functionf(x, y) = x2y3 is a scalar field de
fined on the entire xy-plane. Every scalar field f(x, y) gives rise to the corre
sponding vector field 

\lj(x, y) = gradj(x, y) = i� i + i{ j . 
(Remember that the symbol \lf is pronounced "del f") This is called the gradi
ent field off; its intuitive meaning was described in Section 19  .5 . For the func
tion just mentioned, we have \lf = 2xy3i + 3x2y2j .  Some vector fields are gradi
ent fields, but most are not. We shall see in the next section that those vector 
fields that are also gradient fields are of special importance. 

We now return to the problem of calculating the work done by the variable 
force 

F = M(x, y)i + N(x, y)j (2) 

along the smooth curve C. This leads to a new kind of integral called a line in
tegral and denoted by 

f F · dR 
c 

or J M(x, y) dx + N(x, y) dy. 
c 

We begin the definition by approximating the curve by a polygonal path as shown 
in Fig. 2 1 .3 .  That is, choose points P0 = A , P i .  P2, . . .  , Pn - i .  P11 = B along C 
in this order, Jet Rk be the position vector of P1o and define the n incremental 
vectors shown in the figure by LiRk = Rk+ 1 - R1o where k = 0, 1 ,  . . .  , n - 1 .  
If we now denote by Fk the value of the vector function F at Pk and form the sum 

n- 1  
I Fk . llRk >  
k=O 

(4) 

then the line integral of F along C is defined to be the limit of sums of this form, 
and we write 

n- 1  J F · dR = lim L Fk • LlRk. C k=O 
(5) 

In this limit the polygonal paths are understood to approximate the curve C 
more and more closely, in the sense that the number of points of division 
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increases and the maximum length of the incremental vectors approaches 
* zero. 

The idea behind the definition (5) is that F (being continuous) is almost con
stant along the short path segment LiR1o so by formula ( 1 )  we see that F k • LiRk 
is approximately the work done by F along the corresponding part of the curve, 
and therefore the sum (4) is approximately the work done by F along the entire 
curve C, with the limit (5) giving the exact value of this work. 

A quick intuitive way of constructing the line integral (5) is illustrated in Fig 
2 1 .4. If dR is the element of displacement along C, then the corresponding ele
ment of work done by F is dW = F · dR. The total work is now obtained by in- Figure 2 1 .4 

tegrating (or adding together) these elements of work along the entire curve C, 

w = f dW = L F . dR. 
c 

(6) 

For additional insight into the meaning of this formula, we think of the position 
vector R as a function of the arc length s measured from the initial point A. Since 
we know that dRJds is the unit tangent vector T (Section 1 7.4), we can write 

f F · dR = f F · 
dR 

ds = f F · T ds. 
c c ds c 

(7) 

The line integral (6) can therefore be thought of as the integral of the tangential 
component of F along the curve C. It can be seen from (7) that line integrals in
clude ordinary integrals as special cases; for if the curve C lies along the x-axis 
between x = a  and x = b, and if F = fix)i, then (7) reduces to fgfix) dx. 

If the variable vector F is given by F = M(x, y)i + N(x, y)j, then since R = 

xi + yj and dR = dxi + dyj, the formula for computing the dot product of two 
vectors yields 

F · dR = M(x, y) dx + N(x, y) dy. 

The line integral (6) can therefore be written in the form 

f F · dR = f M(x, y) dx + N(x, y) dy. 
c c 

The parametric representation x = x(t) and y = y(t), t1 � t � t2, for the curve C 
allows us to express everything here in terms of t, 

f F · dR = f M(x, y) dx + N(x, y) dy 
c c 

= J'2 [M(x, y) 
dx 

+ N(x, y) dy
] dt. 

I] dt dt 

This is an ordinary single integral with t as the variable of integration, and it can 
be evaluated in the usual way. 

So much for generalities. We now turn our attention to getting some practice 
in the actual calculation of line integrals .  

*The term line integral for the  limit (5) i s  perhaps unfortunate, because the curve C need not  be a 
straight line segment. Curve integral would be more appropriate, but the terminology is well estab
lished and cannot be changed now. 
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Example I Evaluate the line integral 

I = J, x2y d.x + (x - 2 y) dy, 
c 

where C is the segment of the parabola y = x2 from (0, 0) to ( 1 ,  1 )  (see Fig. 2 1 .5). 

Solution We may parametrize the curve in any way that seems convenient. (It 
is not difficult to show that the value of the line integral does not depend on what 
parametric equations are used, provided that the orientation or direction is kept 
the same.) The simplest parametric representation of this curve is 

x = t, where 0 :S t :S l .  

Here we have dx = dt and dy = 2t dt, so the line integral is 

I = J' t2 · t2 dt + (t - 2t2)2t dt 
0 

= J' [t4 + 2t2 - 4t3] dt = [_.!_ t5 + '!:... r3 - r4]
1 
= _ _3.._. 

0 5 3 0 1 5  
To illustrate the fact that the value o f  the line integral is independent o f  the choice 
of parameter, let us use the representation 

x = sin t, y = sin2 t, where 0 :S t :S TT/2. 
This time we have dx = cos t dt and dy = 2 sin t cos t dt, so 

as before. 

L7r/2 I = sin2 t · sin2 t · cos t dt + (sin t - 2 sin2 t)2 sin t cos t dt 
0 

LTr/2 = [sin4 t + 2 sin2 t - 4 sin3 t] cos t dt 
0 

= - sin5 t + - sin3 t - sin4 t = --[ l 2 ]"/2 2 
5 3 0 1 5 '  

Every curve C that we use with line integrals is understood to have a di
rection, from its initial point to its final point. Even though the value of a 
line integral does not depend on the parameter, it does depend on the direc
tion. If - C denotes the same curve traversed in the opposite direction, then we 
have 

or equivalently, 

f F · dR = -f, F · dR, 
-c c 

f M d.x + N dy = -f, M d.x + N dy. 
- c c 

That is, integrating in the opposite direction changes the sign of the integral. This 
can be seen at once from Fig. 2 1 .3 and the definition (5), because the directions 
of all the incremental vectors LlRk are reversed. 
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I = J x2y d.x + (x - 2y) dy, 
c 

where C is the straight line segment y = x from (0, 0) to ( 1 ,  1 ) . 

Solution This is the same integrand as in Example 1, and the initial and final 
points of the curve are the same, but the curve itself is different (see Fig. 2 1 .5) .  
Using x as the parameter, so that the parametric equations are x = x and y = x, 
we have dx = dx and dy = dx, so 

I = J ' x2 • x dx + (x - 2x) dx 
0 

= { [x3 - x] d.x = [± x4 - + x2]� = -±. 

which we observe is different from the value --fs obtained along the parabolic 
path. 

The integral in this example can be written as 

f F · dR, 
c 

where F = x2yi + (x - 2y)j. 
If F is thought of as a force field, then the work done by F in moving a particle 
from (0, 0) to ( 1 ,  1) is different for the two curves in Examples 1 and 2. This il
lustrates the fact that in general the line integral of a given vector field from one 
given point to another depends on the choice of the curve, and has different val
ues for different curves .  

If a curve C consists of a finite number of smooth curves joined at corners, 
then we say that C is a piecewise smooth curve, or a path. The value of a line 
integral along C is then defined as the sum of its values along the smooth pieces 
of C. This is illustrated in the first part of our next example. 

Example 3 Evaluate the line integral 

J y d.x + (x + 2 y) dy 
c 

from ( 1 ,  0) to (0, 1 ) , where C is (a) the broken line from ( 1 ,  0) to ( 1 ,  1 )  to 
(0, l ) ;  (b) the arc of the circle x = cos t, y = sin t; (c) the straight line segment 
y = 1 - x. See Fig. 21 .6. 

Solution (a) Along the segment from ( 1 ,  0) to ( 1 ,  1 )  we have x = 1 and dx = 
O; and along the segment from ( 1 ,  1 )  to (0, 1 )  we have y = 1 and dy = 0. Since 
the complete line integral is the sum of the line integrals along each of the seg
ments, we have 

f y d.x + (x + 2y) dy = J1 ( 1  + 2y) dy +  r dx 
C 0 I 
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c 

A 

B 

(b) Here we have x = cos t and y = sin t for 0 :s t  :s 7T/2, so dx = -sin t dt 
and dy = cos t dt, and therefore 

f y dx + (x + 2 y) dy = f12 - sin2 t dt + (cos t + 2 sin t) cos t dt c 0 

f7T/2 = (cos2 t - sin2 t + 2 sin t cos t) dt 
0 

f 7T/2 = (cos 2t + 2 sin t cos t) dt 
0 

[ 1 ]7T/2 
= 2 sin 2t + sin2 t 0 = I .  

(c) To integrate along the segment y = 1 - x we  can use x a s  the parameter, 
so that dy = -dx. Since x varies from 1 to 0 along this path, the integral is 

J y dx + (x + 2 y) dy =  J° ( 1 - x) dx +  [x + 2(1 - x)]( -dx) 
C I 

= t (- l ) d.x =  I .  

In this example all three line integrals have the same value, and we might sus
pect that perhaps with this integrand we get the same value for any path from 
( 1 ,  0) to (0, l ) . This is indeed true, as we shall see in Section 2 1 .2, where we 
investigate the underlying reasons why some line integrals from one point to 
another have values that are independent of the path of integration, and others 
do not. 

It will often be necessary to consider situations in which the path of integra-
c tion C is a closed curve, which means that the final point B is the same as the 

initial point A (Fig. 2 1 .  7). For the sake of emphasis, in this case a line integral 
is usually written with a small circle on the integral sign, as in 

or fc M dx + N dy. 

Example 4 Calculate Pc F · dR, where F = yi + 2xj and C is the circle x2 + 
y2 = 1 described counterclockwise from A = ( 1 ,  0) back to the same point (Fig. 
2 1 .8) . 

Solution A simple parametric representation is x = cos t and y = sin t , where 
the counterclockwise orientation means that t increases from 0 to 27T. Since R = 

xi + yj = cos ti + sin tj, we have 

and therefore 

dR = (-sin ti + cos tj) dt, 

F · dR = (sin ti + 2 cos tj) · (- sin ti + cos tj) dt 

= (2 cos2 t - sin2 t) dt 

= ( + + % cos 2t) dt, 
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by the half-angle formulas. I t  now follows that 

PROBLEMS 

f C F . dR = rr ( + + % COS 2t) dt [ 1 3 ]21T = -zt + 4 sin 2t 0 = 7T. 

Evaluate the line integral I =  Jc xy2 dx - (x + y) dy, 
where C is 
(a) the straight line segment from (0, 0) to ( l ,  2); 
(b) the parabolic path y = 2x2 from (0, 0) to ( 1 ,  2); 
(c) the broken line from (0, 0) to ( I ,  0) to ( 1 ,  2). 
Sketch all paths. 

2 Evaluate the line integral I =  Jc x2y dx - xy2 dy, where 
C is the broken line joining the points (0, 0), ( 1 ,  1 ), 
(2, 1 )  in this order. 

3 Evaluate Jc dxly + dylx, where C is the part of the hy
perbola xy = 4 from ( 1 ,  4) to (4, I ). 

4 Show that (a) Jc(x2 - 2 y) dx = -f, (b) Jc 2xy2 dy = �, 
and (c) Jc (x2 - 2 y) dx + 2xy2 dy = -i, if C is the 
straight line segment y = x, 0 s x s 1 .  

5 Show that Jc(x2 + 3xy) dx + (3x2 - 2y2) dy = -fi, if 
C is the segment of the parabola x = t, y = t2 from t = 
1 to t =  2. 

6 Evaluate Jc(dx + dy)l(x2 + y2), where C is the upper 
half of the circle x2 + y2 = a2 from (a, 0) to (-a, 0). 

7 Find the values of the line integral Jc (x - y) dx + 
Vx dy along the following paths C from (0, 0) to ( 1 ,  1 ) : 
(a) x = t, y = t; (b) x = t, y = t2; (c) x = t2, y = t; (d ) x = t, y = t3. Sketch all paths. 

8 Show that J c(x2 + y2) dx = -f, if C is the broken line 
from (0, 0) to ( 1, I )  to (0, 1 )

. 

9 Evaluate Jc x dx + x2 dy from ( - 1 ,  0) to ( 1 ,  0) 
(a) along the x-axis; 
(b) along the semicircle y = �; 
(c) along the broken line from ( - 1 ,  0) to (0, 1 )  to ( l ,  I )  

to ( 1 ,  0). 
Sketch all paths. 

10 Evaluate Pc (3x + 4y) dx + (2x + 3y2) dy, where C is 
the circle x2 + y2 = 4 traversed counterclockwise from 
(2, 0). 

1 1  Find the values of the line integral Jc 2xy dx + (x2 + y2) dy along the following paths C from (0, 0) to ( I ,  1 ) :  
(a) y = x; (b) y = x2; (c) x = y2; (d ) y = x3 ; (e) x = y3 ; 
( f )  the broken line from (0, 0) to ( I ,  0) to ( I ,  I ). Sketch 
all paths. 

12  Find the values of the line integral Jc x2 dx + y2 dy along 
the following paths C from (0, I )  to ( I ,  0): (a) the cir-

cular arc x = cos t, y = sin t; (b) the straight line seg
ment; (c) the segment of the parabola y = 1 - x2. 

13 If F = (yi - xj)/(x2 + y2), find Jc F · dR from (- 1 ,  0) 
to ( 1 ,  0) 
(a) along the semicircle y = �; 
(b) along the broken line from ( - I ,  0) to (0, 1) to ( 1 ,  I )  

to ( l , 0). 
14 Compute Pc F · dR if F = (x + y)i + (y2 - x)j, where C 

is the closed curve that begins at ( I ,  0), proceeds along 
the upper half of the unit circle to (- 1 ,  0), and returns 
to ( 1 ,  0) along the x-axis. 

1 5  Evaluate Jc yyY dx + xyY dy, where C i s  the part of 
the curve x2 = y3 from ( 1 ,  l )  to (8, 4). 

1 6  I f  F = (2x + y)i + (3x - 2y)j, evaluate Jc F · dR along 
(a) the straight line from (0, 0) to ( 1 ,  l ); 
(b) the parabola y = x2 from (0, 0) to ( I ,  l ) ;  
(c) y = sin (7r/2) x from (0, 0 )  to ( 1 ,  l ) ; 
( d )  x = y" (n > 0) from (0, 0) to ( 1 ,  I ). 

17 Show that Pc ( -y dx + x dy)l(x2 + y2) = 27T where C i s 
the circle x2 + y2 = a2 traversed counterclockwise from 
(a, 0). 

1 8  I f  F = xyi + (y2 + l )j , calculate Jc F · dR, where C is 
(a) the line segment from (0, 0) to ( I ,  1 ) ; 
(b) the broken line from (0, 0) to ( 1 ,  0) to ( l ,  l ) ;  
( c )  the parabola x = y2 from (0, 0 )  to ( l ,  1 ). 

1 9  Find the values of  Jc y dx + x dy along the following 
paths C from ( -a, 0) to (a, 0): 
(a) the upper half of the circle x2 + y2 = a2; 
(b) the broken line from (-a, 0) to (-a, a) to (a, a) to 

(a, 0); 
(c) the straight line segment joining the points. 

20 Evaluate Jcxy2 dx + x3y dy, where C is the broken line 
consisting of the segments from ( - 1 ,  - 1 )  to (2, - 1 )  and 
from (2, - 1 ) to (2, 4). 

2 1  A particle i s  moved around a square path from (0, 0) to 
( I ,  0) to ( 1 ,  1 )  to (0, 1) to (0, 0) under the action of the 
force field F = (2x + y)i + (x + 4y)j. Find the work 
done. 

22 Calculate Pc 2xy dx + (x2 + y2) dy, where C is the 
boundary of the semicircular region x2 + y2 s I ,  y :=:: 0 
described counterclockwise. 
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( 1 ,  0) x 

Figure 21.9 

In Example 3 of Section 2 1 . 1 , we calculated the line integral 

fc F · dR ( 1 ) 
of the vector field 

F(x, y) = yi + (x + 2y)j (2) 
along each of the three different paths from ( 1 ,  0) to (0, 1) shown in Fig. 2 1 .9, 
and we obtained the same value 1 for the integral along all of these paths. This 
was not an accident. The underlying reason for this result is the fact that the vec
tor field (2) is the gradient of a scalar field, namely, of the function 

f(x, y) = xy + y2, (3) 

because clearly 

\If = �� i + �; j = yi + (x + 2y)j = F. 

To understand the significance of this statement, recall from Section 1 9  .5 that 
in multivariable calculus the gradient plays a similar role to that of the deriva
tive in single-variable calculus .  The Fundamental Theorem of (single-variable) 
Calculus can be expressed in the form 

r f'(x) dx = f(b) - f(a), 
where f(x) is a function of a single variable. The corresponding result here is 

fc 
\If· dR = f(B) -f (A), (4) 

where f(x, y) is a function of two variables (a scalar field ) and A and B are the 
initial and final points of the path C. For example, since the vector field (2) is 
the gradient of the scalar field (3), that is, F = \lf, formula (4) tells us that the 
value of the line integral ( 1 )  along any of the paths C shown in Fig. 2 1 .9 is 

fc F · dR = fc \lf
· dR = f(O, 1 ) - f( l , 0) =  1 - 0 =  1 , 

without calculation. 
Formula ( 4) is called the Fundamental Theorem of Calculus for Line Integrals. 

We can state this theorem more precisely as follows: 

If a vector field F is the gradient of some scalar field f in a region R, so that F = \If 
in R, and if C is any piecewise smooth curve in R with initial and final points A and 
B, then 

f c F · dR = f (B) - f(A). (5) 

To prove this ,  suppose that C is smooth with parametric equations x = x(t) and 
y = y(t), a :'5 t :'5 b. Then 



2 1 .2 INDEPENDENCE OF PATH. CONSERVATIVE FIELDS 

F · dR = \If· dR = \If · - dt = - - + - - dt L L Lb [ dR ] Lb [ df dx df dy ] 
C C a dt a dx dt dy dt 

Lb d = -f[x(t), y(t)] dt a dt 

= f[x(b), y(b)] - f[(x(a), y(a)] 

= f (B) - f (A). 

The crucial steps here depend on the multivariable chain rule (Section 1 9.6) and 
the one-variable Fundamental Theorem of Calculus. The argument for piecewise 
smooth curves now follows at once by applying (5) to each smooth piece sepa
rately, adding, and canceling the function values at the corners. 

This theorem has several layers of meaning. We begin by illustrating its use
fulness for evaluating line integrals .  

Example 1 Compute the line integral of the vector field F = y cos xy i + 
x cos xy j along the parabolic path y = x2 from (0, 0) to ( I ,  1 ) .  

Solution For this path it is natural to use x as the parameter, where x varies 
from 0 to 1 .  Since dy = 2x dx, we have 

so 

F · dR = y cos xy dx + x cos xy dy 

= x2 cos x3 dx + x cos x3 2x dx 

= 3x2 cos x3 dx, 

fc F · dR = fo1 3x2 cos x3 dx = sin x3 ]� = sin I - sin 0 = sin I .  

This straightforward calculation of the line integral is easy to carry out, but a 
much easier method is now available. The first step is to notice that the vector 
field F is the gradient of the scalar fieldf(x, y) = sin xy. (Students should verify 
this.) With this fact in hand, all that remains is to apply formula (5) :  

L F · dR = s in xy]( I , I J = sin I - sin 0 = sin I . 
c (0, 0) 

The great advantage of this method is that no attention at all needs to be paid to 
the actual path of integration from the first point to the second. 

As this example shows, the Fundamental Theorem can sometimes be used in 
the practical task of evaluating line integrals. Nevertheless, its main importance 
is theoretical. First, we point out that the right side of (5) depends only on the 
points A and B, and not at all on the path C that joins them. The line integral on 
the left side of (5) therefore has the same value for all paths C from A to B. This 
can be expressed by saying that the line integral of a gradient field is indepen
dent of the path. Next, it is clear from formula (5) that if C is a closed path, so 
that the final point B is the same as the initial point A, then f(B) - f(A) = 0 and 
therefore the line integral is zero. That is, if F is a gradient field, then 

fc F · dR = 0 

for every closed path C. 

759 



760 

y 

A 

Figure 2 1 . 1 0  

y 

(x, y )  

Figure 2 1 . 1 1 

LINE AND SURFACE I NTEGRALS. GREEN'S THEOREM, GAUSS' S  THEOREM, AND STOKES' THEOREM 

x 
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These arguments show that 

integral is independent of path 

Gradient field 

integral around closed path is zero 

(The symbol => means "implies.") Actually, these three properties are equivalent, 
in the sense that each implies the other two. 

To begin the demonstration of equivalence, suppose that the line integral 
of the vector field F is independent of the path. We shall prove that the inte
gral of F around a closed path is zero. To see why this is so, we examine 
Fig. 2 1 . 10, in which two points A and B are chosen on the closed path C. 
These points divide C into paths C1 from A to B and C2 from B to A. Since 
C 1 and - C2 are both paths from A to B, the assumption of independence of 
path implies that 

r F . dR = J F . dR = - r F . dR. Jc1 -c2 Jc2 

It follows from this that 

f, F · dR = J F · dR + J F · dR = 0, C C1 Cz 
as asserted. Conversely, if we assume that the integral around every closed path 
is zero, then we can easily reverse this argument to show that the integral from 
A to B is independent of the path. 

To complete the proof of the equivalence of the three properties, it suffices to 
show that if F is a vector field whose line integral is independent of path, then 
F = \lf for some scalar fieldf To do this, we choose a fixed point (x0, y0) in the 
region under discussion and let (x, y) be an arbitrary point in this region. Given 
any path C from (x0, y0) to (x, y) [we assume there is such a path], we define the 
function f(x, y) by means of the formula 

J ((x, y) 
fix, y) = F · dR = ), F · dR. 

c <xo, Yo) 
See Fig. 2 1 . 1 1 .  Because of the hypothesis of independence of path, the value of 
this integral depends only on the point (x, y) and not on the path C, and there
fore provides an unambiguous definition for f(x, y). To verify that \lf = F, we 
suppose that the vector field F has the usual form, F = M(x, y)i + N(x, y)j, so 
that 

((x, y) 
f (x, y) = Ji M dx + N dy. (xo• Yo) 

To show that of/ox = M, we hold y fixed and move along the straight path from 
(x, y) to (x + 6.x, y), as shown in the figure. Since dy = 0 on this short path in
crement, we have 

so 
fx+Ll.x f(x + Ax, y) - f(x, y) = M dx, x 

Jim f(x + Ax, y) 
- f(x, y) = Jim _I_ Jx+Ll.x M dx = M 11.x--.o Ax 11.x--.o Ax x ' 
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by the Fundamental Theorem of Calculus. Similarly, "()f/"()y = N, so "VJ = F and 
the argument is complete. 

As we suggested earlier, the main significance of these ideas lies in their ap
plications to physics. In order to understand what is involved, let us suppose that 
F is a force field and that a particle of mass m is moved by this force along a 
curved path C from a point A to a point B. Let the path be parametrized by the 
time t, with parametric equations x = x(t) and y = y(t), t1 :S t :S t2 . Then the work 
done by F in moving the particle along this path is 

W = J F · dR = 1'2 [F · dR] dt. 
c 11 dt 

According to Newton's second law of motion we have 

dv 
F = m -

dt ' 

(6) 

where v = dR!dt is the velocity. If v denotes the speed, so that v = lvl, then we 
can write the integrand in (6) as 

dR dv I d I d * F · - = m - · v = - m - (v · v) = - m - (v2) .  dt dt 2 dt 2 dt 

Therefore (6) becomes 

W = ..!_ m 1'2 .!!-___ (v2) dt = ..!_ mv2]12 = ..!_ mvB2 - ..!_ mvA2, 
2 ,,  dt 2 ,, 2 2 

(7) 

where VA and v8 are the initial and final speeds, that is, the speeds at the points 
A and B. Since tmv2 is the kinetic energy of the particle, (7) says that the work 
done equals the change in kinetic energy. (A similar discussion for the case of 
linear motion is given in Section 7.7.) 

We continue this line of thought to its natural conclusion. The force field F is 
called conservative if it is the gradient of a scalar field. For reasons that will ap
pear in a moment, it is customary in this context to introduce a minus sign and 
write F = - 'IV, so that V increases most rapidly in the direction opposite to F. 
The function V(x, y) is then called the potential energy. This function is just the 
negative of what we have been denoting by f It exists if and only if F is a gra
dient field, and when it does, the Fundamental Theorem (5) tells us that 

W = l F · dR = -1 VV · dR = -[V(B) - V(A)] = V(A) - V(B), (8) 
c c 

where A and B are the initial and final points of the arbitrary path C. If we now 
equate (7) and (8), we get 

or 

I I 
V(A) - V(B) = - mv82 - - mvA2 

2 2 

(9) 

'In this calculation we use the product rule for the derivative of the dot product of two vector func
tions of t. This is easy to prove from formula (8) in Section 1 8.2.  
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( I ,  I )  

( 1 ,  0) x 

(We now see that the minus sign is introduced into the definition of potential en
ergy in order to make the signs here come out right.) Equation (9) says that the 
sum of the kinetic energy and the potential energy is the same at the initial point 
as it is at the final point. Since these points are arbitrary, the total energy is con
stant. This is the law of conservation of energy, which is one of the basic prin
ciples of classical physics. This law is true in any conservative force field, such 
as the earth's gravitational field or the electric field produced by any distribution 
of electric charge. 

Our work has demonstrated that a force field is conservative if and only if it 
satisfies any one of the following equivalent conditions: 

integral is independent of path 

Gradient field � 
integral around closed path is zero 

The importance of these fields justifies turning our attention to the practical prob
lem of determining whether a given force field is or is not conservative. Since 
any vector field can be thought of as a force field, these remarks apply to vector 
fields in general. 

Example 2 Show that the vector field F = xyi + xy2j is not conservative. 

Solution One way of doing this is to show that Jc F · dR does depend on the 
path. We choose two convenient points, say (0, 0) and ( 1 ,  1 ) , and integrate from 
the first to the second along any two convenient different paths ,  as shown in Fig. 
2 1 . 12. First, along the line y = x we have 

J F · dR = J xy dx + xy2 dy = J' (x2 + x3) dx = _!_ + _!_ = }_. 
c c 0 3 4 1 2  

On the other hand, along the broken line from (0, 0) to ( 1 ,  0 )  to ( 1 ,  1 )  we have 

J F · dR = f 10 · dx + f 1 y2 dy = _!_. 
c 0 0 3 

Since the values of these integrals are not equal, the field is not conservative. 
In probing for unequal line integrals in this way, we are perfectly free to 
choose paths that make the calculations easy. (Of course, if these two line 
integrals had turned out to be equal, this would not have precluded unequal 
results for two other line integrals, so nothing would have been proved one way 
or the other.) 

Another method is to assume that the field is conservative, so that F = \lf for 
some function f(x, y), and to deduce a contradiction from this assumption. The 
assumption means that there exists a function f such that dfldx = xy and dfldy = 
.xy2. But this is impossible, because the mixed partial derivatives would then be 

021 
-- = x  oy ox and 

02F 
__ J_ = y2 ox oy , 

which are obviously not equal, whereas the theory of partial derivatives tells us 
that these derivatives must be equal. This contradiction tells us that no f exists, 
so F is not conservative. 
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The reasoning used in  the second method of this example depends on the equal
ity of mixed partial derivatives, 

(J2j (J2j 
dy dX dX (Jy ' ( 1 0) 

which is valid in any region where both derivatives are continuous (Section 1 9.2). 
This reasoning can be extended as follows :  if 

F = M(x, y)i + N(x, y)j ( 1 1 )  

is a conservative vector field, so that an f exists with the property that \If = F or 

df - = M  
dX 

then by ( 1 0) we know that 

and 

(JM (JN 
dy dX . ( 12) 

Condition ( 1 2) is therefore necessary for a vector field to be conservative, and we 
have seen how this fact can be used. But is it also sufficient? That is, does ( 1 2) 
guarantee that ( 1 1 )  is conservative? We investigate this question in Section 2 1 .3 .  

PROBLEMS 

In Problems 1-4, use both methods of Example 2 to show 
that the vector field is not conservative. 

F = yi - xj. 
2 F = x(y - 1 )i + xj. 
3 F = x3yi + xy2j. 

4 F = yi + yj 
x2 + y2 · 

In Problems 5-8, show that the given line integrals are not 
independent of path by integrating along two different paths 
from (0, 0) to ( 1 ,  I ). 
5 

6 

7 

8 

9 

t 2xy dx + (y2 - x2) dy. 

J 2xy dx + (y - x2) dy. 
c 

J (x2 - y3) dx + 3xy2 dy. 
c 

J (x - y) dx + (x + y) dy. 
c 
Show that 

J
(l ,4) 2xy dx + x2 dy (-2, 1 ) 

i s independent of the path, and evaluate the integral by 
(a) using formula (5); 
(b) integrating along any convenient path. 

10 Show that 

J
( l ,7T) sin y dx + x cos y dy (- 1 .D) 

is independent of the path, and evaluate the integral by 
(a) using formula (5); 
(b) integrating along any convenient path. 

In Problems 1 1-1 6, show that the integral is independent of 
the path and use any method to evaluate it. 

J
(l ,5) 

1 1  2y dx + 2x dy. 
( -2, - 1 ) 

J
(4,5) 

1 2  y2e" dx + 2 ye" dy. 
(0,0) 

J
(7T/2, l ) 

13 eY cos x dx + eY sin x dy. 
(0,0) 

J
(2,3) 1 4  3x2y2 dx + 2x3y dy. (- 1 , 1 ) 

J
(4, l )  

1 5  2xy dx + (x2 + y2) dy. (-2, 1 ) 

J
( l , l )  

1 6  (x + y)  dx + x dy. 
(0,0) 

1 7  Suppose that a particle of mass m moves in the xy-plane 
under the influence of the constant gravitational force 
F = -mgj . If the particle moves from (x1 , Y1) to (x2, Y2) 
along a path C, show that the work done by F is 

W = mg(y1 - Y2), 
regardless of the path. 
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2 1 . 3  
GREEN'S THEOREM 

As we said at the beginning of this chapter, Green's Theorem establishes an im
portant link between line integrals and double integrals. Our purpose in this sec
tion is to reveal the nature of this link. 

Consider a vector field 

y 

d 

R 

a 

Figure 2 1 . 1 3  

c 

b x 

F = M(x, y)i + N(x, y)j ( l )  

defined on a certain region in the xy-plane. We now take up the question of 
whether the condition 

(2) 

is sufficient to guarantee that F is conservative, that is, that F i s  the gradient of 
some scalar field f In the light of what we have learned in Section 2 1 .2, this i s  
equivalent to asking whether condition (2) implies that the integral of F around 
every closed path is zero. We shall use our investigation of this question as a 
means of discovering Green's Theorem, which we will then prove and apply in 
various ways. 

The simplest type of closed path C is a rectangular path like the one shown in 
Fig. 2 1 . 1 3 .  We shall calculate the integral of F around this path and see what is 
needed to make its value zero. Integrating counterclockwise as shown, and be
ginning with the path segment on the lower edge of the rectangular region R, we 
have 

t F · dR = t M(x, y) dx + N(x, y) dy 

= r M(x, c) dx + r N(b, y) dy + r M(x, d) dx + r N(a, y) dy 
ll c b d 

= r [N(b, y) - N(a, y)] dy - r [M(x, d) - M(x, c)] dx. (3) 
We next make an ingenious application of the Fundamental Theorem of Calcu
lus to write these two integrands as 

& and 

]x=b fb aN N(b, y) - N(a, y) = N(x, y) x=a = " ax dx 

]y=d J" aM 
M(x, d )  - M(x, c) = M(x, y) y=c = c ay dy. 

This enables us to write (3) in the form 

f c 
F · dR = f c 

M dx + N dy 

J" f b aN Jb J" aM 
= - dx dy - - dy dx. 

c a ax a c ay 

These iterated integrals can be written as double integrals over the region R en
closed by C, so we have 

fc F · dR = fc M dx + N dy 

= ff aN 
dA -

ff aM 
dA = ff [ aN -

aM] dA. 
R ax R ay R ax ay (4) 
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Now we can see what is happening. Condition (2) implies that this double inte
gral is zero, so 9icF · dR = 0. It is tempting to infer from this that condition (2) 
implies F is conservative. However, this inference requires that 9icF · dR  = 0 for 
every closed path C, and we have demonstrated this only for rectangular paths 
like the one in Fig. 2 1 . 13 .  

If  we pluck out the essence of this argument, we see that i t  lies in equation 
(4), which we can write in the form 

(5) 

This statement, that a line integral around a closed curve equals a certain double 
integral over the region inside the curve, is called Green 's Theorem, after the 
English mathematical physicist George Green. *  

Strictly speaking, Green's Theorem is not merely equation (5), but rather a 
fairly careful statement of conditions under which (5) is valid. To state such con
ditions, it is necessary to introduce the concept of a simple closed curve. We al
ready know that a closed curve is one for which the final point B is the same as 
the initial point A. A plane curve is said to be simple if it does not intersect it
self anywhere between its endpoints (Fig. 2 1 . 14). Unless the contrary is explic
itly stated, we assume that simple closed curves are positively oriented, which 
means that they are traversed in such a way that their interiors are always on the 
left, as shown on the right in the figure. 

Green 's Theorem can now be stated as follows: 

If C is a piecewise smooth, simple closed curve that bounds a region R, and if M(x, y) 
and N(x, y) are continuous and have continuous partial derivatives along C and 
throughout R, then 

(5) 

We have proved (5) only for rectangular regions R of the kind shown in Fig. 
2 1 . 1 3 .  We now give a similar argument for the case in which R is both vertically 
simple and horizontally simple, in the sense described in Section 20.2. Then we 
shall indicate how to extend the theorem to more general regions. 

*Green ( 1 793-1 84 1 )  was obliged to leave school at an early age to work in his father's bakery, and 
consequently had little formal education. By assiduous study in his spare time, he taught himself 
mathematics and physics from library books, particularly Laplace's Mecanique Celeste. In 1 828 he 
published locally at his own expense his most important work, Essay on the Application of Math
ematical Analysis to the Theories of Electricity and Magnetism. Although Green's Theorem (in an 
equivalent form) appeared in this pamphlet, little notice was taken until the pamphlet was repub
lished in 1846, five years after his death, and thereby came to the attention of scientists who had the 
knowledge to appreciate its merits. 
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Figure 2 1 . 1 4  Various types of curves. 
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x 

x 

x 

Since R is assumed to be vertically simple (Fig. 2 1 . 1 5), its boundary C can be 
thought of as consisting of a lower curve y = y 1 (x) and an upper curve y = y2(x ), 
possibly separated by vertical segments on the sides. The integral f M(x, y) dx 
over any part of C that consists of vertical segments is zero, since dx = 0 on such 
a segment. We therefore have 

i M(x, y) dx = r M[x, Y 1 (x)] dx + r M[x, Y2(x)] dx, re a b 
(6) 

where the lower curve is traced from left to right and the upper curve from right 
to left. By the Fundamental Theorem of Calculus, (6) can be written as 

i M dx = 
r {M[x, Y 1 (x)] - M[x, Y2(x) ] }  dx re a 

f b [ t'=Y2(x) = - M(x, y) dx 
a =y1(x) 

= r r2<xl - oM dy dx = ff - oM dA. 
a Y J (X) Oy R Oy 

(7) 

But R is also assumed to be horizontally simple, and a similar argument, which 
we ask students to give in Problem 22, shows that 

f N dy = ff �N dA. (8) e R X 

We now obtain Green's Theorem (5) for the region R by adding (7) and (8). 
A complete and rigorous proof of Green's Theorem is beyond the scope of this 

book. Nevertheless, it is quite easy to extend the argument to cover any region 
R that can be subdivided into a finite number of regions R 1 ,  R2, . . . , Rn that are 
both vertically and horizontally simple. The validity of Green's Theorem for R 
then follows from its validity for each of the regions R 1 ,  R2, • . .  , Rn. 

For example, the region R in Fig. 2 1 . 1 6  can be subdivided into the regions R1 
and R2 by introducing the indicated cut, which becomes part of the boundary of 
R 1 when traced from right to left ( C3), and part of the boundary of R2 when traced 
from left to right (C4) .  By applying Green's Theorem separately to R1 and R2, 
we get 

and 

j M dx + N dy = ff [�N - �M ] dA Je 1 +e3 Ri 
ax ay 

j M dx + N dy = ff [�N - o:1] dA. 
1e2 +e4 R2 ax ay 

If we add these two equations the result is 

j M dx + N dy =  ff [� - °:] dA, Te, +e2 R x Y 
which is Green's Theorem for the region R. This occurs because the two line inte
grals along C3 and C4 cancel each other, since C3 and C4 are the same curve traced 
in opposite directions. Similarly, Green's Theorem can be extended to the region 
in Fig. 2 1 . 17 by subdividing it into the four simpler regions shown in the figure. 



2 1 .3 GREEN' S  THEOREM 

Example I Evaluate the line integral 

I = fc (3x - y) dx + (x + Sy) dy 
around the unit circle x = cos t, y = sin t, 0 s t s 2 7r. 

Solution The straightforward calculation of this integral gives 

L27T I =  ((3 cos t - sin t)(- sin t) + (cos t +  5 sin t)(cos t)] dt 
0 

= f 7T (2 sin t cos t +  l ]  dt = [ sin2t + tJ:7T= 27T. 
This is easy enough, but Green's Theorem makes it even easier. Since M = 3x -

y and N = x + Sy, we have 

aM - = - 1  ay and 
so 

I = ff [ l - (- l ) ] dA 
R 

= 2 J J dA = 2(area of circle) = 27T. 
R 

Example 2 Evaluate the line integral 

I = t (2 y + �) dx + (Sx - eY') dy 
around the circle x2 + y2 = 4. 

Solution The actual calculation of this integral looks like a very forbidding task, 
but Green's Theorem provides another way. since M = 2y + � and N = 
5x - eY2, 

and 
Therefore 

aN 
ax = S. 

I =  fJ (5 - 2) dA = 3 J J dA = 3(area of circle) = 3(47T) = 1 27T, 
R R 

since R is a circular disk of radius 2. 

Example 3 If R is any region to which Green's Theorem is applicable, show that 
the area A of R is given by the formula 

A = _!_ 1 - y dx + x dy. 2 Tc (9) 

767 
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Solution Since M = -y and N = x, and therefore 

dM 
- = - I 
dy 

and 

Green's Theorem yields 

I ,  

f. - y dx + x dy = ff [ l  - (- 1 )] dA = 2 ff dA = 2A, 
C R R 

as stated. 

Example 4 Use formula (9) to find the area bounded by the e llipse x2/a2 + 
y2/b2 = 1 .  

Solution We can parametrize the ellipse by x = a cos  t, y = b s in  t, where 0 ::; 
t :'.S 27T. Then formula (9) yields 

I L
27T A = 2 

0 
[(-b  sin t)(-a sin t) + (a cos t)(b cos t)] dt 

I L27T = 2 
0 

ab dt = 7Tab. 

Our original problem in this section was to determine whether the condition 

dM dN 
dy dx 

is sufficient to guarantee that the vector field 

F = M(x, y)i + N(x, y)j 

(2) 

( I )  

i s  conservative. Green's Theorem provides the solution. For if C is any simple 
closed path in the domain of F, and if the region enclosed by C is also in the do
main, then Green's Theorem tells us that 

fc F · dR = fc M dx + N dy = fl (� - �;) dA. 

By using this equation we see that if 2JMl2Jy = ?JN/ox then the double integral is 
zero, and therefore the line integral is zero. If the l ine integral is zero around 
every simple closed path, then it is also zero around every closed path, and this 
proves that F is conservative. We emphasize that for this reasoning to work, the 
region enclosed by C must lie entirely in the domain of F .  A convenient way to 
guarantee this is  to require that the domain of F must be simply connected, which 
means that the inside of every simple closed path in the domain also lies in the 
domain. Roughly speaking, the domain of F is not allowed to have any holes. In 
Fig. 2 1 . 1 8  we show regions with one, two, and three holes, respectively; the points 
inside the inner curves do not belong to the regions R, so these regions are not 
simply connected. Our overall conclusion can be stated as follows: 

If the domain of definition of the vector field F = M(x, y)i + N(x, y)j is simply con
nected, then F is conservative if and only if the condition dMldy = dNldx is satisfied. 
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One final question: If a given vector field F is known to be conservative, so 
that F = \lffor some functionf(x, y), how do we findf? Such a function is called 
a potential function, or simply a potential, for F. * One way is by inspection, but 
this only works in simple cases. A more systematic method is illustrated in the 
following example. As the student will see, it amounts to integrating the equa
tions 

df = N 
dy ' 

and condition (2) guarantees that this can be done. 

Example 5 Find a potential f for the vector field 

F = (y2 + l )i + 2xyj. 

Solution Here we have M = y2 + l and N = 2xy. It is easy to verify that 
oM!oy = oN!ox, and thereforefexists and our only problem is to find it. We know 
that 

df = y2 + 1  
dx and df = 2xy 

dy . . ( 10) 

In computing of/ox, we differentiate with respect to x while holding y constant, 
so by integrating the first of equations ( 1 0) with respect to x, we obtainf = xy2 + 
x + g(y), where g(y) is a function of y that is yet to be determined. By differ
entiating with respect to y, we see that ofloy = 2xy + g' (y), and by comparing 
this with the second of equations ( 10) we conclude that g' (y) = 0. It follows that 
g(y) is a constant C that can be chosen arbitrarily, and therefore the potential we 
are seeking is f(x, y) = xy2 + x + C. It is easy to check this result by verifying 
that \If = F. 

*Recall that for physical reasons the potential energy associated with a force field F is any scalar 
function V (if one exists) such that F = -\7V. The concepts of potential and potential energy are 
closely related but not identical. 

PROBLEMS 

769 

Figure 21.18 Regions not simply 
connected. 

In Problems 1 -4, evaluate the line integrals directly, and also 
by Green's Theorem. 

2 Pc x dx + xy2 dy, where C is the simple closed path 
formed by y = x2 and y = x. 

1 pc(xy - y2) dx + xy2 dy, where C is the simple closed 
path formed by y = 0, x = 1 ,  y = x. 

3 Pc l ly dx + llx dy, where C is the simple closed path 
formed by y = x, y = 4, x = I .  
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4 Pc y2 dx + x2 dy, where C is the simple closed path 
formed by y = 0, x = 1 ,  y = 1 ,  x = 0. 

In Problems 5-12, use Green's Theorem to compute the given 
line integrals. 

5 Pc xy dx + (x + y) dy, where C is the closed path (ob
viously simple) formed by y = 0, x = 0, y = I , x = - 1 .  

6 Pc - xy/( 1 + x) dx + In ( 1 + x) dy, where C is the closed 
path formed by y = 0, x + 2y = 4, x = 0. 

7 Pc - x2yl( l + x2) dx + tan- 1 x dy, where C is the closed 
path formed by y = 0, x = I ,  y = 1 ,  x = 0. 

8 Pc x dx + xy dy, where C is the closed path formed by 
y = 0, x2 + y2 = I (x, y ;::: 0), x = 0. 

9 Pc (ex' + y2) dx + (x + V1+Y7) dy, where C is the 
closed path formed by y = 0, x = I ,  y = x. 

10 Pc - y3 dx + x3 dy, where C is the closed path formed 
by y = x3 and y = x. 

1 1  Pc (-y2 + tan- 1 x) dx + In y dy, where C is the closed 
path formed by y = x2 and x = y2. 

1 2  Pc (x2 - y) dx + x dy, where C is the circle x2 + y2 = 

9. 

In Problems 1 3-20, use formula (9) to find the area bounded 
by the given curves. 
1 3  y = 3x and y2 = 9x. 
1 4  y = 0 ,  x + y = a ( a  > 0), x = 0. 
1 5  The x-axis and one arch o f  the cycloid x = a(8 - sin 8), 

y = a( l - cos 8). 
1 6  y = x2 and x = y3. 
1 7  x = a cos3 8 and y = a sin3 8, 0 :s 8 :s 27T  (an astroid or 

hypocycloid of four cusps). 
1 8  y = x 2  and x = y2. 
1 9  The x-axis and one arch of  y = sin x. 
20 9y = x, xy = I ,  y = x. 
2 1  The loop of the folium of Descartes (with Cartesian equa

tion x3 + y3 = 3axy) is shown in Fig. 1 7  . 1 1 . In Problem 
1 6  of Section 1 7  . 1  we asked students to introduce the pa
rameter t = ylx and obtain the parametric equations 

3at2 3at x = l+f3, y = 1+f3· 
Use formula (9) to find the area of the loop. Hint: The 
part of the loop below the line y = x is traced out as t in
creases from 0 to 1 .  

22 Give the details of the argument establishing formula (8) 
for the case in which R is horizontally simple. 

In Problems 23-28, verify that the given vector field is con
servative and find a potential for it. 
23 F = y3i + 3xy2j. 
24 F = eY cos xi + eY sin xj. 
25 F = (ye-'Y - 2x)i + (xe-'Y + 2y)j. 
26 F = y cos xyi + x cos xyj . 
27 F = (sin y - y sin x)i + (x cos y + cos x)j . 
28 F = xi +  yj. 

29 Let Ch C2, and C3 be the simple closed curves shown in 
Fig. 2 1 . 1 9, and let R be the region inside C1 and outside 
C2 and C3. Assume that M(x, y) and N(x, y) are contin
uous and have continuous partial derivatives in R and 
along all the curves. Show that Green's Theorem 

remains valid in this case, provided that C is understood 
to be the total boundary of R, consisting of Ch C2, and 
C3 positively oriented as shown in the figure. (The curves 
C2 and C3 are oriented clockwise, but nevertheless the 
orientation is positive because they are traversed in such 
a way that the region R remains on the left.) 

y 

x 

Figure 21 .19 

30 Can Green's Theorem be used to evaluate the line inte
gral 

l ----=L dx + __ 
x_ d Tc x2 + y2 x2 + y2 y, 

(a) where C is the circle x2 + y2 = 1 ?  
(b) where C i s  the triangle with vertices ( 1 , 0), ( 1 ,  2) , 

(2, 2)? 
3 1  If C1 is the circle x2 + y2 = I and C2 is an arbitrary sim

ple closed path containing Ci ,  as shown in Fig. 2 1 .20, 
use the idea of Problem 29 to show that 

y 

Figure 2 1 .20 
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--- dx + --- dy f -y x C2 x2 + y2 x2 + y2 
and evaluate the integral on the left by calculating the in
tegral on the right. 

= --- dx + --- dy f -y x 
C1 x2 + y2 x2 + y2 ' 

In this section and the next, we move out of the plane into three-dimensional 
space and give a brief intuitive introduction to the two fundamental integral the
orems of vector analysis. These theorems are roughly similar to each other, for 
both make assertions of the following kind: 

The integral of a certain function over the boundary of a region is equal to the inte
gral of a related function over the region itself. 

It is possible to spend considerable time analyzing such purely mathematical is
sues as what is meant by a region and its boundary, but in this short sketch we 
shall proceed informally and concentrate instead on the physical meaning of what 
we are doing. 

The concept of gradient, as we presented it in Chapter 19 ,  applies only to 
scalar fields, that is, functions whose values are numbers. The gradient of a scalar 
field f(x, y, z) is a vector field that represents the rate of change off, because at 
any point its component in a given direction is the directional derivative off in 
that direction. Our purpose here is to consider the more complicated problem of 
describing the rate of change of a vector field. There are two fundamental tools 
for measuring the rate of change of a vector field: the divergence and the curl. 

We recall that the gradient of a scalar field f(x, y, z) is defined by 

V''f = af . + af . + af k ax I dy J az ' 
where the symbol \7 ("de!") represents the vector differential operator 

"' a . a . a k 
v = ax I + ay J + az . 

If F = Li + Mj + Nk is a given vector field, we can apply \7 to F in two ways, 
by using the dot and cross products. We interpret the dot product of \7 and F to 
mean 

V · F = (_i_ i + l_ j + l_ k) · (Li + Mj + Nk) ax ay az 
= dL + aM + 

aN 
ax ay az . 

This scalar quantity is called the divergence of F and is often denoted by div F, 
so that 

. dL aM aN d1v F  = V · F = - + - + -. ax ay az 
The cross product of \7 and F is interpreted to mean* 

*Remember formula ( I  I )  in Section 18.3.  

( 1 )  

2 1 .4 
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V' x F = d 
dx 
L 

j 
d 
dy 
M 

k 
i1 = (dN _ dM) i + (dL _ dN) j + (dM _ dL) k. dz dy dz dz dx dx dy 
N 

This vector quantity is called the curl of F and is often denoted by curl F, so that 

curl F = V' X F. (2) 

Example 1 Compute the divergence and curl of the vector field F = 2x2yi + 
3xz3j + xy2z2k. 

Solution By using formulas ( 1 )  and (2) we at once obtain 

and 

div F = V · F = 1_ (2x2y) + 1_ (3xz3) + 1_ (.xy2z2) dx dy dz 

curl F = V X F = 

= 4xy + 2.xy2z 

d 
dx 

j 
d 
dy 

k 
d 
dz 

2x2y 3xz3 .xy2z2 

= (2xyz2 - 9xz2)i + (-y2z2)j + (3z3 - 2x2)k. 

There is clearly no difficulty about performing routine calculations of this kind. 
The real questions are, What do they mean and what is their value? Our purpose 
in the rest of this section is to explore the meaning of the divergence, and to do 
this we need the concept of flux. 

THE MEANING OF THE DIVERGENCE 

We shall use an example from hydrodynamics to motivate the ideas. Suppose that 
a stream of fluid (gas or liquid) is flowing through a region of space. At a given 
point (x, y, z), let its density be the scalar function 8 = 8(x, y, z) and its velocity 
the vector function v = v(x, y, z), and consider the vector field F = 8v. Now con
sider a small flat patch of surface inside the fluid, with area AA and unit normal 
vector n, as shown in Fig. 2 1 .2 1 .  If we think of this patch as a piece of screen 
or netting, so that the fluid can move through it without hindrance, we wish to 
find an expression for the amount of fluid that flows through the patch per unit 
time. It is clear from the figure that the fluid passing through the patch in a small 
time interval !:it forms a small tube of approximate volume (v Lit) · n AA, and 
the approximate mass of the fluid in this tube is 8(v Lit) · n AA.* The approxi
mate mass of fluid crossing the area LiA per unit time is therefore 8v · n LiA or 
F · n AA. This is called the flux of the vector field F through the area AA. 

We now put forward an alternative definition for the divergence of F and then 
show that this new definition agrees with the one given above in formula ( 1 ) . The 

*We assume in this discussion that all functions are continuous, so when /.l.A and /:;.r are very small, 
the vector v changes very little in direction or magnitude from one point of 6.A to another, and the 
density o changes very little from one point of the tube to another. 
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purpose of this maneuver is to arrive at a way of thinking about the divergence 
that conveys an intuitive understanding of what it means .  

Consider a point P = (x, y, z )  at the center of a small rectangular box with 
edges ax, Liy, Liz, as shown in Fig. 21 .22. We compute the total flux of the vec
tor field F outward through the six faces of this box (i.e., on each face we choose 
n to be the outward unit normal). We then divide this total flux by the volume 
Li V = Lix Liy Liz of the box, and form the limit of this flux per unit volume as the 
dimensions of the box approach zero. This is our new definition for the diver
gence of F at the point P = (x, y, z): 

div F = lim ,1V ( flux of F out through the faces). Ll.V->0 u 
(3) 

Physically, this represents the mass of fluid that emerges from a small element 
of volume containing the point P, per unit time per unit volume. 

To show that this definition agrees with formula ( 1 ) ,  we carry out a rough 
calculation of the limit (3), where F = Li + Mj + Nk. On the front face of the 
box in Fig. 2 1 .22 we see that the outward unit normal is i, so the flux out 
through this face is approximately L(x + +ax, y, z) Liy Liz. Since the outward unit 
normal on the back face is -i, the flux out through this face is approximately 
-L(x - +ax, y, z) Liy Liz, and therefore the combined flux out through the front 
and back faces is approximately 
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P = (x, y ,  z )  

C.x C.y 
�--------- y 

[L(x + f&, y, z) - L(x - f&, y, z)] �Y �z. 

Similarly, the faces in the y-direction and z-direction contribute flux of approxi- x 

mate amounts Figure 2 1.22 

[M(x, y + f�y, z) - M(x, y - f�y, z)] & �z 

and 

[N(x, y, z + f�z) - N(x, y, z - f�z)] & �y. 

We next divide the sum of these three quantities-the total flux out through all 
the faces of the box -by Li V = Lix Liy Liz to obtain 

L(x + +�x, y, z) - L(x - +�x, y, z) M(x, y + +�y. z) - M(x, y - +�y. z) 
-----------� + -----'--------'----

�x �y 

N(x, y, z + f�z) - N(x, y, z - f�z) 
+ �z 

Finally, if we take the limit of this expression as Lix, Liy, Liz � 0, then formula 
(3) yields the earlier definition ( 1 ) ,  as stated,* 

. dL oM oN div F = ox + ay + �-
This result permits us to consider (3) as the basic definition of the divergence 
and ( 1 )  as merely a formula for computing it in rectangular coordinates. 

*Here we use a slightly different way of defining the derivative of a function. See Additional Prob
lem 9 in Chapter 2. 
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SURFACE INTEGRALS 

Let S be a smooth surface and f(x, y, z) a continuous function defined on S. The 
surface integral off over S is denoted by 

JJ f(x, y, z) dA, (4) 
s 

and is defined as a limit of sums in the following way. We begin by subdividing 
the surface into n small pieces with areas �A 1 ,  iiA2, . . .  , �An- We next choose 
a point (x;, y;, z;) on the ith piece, find the value f (x;, y;, z;) of the function at this 
point, multiply this value by the area �A; to obtain the product f (x;, y;, z;) �A;, 
and form the sum of these products, 

n 
L f (x;, y;, z;) M;. 
i= l 

(5) 

Finally, we let n tend to infinity in such a way that the largest diameter of the 
pieces approaches zero; that is, we carry out a sequence of subdivisions of the 
surface S into smaller and smaller pieces, each time constructing a sum of the 
form (5). If these sums approach a limiting value, independent of the way the 
subdivisions are formed and the way the points (x;, y;, z;) are chosen, then this 
limit is the definition of the surface integral (4): 

fff(x, y, z) dA = lim I f(x;, y;, z;) �A;. n->� 
S � I  

I t  may be encouraging to students to know that only rarely do we  actually eval
uate a surface integral. It is the concept of these integrals that is important, be
cause they provide a convenient language for expressing certain basic ideas of 
mathematics and physics. 

To see what a surface integral can represent, we return to our example from 
hydrodynamics. Consider a fluid flowing through a certain region of space, and 
let 8 = 8(x, y, z) and v = v(x, y, z) be its density and velocity, as before. Sup
pose that S is a smooth surface lying inside the region, and think of S as a curved 
piece of screen or netting that permits the fluid to pass through it without 
any resistance (Fig. 2 1 .23). As we saw in our previous discussion, the mass of 
fluid crossing a surface element of area dA and unit normal n per unit time, is 
ov · n dA or F · n dA, where F = ov. Accordingly, the surface integral 

JJ F · n dA (6) 
s 

gives the rate of flow of the fluid through the entire surface S in terms of mass 
per unit time. This is called the flux of F through S. 

More generally, if F is any vector field whatever, the surface integral (6) is 
still called the flux of F through the surface S. The physical meaning of this in
tegral clearly depends on the nature of the physical quantity represented by F. A 
variety of interpretations and applications arise by letting F be a vector field re
lated to heat flow, or gravitation, or electricity, or magnetism. Hydrodynamics is 
only one of many subjects in which these concepts are useful. 

We restricted ourselves to a smooth surface in the above discussion in order 
to guarantee that the unit normal vector n will be a continuous function of the 
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position of its tail, and this in turn is necessary in order to guarantee that the in
tegrand F · n in (6) is a continuous scalar function. A surface S is called piece
wise smooth if it consists of a finite number of smooth pieces. The surfaces we 
work with are understood to be piecewise smooth, and the value of an integral 
of the form (6) over such a surface is defined to be the sum of its values over 
the smooth pieces. 

GAUSS'S THEOREM 

Surface integrals like (6) take on special importance when they are extended over 
closed surfaces. A surface S is said to be closed if it is the boundary of a bounded 
region of space. As examples we mention the surfaces of a sphere, a cube, a cylin
der, and a tetrahedron . 

Gauss 's Theorem (also called the Divergence Theorem) states that 

The flux of a vector field F out through a closed suiface S equals the integral of the 
divergence of F over the region R bounded by S, 

ff F · n dA = ff f div F dV. 
s R 

(7) 

This is a rather crude statement, without any of the hypotheses or carefully for
mulated restrictions that characterize most respectable mathematical theorems. 
We shall provide an equally crude "proof" -which, however, has the great merit 
of showing at a glance why the theorem is true. 

First, we use planes parallel to the coordinate planes to subdivide the region 
R into a great many small rectangular boxes of the kind shown in Fig .  2 1 .24 (we 
ignore the incomplete boxes that do not lie wholly inside R). For the box in the 
figure, with volume Li V, definition (3) tells us that the outward flux of F over the 
faces is given by the approximate formula 

flux of F over faces = (div F) Li V. (8) 
We now observe that the outward flux of F through the surface S is approxi
mately equal to the total flux over all the faces of all the boxes, since for two ad
jacent boxes the outward flux from one through their common face precisely can
cels the outward flux from the other through the same face, leaving only the flux Figure 21.24 

through all the exterior faces. In view of (8), this tells us that 

ff F · n dA = �(div F) LiV. 
s 

Finally, by using the fact that the sum on the right is an approximating sum for 
the triple integral of the divergence of F over R, we obtain (7) by taking smaller 
and smaller subdivisions of R. 

Example 2 Make a direct calculation of the flux of the vector field F = xi + 
yj + zk out through the surface of the cylinder whose lateral surface is x2 + y2 = 
a2 and whose bottom and top are z = 0 and z = b. Also find this flux by apply
ing Gauss's Theorem. 

Solution On the lateral surface L we have n = (xi + yj)/a, so the flux over L is 
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dA = a  d£J dz 

y 

a d(J 

ff F · n dA = ff x2 : y2 
d.A = ff a dA = a(27Tab) = 27Ta2b. 

L L L 

On the top T we have n = k, so on T, F · n = z = b and the flux is 

ff F · n dA = ff b d.A = b( 7Ta2) = 7Ta2b. 
T T 

On the bottom B we have n = -k, so on B, F · n = -z = 0 and the flux is 

ff F · n dA = ff 0 dA = 0. 
8 B 

Accordingly, the flux over the whole surface is 21Ta2b + 1Ta2b + 0 = 31Ta2b. To 
find this flux by applying Gauss's Theorem, we have only to notice that 

div F = ;x (x) + ;
Y 

( y) + ;z (z) = 3, 

and therefore 

ff F · n dA = ff f div F dV = f Jf 3 dV = 3(volume) = 37Ta2b. 
S R R 

In Example 2 the integrations were too easy to present much of a technical 
challenge. We next consider a similar problem in which actual calculations are 
needed. 

Example 3 Let S be the surface of the cylinder described in Example 2, and find 
the surface integral of the function x2z over S. 

Solution As before, S is piecewise smooth and we must integrate separately 
over the lateral area L, the top T, and the bottom B: 

ff x2z dA = ff x2z d.A + ff x2z dA + ff x2z dA . 
S L T B 

The third integral here is clearly zero, because z = 0 on B. For the first integral 
we have (using cylindrical coordinates as shown in Fig. 2 1 .25) 

ff x2z dA = t r1T (a cos ())2 z(a d() dz) 
L 0 O 

LbL21T = a3 z cos2 () d() dz 
0 0 

= a3 Lb z[_!_e + _!_ sin w]21T 
dz = 7Ta3 Lb z dz = 

_!_ 7Ta3b2. 0 2 4 0 0 2 

For the second integral we use dA = r dr de, x = r cos e, z = b, so 

ff x2z dA = f 
1T 
r (r cos ())2b(r dr d()) 

T 0 0 

1 L21T = -a4b cos2 () d() 4 0 

= - a4b - () + - sin 2() = - 7Ta4b I [ I I ]21T l 
4 2 4 0 4 . 
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The total surface integral is therefore 

JJ x2z dA = t 7ra3b2 + ± 7ra4b + 0 
s 

1 
= 4 7ra3b(2b + a). 

Finally, we consider a problem in which spherical coordinates are used for cal
culating a surface integral. 

Example 4 Let S be the surface of the solid (Fig. 21 .26) bounded below by the 
.xy-plane and above by the upper half of the sphere x2 + y2 + z2 = a2. Find the 
flux of the vector field F = zk out through S by direct calculation, and also by 
using Gauss's Theorem. 

Solution Let B denote the bottom of the solid in the .xy-plane, and T the hemi
spherical top. On B the unit normal vector n is given by n = -k, and on T we 
have n = (xi + yj + zk)/a, so l -z = 0 

F . n = z2 (a cos </>)2 - = �-� =  a cos2 </> a a 

on B, 

on T. 
x 

This shows that the flux through B is zero, and since the element of area on T is Figure 21 .26 

dA = (a dcp)(a sin <P df)) = a2 sin <P dcp df), the total flux out through S is given 
by 

JJ F · n dA = JJ (a cos2 </>)(a2 sin </> d</> d(}) 
S T 

J
27T 

f
""/2 

= a3 cos2 </> sin </> d</> d(} 
0 0 

= a3 J27T [-_!_ cos3 <1>]1T1
2 d(} = a3 J27T _!_ d(} = 17ra3. 

0 3 0 0 3 3 

To find this flux by using Gauss's Theorem, we merely observe that since 
div F = 1 we have 

J J F · n dA = J J J div F dV = J J J dV = volume = �7ra3. 
S R R 

Gauss's Theorem is a profound theorem of mathematical analysis, with a 
wealth of important applications to many of the physical sciences. The cursory 
sketch of these ideas that we have given here-together with a similar sketch 
of Stokes' Theorem in the next section-is perhaps as far as an introductory 
calculus course should go in this direction. Students who wish to learn more 
are encouraged to continue and take advanced courses (vector analysis, po
tential theory, mathematical physics, etc. )  in which these themes are fully 
developed. 
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PROBLEMS 

Find the divergence of the vector field F if 
(a) F = (y - z)i + (z - x)j + (x - y)k; 
(b) F = (2z2 - sin eY)i + xyj - xzk; 
(c) F = xyi + xz3j + (2z - yz)k; 
(d )  F = ex sin yi + ex cos yj + e' sin xk; 

(e) F = � i + l. j + � k, where r = Yx2 + y2 + z2. 
r r r 

In Problems 2-6, use Gauss's Theorem to find the flux of the 
given vector field over the given surface S. 

2 F = xi - yj + zk; S is the surface of the cylinder in Ex
ample 2. 

3 F = xi + yj + zk; S is the surface of the ellipsoid 
x2/a2 + y2/b2 + z2/c2 = 1 .  

4 F = xi + yj + zk; S is the surface of the tetrahedron 
formed by the plane xla + y/b + z/c = I (a, b, c > 0) and 
the coordinate planes. 

S F = x3i + y3j + z3k; S is the surface of the sphere x2 + 
y2 + z2 = a2. 

6 F = yzi + xzj + xyk; S is the surface of the cone z2 = 
m2(x2 + y2), 0 :s z :s h. 

7 If R is the position vector xi + yj + zk and r = 

V x2 + y2 + z2 is its length, find the divergence 
of the central force field F = f(r)(Rlr), where f(r) is 
an arbitrary differentiable function. 

8 Find the flux of the vector field defined in Problem 7 
over the sphere x2 + y2 + z2 = a2 if 

I (a) f(r) = r; (b) f(r) = 2· r 
9 If n is a positive number and fir) = ! Ir" in Problem 7, 

show that the divergence of the force field F is zero if 
n = 2, and only in this case. 

10 Verify Gauss's Theorem for the vector field F = 2zi + 
(x - y)j + (2xy + z)k and the rectangular box whose 
faces are x = 0, x = I ,  y = 0, y = 2, z = 0, z = 3 .  

1 1  Use Gauss's Theorem to find the flux of F over the sur
face of the box in Problem 1 0  if 

(a) F = x2i + y2j + z2k; 
(b) F = xzi + xyj + yzk. 

1 2  I f  F = xi + yj + k,  find the value o f  ff F · n dA over 
s 

(a) the surface of the cube whose faces are x = 0, x = 1 , y = 0, y = 1 ,  z = 0, z = 1 ;  
(b) the surface of the sphere x2 + y2 + z2 = 4; 
(c) the part of the plane x + 2y + 3z = 6 that lies in the 

first octant, where n points upward. 
1 3  I f  S i s  a closed surface, show that the flux of the posi

tion vector R = xi + yj + zk out through S is 3 V. where 
V is the volume of the region bounded by S. What is the 
flux through S of F = 27xi - I lyj + 4zk? 

1 4  Use Gauss's Theorem to find the flux o f  the vector field 
F = x2i - 2xyj + xyz2k out through the surface of the 
solid bounded by z = 0 and z = Y a2 - x2 - y2. 

1 5  Let S be the surface o f  the sphere x 2  + y 2  + z2 = a2. If 
F = r2(xi + yj + zk), where r2 = x2 + y2 + z2, find the 
flux of F out through S by direct calculation, and also by 
using Gauss's Theorem. 

16 If S is the surface of the cube whose vertices are (0, 0, 
0), ( 1 , 0, 0), ( 1 ,  1, 0), (0, l, 0), (0, 0, 1 ), ( 1 ,  0, 1 ), ( 1 , 1 , 
1 ), and (0, 1 , 1 ), verify Gauss's Theorem for the vector 
field F = xzi + y2j + xk. 

1 7  I f  S i s  the surface of  the tetrahedron bounded by the co
ordinate planes and the plane 2x + 2y + z = 6, verify 
Gauss's Theorem for the vector field F = xi + y2j + zk. 

18  I f  S i s  the surface of the solid bounded by z = 0 and z = 
Y a2 - x2 - y2, verify Gauss's Theorem for the vector 
field F = 2xzi + yzj + z2k. 

1 9  Let S be the surface o f  the solid bounded by the cylin
der x2 + y2 = 4, the plane x + z = 4, and the xy-plane. 
Find the flux out through S of the vector field F = 
(x2 + eY)i + (xy - tan z)j + sin x k. 

2 1 . 5 
STOKES' THEOREM 

Stokes' Theorem is an extension of Green's Theorem to three dimensions, in
volving curved surfaces and their boundaries rather than plane regions and their 
boundaries. Sir George Stokes ( 1 8 19-1903) was an eminent British mathemati
cal physicist. He introduced the theorem known by his name in an examination 
question for students at Cambridge University in 1 854. A fairly full account of 
Stokes' personality and scientific work can be found in G. E. Hutchinson, The 
Enchanted Voyage (Yale University Press, 1 962). We shall state the theorem af
ter a few preliminaries that will help us understand its meaning. 

Suppose that F = Li + Mj + Nk is a vector field defined in a certain region 
of space. It will be convenient in this section to think of F as the velocity field 
of a flowing fluid. Suppose also that C is a curve that lies in the region and is 
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specified by certain parametric equations. The line integral of F along C, denoted 
by 

f F · dR c t L dx + M dy + N dz, or 

is defined and calculated in just the same way as in two dimensions, and requires 
no further explanation. If C is a closed curve, as shown in Fig. 2 1 .27, the line 
integral is usually written as 

t F · dR. 

This integral measures the tendency of the fluid to circulate or swirl around C, 
and is called the circulation of F around C. 

Now suppose that C is a small simple closed curve that lies in a plane with 
unit normal vector n, where the direction of n is related to the direction of C by 
the right-hand thumb rule, and let P be a point inside C (Fig. 2 1 .27). If LiA is 
the area of the region enclosed by C, then 

-1 l F · dR �A Tc 
can be thought of as the circulation of F per unit area around P, and the limit 

Jim _l_ J F · dR 
t>A->0 �A Tc 

is called the circulation density of F at P around n. The point of these remarks 
is that this concept is closely related to the curl of the vector field F, which was 
defined in Section 2 1 .4 by 

j k 

curl F = V X F = a a a ( 1 )  ax ay az . 

L M N 

In fact, it can be shown that the curl of F has the property that at any point 
its component in a given direction n is precisely the circulation density of F 
around n, 

(curl F) · n = Jim /, J F · dR. 
AA->0 L.>r1 c 

(2) 

The proof of (2) is fairly complicated and will not be given here; it can be found 
in any good book on vector analysis. 

We can visualize the meaning of (2) in a concrete way if we imagine a small 
paddle wheel placed in the flowing fluid at the point P with its axis pointing in 
the direction of n (Fig. 21 .28). The circulation of the fluid around n will cause 
the paddle wheel to turn, and the speed at which it spins will be proportional to 
the circulation density. The paddle wheel will spin fastest when it points in the 
direction in which the circulation density is largest, and (2) tells us that this hap
pens when n points in the same direction as curl F. We conclude that at each 
point of space the vector curl F has the direction in which the circulation den

x 

Figure 2 1 .27 

sity is largest, with magnitude equal to this largest circulation density. The pad- Figure 2 1 .28 
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s 

�-----------<� y 

Figure 21 .29 

- -

Figure 21 .30 

die wheel we have described here can therefore be thought of as an imaginary 
instrument for sensing the direction and magnitude of the curl. 

We are now ready for the main theorem of this section. Stokes ' Theorem as
serts the following (see Fig. 2 1 .29): 

If S is a surface in space with boundary curve C, then the circulation of a vector field 
F around C is equal to the integral over S of the normal component of the curl of F, 

f, F · dR = ff (curl F) · n dA. 
c s 

(3) 

Just as in the case of Gauss's Theorem in the preceding section, we choose to 
keep this statement as simple as possible and not complicate it with the hypotheses 
and restrictions that would be needed to convert it into a genuine mathematical 
theorem. For instance, it is necessary to assume that S is a two-sided (orientable) 
surface with the direction of the unit normal vector n related to the direction of 
C by the right-hand thumb rule, as shown in the figure. Also, of course, n must 
be continuous, F must be continuous, L, M, and N must have continuous partial 
derivatives, and so on. 

This rough, intuitive version of Stokes' Theorem has a rough, intuitive "proof" 
based on equation (2). First, we subdivide the surface S into a large number of 
small patches with areas LiA; and boundary curves C;. By applying (2) to the ith 
patch we obtain the approximate equation 

i F · dR = (curl F) · n ilA;. Tei 
If we add the left sides of these equations for all curves C;, then the line inte
grals over all interior common boundaries cancel, being calculated once in each 
direction, leaving only the line integral around the exterior boundary C (see Fig. 
2 1 .30). This gives 

fc F · dR = I, (curl F) · n ilA;, (4) 

and by taking smaller and smaller subdivisions we obtain (3),  since the sums on 
the right side of (4) are approximating sums for the surface integral on the right 
side of (3). 

Example 1 If the surface S is a region R lying flat in the xy-plane, then n = k 
and by ( 1 )  we see that 

so (3) reduces to 

CIM ol (curl F) · n = - - -ox Cly , 

fc l dx + M dy = ff ( �� - ��) dA. 
R 

This is Green's Theorem (Section 21 .3) ,  which is thus a special case of Stokes ' 
Theorem. 



Example 2 Evaluate the line integral 
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I = f c y3z2 dx + 3.xy2z2 dy + 2.xy3z dz 

around the closed curve C whose vector equation is R = a sin ti + b cos tj + 
c cos tk, 0 :::; t ::S 27T, where abc =I= 0. 

Solution This integral is the circulation around C of the vector field F = y3z2i + 
3.xy2z2j + 2.xy3zk. An easy calculation shows that curl F = 'V X F = 0. If S is 
any surface whose boundary is C, then the right side of (3) has the value 0 in 
this case, and therefore Stokes' Theorem tells us that I =  0. 

Also, for this particular F and C it is not too difficult to verify Stokes' Theo
rem by calculating I directly. This gives f21T 
I = 

0 
[(b3 cos3 t)(c2 cos2 t)(a cos t) 

+ 3(a sin t)(b2 cos2 t)(c2 cos2 t)(-b  sin t) 

+ 2(a sin t)(b3 cos3 t)(c cos t)(- c  sin t)] dt f 21T ]21T 
= ab3c2 [cos6 t - 5 cos4 t sin2 t] dt = ab3c2 sin t cos5 t = 0. 

0 0 

In Section 2 1 .2 we proved that three properties of vector fields in the plane 
are equivalent to one another. Stokes' Theorem makes it possible to extend these 
ideas in a natural way to three-dimensional space. Specifically, if F is a vector 
field defined in a simply connected region of space, then any one of the follow
ing four properties implies the remaining three:* 

(a) �c F · dR = 0 for every simple closed curve C. 
(b) Jc F · dR is independent of the path. 
(c) F is a gradient field, i .e. ,  F = 'Vf for some scalar fieldf 
(d ) curl F = 0. 
The equivalence of (a), (b), and (c) is established in j ust the same way as in two 
dimensions; the fact that (c) implies (d) is a straightforward calculation; and 
Stokes' Theorem enables us to show very easily that (d) implies (a). A vector 
field with any one of these properties is said to be conservative or irrotational 
[because of ( d )] .  

For students who desire a fuller explanation of  the reasons underlying the 
equivalence of these four properties, we offer the following details  of the argu
ments. 

To understand the equivalence of (a) and (b) we examine Fig. 2 1 .3 1 ,  in which 
C 1 and C2 are two paths from A to B and C is the simple closed curve formed 
by tracing out C 1 and - C2 in this order, where - C2 means C2 traced in the op
posite direction. For these paths, property (b) tells us that 

l F · dR = J F · dR, 
C1 C2 

'A region in three-dimensional space is said to be simply connected if every simple closed curve in 
the region can be shrunk continuously to a point without leaving the region. 

7 8 1  

y 

x 

Figure 21 .31  
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y 

which is equivalent to 

or 

or 

f F · dR - f F · dR = 0, 
CJ C2 

f F · dR + f F · dR = 0, 
CJ -C2 

fc F · dR = 0. 

This shows that (b) implies (a), and the reasoning is clearly reversible. 
To understand why (c) implies (b), we use the above notation and write 

f F · d R  = f VJ · dR 
CJ CJ 

= t1 ( i� i + i� j + i� k) · (dx i + dy j + dz k) 

= f dJ = J(B) - J(A). 
C1 

Our conclusion now follows from the fact that the expression last written de
pends only on the points A and B, and not at all on the path of integration. (A 
slightly more detailed treatment of this reasoning for the two-dimensional case 
is given in Section 2 1 .2.) 

To show that (b) implies (c), we must use independence of path to construct 
a potential function f (x, y, z). This is easy to do by choosing a fixed point (x0, 
y0, zo) and integrating F along any path from (x0, yo, zo) to a variable point (x, y, 
z), as suggested in Fig. 2 1 .32. Since the value of the integral is independent of 
the choice of path, this integral is a function only of the point (x, y, z ) , and de
fines our potential function: f(x,y,z) 

J(x, y, z) = F · dR. 
(xo,Yo·Zo) 

The next step is to show that VJ = F by using the calculations given for the two
dimensional case in Section 2 1 .2, but we do not repeat these details. 

To prove that (c) implies (d ) by the "straightforward calculation" mentioned 
above, we have only to write 

j k 

curl F = curl VJ = a a a 
dX dy dZ 
i)J i)J oJ 
dX dy dZ 
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because this expression vanishes by  the equality of the mixed partial derivatives. 
To establish the final implication, that (d ) implies (a), we consider a simple 

closed curve C, as shown in Fig. 2 1 .33. Since our region is simply connected, C 
can be shrunk continuously to a point without leaving the region. In this shrink
ing process, C sweeps out a surface S, and by Stokes' Theorem we have 

f, F · dR = JJ (curl F) · n d.A. 
c 

s y 

The integral on the right equals 0 because of our assumption that curl F = 0, and 
this tells us that x 

Figure 2 J .33 fc F · dR = 0, 

which completes the argument. 
One final remark: The relations among properties (a) through (d) will not be 

truly understood until we reach the stage at which the implications described 
above can be grasped as an organic whole and recalled in a few seconds of 
thought. 

We have seen that Gauss's Theorem relates an integral over a closed surface 
to a corresponding volume integral over the region of space enclosed by the sur
face, and Stokes '  Theorem relates an integral around a closed curve to a corre
sponding surface integral over any surface bounded by the curve. As we sug
gested at the beginning of Section 2 1 .4, these statements are very similar and are 
presumably somehow connected with each other. It turns out that both are spe
cial cases of a powerful theorem of modern analysis called the generalized Stokes 
Theorem. Students who wish to understand these relationships must study the 
theory of differential forms. 

PROBLEMS 

1 If S is a closed surface that lies in a region of space in 
which a vector field F is defined, show that 

JJ (curl F) · n dA = O. 
s 

2 Ifthe vector field F = -yi + xj + Ok is the velocity field 
of a flowing fluid, sketch enough of this field in the 
xy-plane (that is, sketch enough of the velocity vectors 
attached to various points) to understand the nature of 
the motion. Then calculate curl F, let C be the circle R = 
r cos 8i + r sin 8j + Ok (0 :s {} :s 21T) in the xy-plane, 
and verify the formula 

(curl F) · n = � Tc F · dR 

for this circle and its interior in the xy-plane. 
3 Repeat Problem 2 for the vector fields 

(a) F = axj, where a is a positive constant; 
(b) F = fir)R, where r is the length of the position vec-

tor R = xi + yj + zk and fir) is an arbitrary differ
entiable function. 

In Problems 4-10, apply Stokes' Theorem to find PcF · dR 
for the given F and the given C. In each case let C be ori
ented counterclockwise as seen from above. 

4 F = y(x - z)i + (2x2 + z2)j + y3 cos xz k; C is the 
boundary of the square 0 :s x :s 2, 0 :s y :s 2, z = 5. 

S F = (z - y)i + yj + xk; C is the intersection of the top 
half of the sphere x2 + y2 + z2 = 4 with the cylinder r = 
2 cos 6. 

6 F = yi + (x + y)j + (x + y + z)k; C is the ellipse in 
which the plane z = x intersects the cylinder x2 + y2 = l . 

7 F = (y - x)i + (x - z)j + (x - y)k; C is the boundary 
of the triangular part of the plane x + y + 2z = 2 that 
lies in the first octant. 

8 F = (3y + z)i + (sin y - 3x)j + (e' + x)k; C is the cir
cle x2 + y2 = 1 ,  z = 5 .  

9 F = 2zi + 6xj - 3yk; C is the ellipse in which the plane 
z = y + I intersects the cylinder x2 + y2 = l .  



7 84 LINE AND SURFACE INTEGRALS. GREEN' S THEOREM. G AUSS 'S  THEOREM, AND STOKES' THEOREM 

IO F = ex'i + (x + z) sin y3j + (y2 - x2 + 2yz)k ; C is the 
boundary of the triangular part of the plane x + y + z = 

3 that lies in the first octant. 

14 F = (x + y)i + (y + z)j + (z + x)k, S is the elliptical 
disk x2!a2 + y2/b2 :'.S I ,  z = 0, and C is its boundary ori
ented counterclockwise as seen from above. 

In Problems 1 1- 14, verify Stokes' Theorem for the given F, 
S, and C. 

15 Let S be the top half of the ellipsoid x2 + y2 + z2/9 = I ,  
oriented so that n is directed upward. If F = x3i + y4j + 
z3 sin xy k, evaluate 

1 1  F = (z - y)i + (x + z)j - (x + y)k, S is the part of the 
paraboloid z = 9 - x2 - y2 that lies above the xy-plane, 
and C is its boundary circle x2 + y2 = 9 in the xy-plane, 
oriented counterclockwise as seen from above. 

ff (curl F) · n dA 
s 

12 F = xyi + yzj + zxk, S is the part of the plane x + y + 
z = l that lies in the first octant, and C is its boundary 
oriented counterclockwise as seen from above. 

by replacing S by a simpler surface with the same bound
ary. 

1 6  Repeat Problem 1 5  if F = xz2i + x3j + cos xzk and S is 
the top half of the ellipsoid x2 + y2 + 4z2 = I with n di
rected upward. 

13 F = yi - xj, S is the top half of the sphere x2 + y2 + 
z2 = 4, and C is its boundary circle x2 + y2 = 4 in the 
xy-plane, oriented counterclockwise as seen from above. 

2 1 . 6 
MAXWELL'S 

EQUATIONS . A FINAL 
THOUGHT 

To gain a slight glimpse of the significance of the ideas of this chapter, we look 
very briefly at the famous equations formulated in the 1 860s by James Clerk 
Maxwell ( 1 83 1 -1 879). These equations are remarkable because they contain a 
complete theory of everything that was then known or would later become known 
about electricity and magnetism. Maxwell was the greatest theoretical physicist 
of the nineteenth century, and an excellent account of his life and work is given 
by James R. Newman in Science and Sensibility, vol. 1 ,  pp. 1 39-193 (Simon and 
Schuster, 1 96 1  ) .  

In Maxwell's theory there are two vector fields defined at every point in  space: 
an electric field E and a magnetic field B .  The electric field is produced by charged 
particles (electrons, protons, etc.) that may be moving or stationary, and the mag
netic field by moving charged particles. 

All known phenomena involving electromagnetism can be explained and un
derstood by means of Maxwell 's equations: 

2 

3 

4 

\7 .  E = .!1_. 
EQ 

ClB \7 x E = -at . 

\7 · B = 0. 
. 

oE 
c2 \7 x B = _1_ + -. 

Eo Ot 

Here q is the charge density, Eo is a constant, c is the velocity of light, and j is 
the current density (not to be confused with the unit vector in the direction of 
the y-axis). We make no attempt to discuss the meaning of these four equations, 
but we do point out that the first two make statements about the divergence and 
curl of E, and the second two about the divergence and curl of B. Equivalent ver
bal statements of Maxwell's equations are given by Richard Feynman (Nobel 
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Prize, 1 965) on p. 1 8-2 in vol. 2 of his Lectures on Physics (Addison-Wesley, 
1964): 

I '  

2 '  

3 '  

4 '  

charge inside 
Flux of E through a closed surface = -�--

Eo 

Line integral of E around a loop = -;
, 

( flux of B through the loop). 

Flux of B through a closed surface = 0. 

current through the loop 
c2 ( integral of B around a loop) = --------'�--� 

Eo 

d + at  ( flux of E through the loop). 

By a "loop," Feynman means what we have called a simple closed curve. The 
fact that these verbal statements are indeed equivalent to Maxwell's equations l 
to 4 depends on Gauss's Theorem and Stokes' Theorem. This is perhaps easier 
to grasp when these verbal statements are expressed in terms of line and surface 
integrals: 

l "  ff E · n dA = Q_ 
S 

EQ 
(S is a closed surface). 

2" T E · dR = _l_ ff B · n dA 
c dt s 

( C is a simple closed curve and S is a sur
face bounded by C). 

3" ff B · n dA = 0 
s 

(S is a closed surface) .  

4" c2 T B · dR = __!___ ff j · n dA + l_ ff E · n dA 
C Eo S dt S 

( C is a simple closed 
curve and S is a surface 
bounded by C). 

Our only purpose in mentioning these matters is to try to make it perfectly 
clear to the student that the mathematics we have been doing in this chapter has 
profoundly important applications in physical science. Feynman devotes the first 
2 1  chapters in vol. 2 of his Lectures to the meaning and implications of Maxwell's 
equations. At one point he memorably remarks: 

From a long view of the history of mankind-seen from, say, ten thousand years from 
now-there can be little doubt that the most significant event of the 19th century will 
be judged as Maxwell's discovery of the laws of electrodynamics. The American Civil 
War will pale into provincial insignificance in comparison with this important scien
tific event of the same decade. 

In making this provocative comment, perhaps Feynman was carried away by his 
ebullient enthusiasm-but perhaps not. 

785 
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CHAPTER 21 REVIEW: CONCEPTS, THEOREMS 

Think through the following. 
l Line integral. 
2 Fundamental Theorem of Calculus for line integrals. 
3 Conservative field in the plane: three equivalent proper

ties. 
4 Green's Theorem. 
S Divergence of a vector field: definition, formula. 

6 Surface integral. 
7 Gauss's Theorem (or the Divergence Theorem). 
8 Curl of a vector field: definition, meaning. 
9 Stokes' Theorem. 

1 0  Conservative (or irrotational) field i n  space: four equiv
alent properties. 



APPENDIX THE THEO RY 
OF CALCULUS 

I mean the word proof not in the sense of the lawyers, who set two half proofs equal 
to a whole one, but in the sense of the mathematician, where t proof = 0 and it is de
manded for proof that every doubt becomes impossible. 

Carl Friedrich Gauss 

Certitude is not the test of certainty. We have been cocksure of many things that were 
not so. 

Oliver Wendell Holmes 

When considered for its own sake, and apart from any uses it may have, the real number 
system appears as an intricate intellectual structure whose endless complexities are of in
terest mainly to mathematicians. However, from the practical point of view, it is the foun
dation on which virtually all other branches of mathematics rest, and as such, it underlies 
every quantitative aspect of civilized life. 

Most of us learn in school how to use real numbers for counting, measurement, and 
solving algebraic problems. Nevertheless, no matter how much skill of this kind we de
velop, few of us ever confront the question of just what the real numbers are. Our pur
pose here is to answer this question as briefly and clearly as possible. In doing so, we 
will also provide an adequate basis for the capsule discussions of the theory of calculus 
that are given in the following sections. 

There are several ways to introduce the real number system. We adopt the most effi
cient of these-the axiomatic approach-in which we start with the real numbers them
selves as given undefined objects possessing certain simple properties that we use as ax
ioms. This means we assume there exists a set R of objects, called real numbers, that 
satisfy the 10 axioms listed in the following pages. All further properties of real numbers, 
regardless of how profound they may be, are ultimately provable as logical consequences 
of these. The axioms fall into three natural groups. Those of the first group are stated in 
terms of the two operations + and · , addition and multiplication, which can be applied 
to any pair x and y of real numbers to produce their sum x + y and their product x · y 
(also denoted more simply by xy). 

Algebra Axioms 

Commutative laws: x + y = y + x, xy = yx. 
2 Associative laws: x + (y + z) = (x + y) + z, x( yz) = (xy)z. 

787 
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SYSTEM 
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4 Existence of identity elements: There exist two distinct real numbers, denoted by 0 
and 1 ,  such that 0 + x = x + 0 = x and I · x = x · 1 = x for every x. 

5 Existence of negatives: For each x there exists a unique y such that x + y = y + 
x = 0. 

6 Existence of reciprocals : For each x =/= 0 there exists a unique z such that xz = 
zx = I .  

The number y in axiom 5 is customarily denoted by -x, and z in axiom 6 by 1/x or 
X- 1 • Subtraction and division can now be defined by x - y = x + (-y) and x!y = x( l ly). 
All the usual laws of elementary algebra can be deduced from these axioms and these de
finitions. We illustrate this process by giving three very brief proofs. 

Example 1 (i) x + y = x + z implies y = z (the cancellation law of addition). Proof: 

Since x + y = x + z, ( -x) + (x + y) = (-x) + (x + z); by axiom 2, [(-x) + x] + y = 
[(-x) + x] + z; by axiom 5, 0 + y = 0 + z; and by axiom 4, y = z. 

(ii) x · 0 = 0. Proof: Axiom 4 gives 0 + 1 = I ,  so x(O + 1 )  = x · I ;  by axiom 3, x · 
0 + x · 1 = x · 1 ;  by axiom 4, x · 0 + x = x = 0 + x; by axiom 1 ,  x + x · 0 = x + O; and 
by (i), x . 0 = 0. 

(iii) (- 1)(- 1 )  = 1 .  Proof: Axiom 5 gives I + (- 1) = 0, so on multiplying by - 1  and 
using axioms 3, 4, and (ii) we obtain ( - 1 ) + ( - 1  )(- 1 ) = O; and adding I to both sides 
of this yields ( - 1 )( - 1 )  = 1 after careful reduction. 

The next group of axioms enables us to establish an order relation in the real number 
system. It is convenient to introduce this relation indirectly, by basing it on a concept of 
positiveness. This means we assume there exists in R a special subset P, called the set of 
positive numbers, that satisfies the three axioms listed below. The statement that a num
ber x is in the set P is symbolized by writing 0 < x, or equivalently x > 0. 

Order Axioms 

7 For each x, one and only one of the following possibilities is true: x = 0, x > 0, 
-x > O. 

8 If x and y are positive, so is x + y. 
9 If x and y are positive, so is xy. 

We now introduce the familiar order relations < and > as follows: x < y is defined to 
mean y - x > 0, and x > y is equivalent to y < x. As usual, x :s y means that x < y or 
x = y, and x 2: y is equivalent to y :s x. All the customary rules for working with in
equalities can be proved as theorems on the basis of these axioms and definitions. 

Example 2 It is quite easy to show that for any real numbers x and y one and only one 
of these possibilities is true: x = y, x < y, x > y (proof: apply axiom 7 to the number y -
x). We next consider the proofs of the following familiar facts: 

If x < y and y < z, then x < z. 
If x > 0 and y < z. then xy < xz. 
If x < 0 and y < z. then xy > xz. 
If x < y then x + z < y + z for any z. 

The definitions allow us to express these statements in equivalent forms that are more 
convenient from the point of view of providing proofs: 



If y - x > 0 and z - y > 0, then z - x > 0. 
If x > 0 and z - y > 0, then xz - xy > 0. 
If -x > 0 and z - y > 0, then xy - xz > 0. 

A. I THE REAL NUMBER SYSTEM 

If y - x > 0, then (y + z) - (x + z) > 0 for any z. 

The first of these assertions is an obvious consequence of axiom 8, the second and third 
follow directly from axiom 9, and the fourth is trivial, since (y + z) - (x + z) = y - x. 

The program of carefully deducing all the algebraic and order properties of R from ax
ioms I to 9 is rather long and boring, and no useful purpose would be served by pursu
ing this aspect of the matter any further. It is quite enough for students to understand that 
this program can be carried out, and we omit the details. 

The nine axioms given above do not fully determine the real number system. This is 
most easily seen by noticing that the set Q of all rational numbers is a number system 
different from R that also satisfies all nine axioms. Of course, the difference between Q 
and R is simply that Q lacks the irrationals, which any workable number system ought to 
have. One more axiom is needed to guarantee that R is free from this defect, or equiva
lently that the real number system has no "gaps" or "holes." 

Two preliminary definitions are necessary before our final axiom can be stated. Both 
refer to an arbitrary set S of real numbers. A real number b is called an upper bound 
for S if x :S b for every x in S. Further, a real number b0 is called a least upper bound 
for S if (i) b0 is an upper bound for S, and (ii) b0 :S b for every upper bound b of S. A 
set has many upper bounds if it has one, but it can have only one least upper bound. 
The proof is easy: If b0 and b1 are both least upper bounds for S, then b0 :S b1 (since ho 
is a least upper bound and b1 is an upper bound ) and b 1 :S b0 (since b 1 is a least upper 
bound and b0 is an upper bound ), so ho = b 1 • This argument permits us to speak of 
the least upper bound of S. These concepts can be visualized in the usual way, as sug
gested by Fig. A. I .  

Example 3 The set of all positive integers has no upper bound. If S is the closed inter
val 0 :S x :S l ,  then the numbers 1 ,  2, 3.74, and 5 1 3  (among others) are all upper bounds 
of S, and I is its least upper bound. The same statements are true if S is the open inter
val 0 < x < I .  In the first case, the least upper bound 1 belongs to the set S, but in the 
second case it does not. The set S consisting of all numbers in the sequence 

2 3 
2 '  3 ' 4 ' 

also has 1 as its least upper bound. 

n 
n + I ' 

The following is the final axiom for the real number system R. 

Least Upper Bound Axiom 

10 Every nonempty set of real numbers that has an upper bound also has a least upper 
bound. 

Least upper 
bound b0 Upper bounds b 

t� ! � . . 

7 8 9  

Figure A . 1  
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This axiom guarantees that the real number system has the property of "completeness" 
or "continuity" that is absolutely essential for the development of calculus. The best way 
to grasp the significance of this axiom is to observe that it is not true for the set Q of ra
tional numbers: If S is taken to be the set of positive rationals r such that r2 < 2, then S 
has an upper bound in Q but does not have a least upper bound in Q (the least upper bound 
of S in R is Vi, but this number is not in Q). 

Remark 1 We have implied, but not actually stated, that the 10 axioms given here com
pletely characterize the real number system R. The meaning of this statement can be clar
ified by formulating our ideas on a more abstract level, as follows. In modern algebra a 
set of objects that satisfies axioms 1 to 6 is called a field. There are many different fields, 
some finite and others infinite. The simplest consists of the two elements 0 and 1 alone, 
with addition and multiplication defined by 

0 + 0 = 0, 

0 .  0 = 0, 

0 + 1 = 1 + 0 = 1 ,  

0 .  1 = 1 . 0 = 0, 

1 + 1 = 0, 

1 · 1 = 1 . 

A field that satisfies the additional axioms 7 to 9 is called an ordered field. Both Q and 
R are ordered fields, but there are also a number of others. It can be proved that an or
dered field must have infinitely many distinct elements, so some fields-including the 
two-element field just mentioned-cannot be ordered. We use axiom 1 0  to narrow our 
scope still further, and an ordered field that satisfies this axiom is called a complete ordered field. It can be proved that any two complete ordered fields are abstractly identical 
in a very precise sense, so there is really only one, namely, R. * It is therefore possible to 
define a real number very simply, as an element in a complete ordered field. However, it 
is clear that no such definition can be considered satisfactory without a good deal of pre
liminary explanation and proof. 

Remark 2 There may be a few exceedingly skeptical readers who find themselves think
ing thoughts like these: "What this writer says sounds reasonable enough, provided the real number system R exists in the first place. But how do we know that it does? After 
all, this number system is not a physical object that can be seen and touched, but a cre
ation of the mind-like a unicorn-and perhaps we deceive ourselves by supposing that 
it exists." 

There are two ways to answer this objection. One is to give a concrete definition of R 
as the set of all infinite decimals, with the usual agreement that such decimals as 
0.25000 . . .  and 0.24999 . . . are to be considered equal. Addition, multiplication, and the 
set of positive numbers must now be given satisfactory definitions, and in this scheme of 
things our axioms 1 to 10 become theorems whose proofs lean heavily on these defini
tions. This program is surprisingly difficult to carry out. t 

A second approach is to use the much more basic positive integers as a given supply 
of building materials for the explicit step-by-step construction of the real number system 
-first the integers, then the rationals, and finally the reals. This time the axioms 1 to 1 0  
appear as theorems that can be  deduced from assumed properties of  the positive integers.* 

We do not encourage students to investigate these matters any further, for there is no 
part of mathematics more tedious and unrewarding than the detailed construction of the 
real number system by either of these methods. 

'For a fuller discussion, with proofs (or sketches of proofs), see pp. 1-8 in the first volume of 
E. Hille's Analytic Function Theory (Ginn and Co., 1 959). 

tsee Chapter 1 of J. F. Ritt's Theory of Functions (King's Crown Press, 1947). 
*The classical source for this construction is E. Landau, Foundations of Analysis (Chelsea, 1951  ). 
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We begin by recalling the definition of the limit of a function from Section 2.5 . Consider 
a function f (x) that is defined for values of x arbitrarily close to a point a on the x-axis 
but not necessarily at a itself. Another way to express this requirement is to say that there 
are x's in the domain of the function that satisfy the inequalities 0 < Ix - al < o for every 
positive number o. Under these circumstances, the statement that 

lim f(x) = L x->a 

is defined to mean the following: For each positive number E there exists a positive num
ber o with the property that 

lf(x) - LI <  E 

for every x in the domain of the function that satisfies the inequalities 

0 < Ix - al <  o. 

In the hope of clarifying the meaning of this definition, we examine the way it is used 
in a simple special case. It is obvious by inspection that 

Jim (3x - I )  = 2. x->l 
( I )  

However, to prove this by using the definition, we must start with an arbitrary positive 
number E and find a o > 0 that "works" for this E, in the sense that 

o < Ix - l l  < o implies IC3x - I) - 21 < E. (2) 

But the last inequality here is the same as l3x - 3 1  < E or -E < 3x - 3 < E; and after di
vision by 3 this becomes -tE < x - I < tE. This suggests that o = tE might work. To 
show that it does, we observe that if 0 < Ix - I I < tE then -tE < x - I < tE, which im
plies -E < 3x - 3 < E or j(3x - I ) - 21 < E. Thus, for any E > 0 the number o = tE ac
tually has the property stated in (2). The requirement of the definition is therefore satis
fied, and ( I )  is proved. 

It is natural to object to this procedure and to feel that carefully proving a transparent 
statement like ( I )  is empty mumbo-jumbo and a waste of time. However, the point is this: 
( 1 )  i s  obviously true and doesn't really need a proof, but many important limits are far 
from obvious and cannot be dealt with by simple inspection. For instance, it is no exag
geration to say that large parts of advanced mathematics would disappear like a puff of 
smoke without the ideas and methods that depend on the vital limits 

Jim sin x 
= 1 x->0 X 

and Jim ( 1  + x)11x = e. x->0 

(The fundamental constant denoted by e is officially introduced in Chapter 8; its approx
imate value is 2.7 1 828.) We clearly need powerful tools to cope with limits like these, not 
vague ideas and fuzzy concepts. We have proved ( 1 )  not for its own sake, but in order to 
illustrate the use of the definition of the limit of a function. This definition is not intended 
to be merely a passive description in the sense of most dictionary definitions. On the con
trary, it is a sharp-edged instrument of proof that is capable of being manipulated effec
tively in complex and subtle arguments where sloppy thinking brings nothing but confu
sion. We have two purposes in the theorems and proofs given below: first, to establish the 
results themselves, and thereby provide a solid logical foundation for all of our work that 
depends on limits of functions; and second, to further il lustrate the use of the definition 
in the machinery of formal proofs. 

Our first theorem states a fact that most people take for granted without fully realizing 
it, namely, that a function f(x) cannot approach two different limits as x approaches a. 

A. 2  
THEOREMS ABOUT 
LIMITS 

7 9 1  
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Theorem 1 If limx-w f (x) = l1 and limx-+a f (x) = £.i, then l1 = /Ji. 

Proof Our method of proof is to show that the assumption l1 * !Ji leads to the absurd 
conclusion IL1 - L2I < IL1 - £-ii. We therefore assume that l1 * /Ji, so that IL1 - L2 I is 
positive, and we let E be the positive number 1IL 1  - Lil. By the first hypothesis there ex
ists a number 81 > 0 such that 

0 < Ix - al <  81 implies lf(x) - Li l <  E, 

and by the second hypothesis there exists a number Bi > 0 such that 

0 < Ix - a l <  Bi implies If <x) - Lil < e. 

Define 8 to be the smaller of the numbers 81 and Oi. Then 0 < Ix - al < 8 implies both 

and If <x) - Lil < e, 

and therefore 

IL1 - £-ii = l ll1 - f(x)] + [f(x) - Lil I 

::S IL1 - f(x)I + If (x) - Li I 

< e + e = 2e  = IL 1  - Lil. 

This contradiction-that the number IL1 - £-ii is less than itself-shows that it cannot 
be true that IL 1  - L21 is positive, so L1 = L2. 

Theorem 2 !f f(x) = x, then limx-.af(x) = a; that is, 
lim x = a. x-+a 

Proof Let E > 0 be given, and choose 8 = e. Then 0 < Ix - al < 8 = e implies that 
lf(x) - al < E, since f(x) = x. 

Theorem 3 If f (x) = c, where c is a constant, then limx-+a f (x) = c; that is, 
lim c = c. x-+a 

Proof S ince lf(x) - cl = le - c l = 0 for all x, any 8 > 0 will do, because If (x) - c l will 
be < e for any given e > 0 and all x. 

Theorem 4 If limx-+a f (x) = l and limx-+a g(x) = M, then 
(i) l imx-+a [f(x) + g(x)] = l + M; 
(ii) l imx-+a [f(x) - g(x)] = L - M; and 
(iii) l iffix-+a f (x)g(x) = LM. 

Proof For (i), let E > 0 be given, let 81 > 0 be a number such that 

0 < Ix - al < 81 implies lf(x) - LI < te, 

and let 82 > 0 be a number such that 

0 < Ix - a l < Bi implies lg(x) - Ml < te. 
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Define 8 to be the smaller of the numbers 81 and &i. Then 0 < Ix - al < 8 implies 

l [f(x) + g(x)] - (L + M)I = l [f(x) - L ] + [g(x) - MJI 
::S If (x) - LI + lg(x) - Ml 

and this proves (i) .  
The argument for (ii) i s  almost identical with that just given and will be omitted. 
In proving (iii), we wish to make the difference f(x)g(x) - LM depend on the differ

encesf(x) - L and g(x) - M. This can be accomplished by subtracting and addingf(x)M, 
as follows: 

lf(x)g(x) - LMI = l [f(x)g(x) -f(x)M] + [f(x)M - LMJ I 
::S If (x)g(x) -f (x)MI + If (x)M - LMI 
= lfCxl l lg(x) - Ml + IMl lfCx) - LI 
::S lfCxl l lg(x) - Ml + CIMI + 1 l lf(x) - LI . 

Let E > 0 be given. We know that there exist positive numbers 81 , Di, 83 such that 
0 < Ix - al < 81 implies If (x) - LI < 1, which in turn implies If (x)I < ILi + I ;  

0 < Ix - al < 82 implies lg(x) - Ml < t E (iLI � 1 } 
0 < Ix - al < 83 implies If (x) - LI < t E (iMI 1+ 1 ) . 
Define 8 to be the smallest of the numbers Di, 82, 83 . Then 0 < Ix - al < 8 implies 

If (x)g(x) - LMI < tE + tE = E, 

and the proof of (iii) is complete. 

Theorem 5 If limx-->a f(x) = L and limx-->a g(x) = M where M =fa 0, then 

lim f (x) = ..!::__. 
x-->a g(x) M 

Pror�l By Theorem 4 [part (iii)] and the fact that 

it suffices to prove that 

f(x) l 
g(x) = f(x) . g(x) , 

Jim -1- = ...!... . 
x-->a g(x) M 

We begin with the fact that if g(x) =fa 0, then 

Choose 81 > 0 so that 
I 1 l I lg(x) - Ml 
g(x) - M 

= 
IMl lg(x) I · 

0 < Ix - al < 81 implies lg(x) - Ml < tlMI . 
For these x's we have 
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and therefore 

1 lg(x)I > 2 IMI or 1 2 
-- < 
lg(x)I IMI ' 

I 1 1 I 2 
g(x) - M < IMl 2 lg(x) - Ml. 

Let E > 0 be given and choose 8i > 0 so that 

0 < Ix - a l < 82 implies lg(x) - Ml < I� 2 E. 

We now define 8 to be the smaller of the numbers 81 and 8i and observe that 

0 < Ix - al <  l5 implies 

and this concludes the argument. 

Theorem 6 If there exists a positive number p with the property that 

g(x) :S f  (x) :S h(x) 

for all x that satisfy the inequalities 0 < Ix - al < p, and iflimx-+a g(x) = L and l imx-+a 
h(x) = L, then 

lim f(x) = L. x->a 

Pro(){ This statement is sometimes called the "squeeze theorem," because it says that a 
function squeezed between two functions approaching the same limit L must also approach 
L (see Fig. A.2) . For the proof, let E > 0 be given, and choose positive numbers 81 and 
82 so that 

0 < Ix - al < 81 implies L - E < g(x) < L + E 

and 

0 < Ix - al <  8i implies L - E < h(x) < L + E. 

Define 8 to be the smallest of the numbers p, 8 1 ,  Oi. Then 0 < Ix - al < 8 implies 

L - E < g(x) :S f(x) :s h(x) < L + E, 

so If (x) - LI < E and the proof is complete. 

y 

L 

a 
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We continue with the proofs of a few simple facts about continuous functions that fol
low almost immediately from these theorems about limits. First, however, let us recall that 
a functionf(x) is said to be continuous at a point a if 

Jim f(x) = f(a). 
x->a 

It is sometimes convenient to use the epsilon-delta version of this statement: for each 
e > 0 there exists a o > 0 with the property that 

lf(x) - f(a)I < e 

for every x in the domain of the function that satisfies the inequality 

Ix - al < o. 

Theorem 7 lff(x) and g(x) are continuous at a point a, thenf(x) + g(x), f(x) - g(x), 
andf(x)g(x) are also continuous at a. Further,f(x)lg(x) is continuous at a if g(a) i= 0. 

Proof We prove only the statement about f(x) + g(x), the other arguments being simi
lar. Since f(x) and g(x) are continuous at a, we have 

Jim f (x) = f (a) 
x->a 

and lim g(x) = g(a). 
x->a 

Part (i) of Theorem 4 now guarantees that 

lim [f(x) + g(x)] = f(a) + g(a), x�a 

and this proves thatf(x) + g(x) is continuous at a. 

Theorem 8 The functions f (x) = x and g(x) = c, where c is a constant, are continu
ous for all rnlues of x. 

Proof These statements follow at once from Theorems 2 and 3 . 

Theorem 9 Any polynomial 

P(x) = anx" + an- tXn- l + · · · + a 1 x  + ao 

is continuous for all wlues of x. 

(3) 

Proof By Theorem 8 and the multiplication part of Theorem 7, each of the following 
functions is continuous for all values of x: x, x2 = x · x, x3 = x · x2, . . .  , xk for any pos
itive integer k, and cxk where c is any constant. Since the constant term a0 is continuous, 
this tells us that each term of (3) is continuous for all values of x, and we obtain the con
clusion by repeated application of the addition part of Theorem 7. 

Theorem 10 Any rational function 

P(x) R(x) = Q(x) ' 

where P(x) and Q(x) are polynomials, is continuous for all rnlues of x for which 
Q(x) i= 0. 

Proof This is an immediate consequence of Theorem 9 and the division part of Theo
rem 7. 
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We conclude this section by proving that "a continuous function of a continuous function 
is continuous." 

Theorem 1 1  If g(x) is continuous at a and f (x) is continuous at g(a), then the composite function f(g(x)) is continuous at a. 
Pmof Let E > 0 be given. Since f(x) is continuous at g(a), we know that there exists a OJ > 0 such that 

lf(g(x)) - f(g(a))I < E (4) 

if 

lg(x) - g(a) I < OJ . (5) 

But g(x) is continuous at a, so there exists a o > 0 such that Ix - al < o implies lg(x) -g(a)I < OJ . We therefore see that Ix - al < o implies (5), which in turn implies (4), and 
this is all that is needed to complete the proof. 

We recall that a closed interval [a, b] on the x-axis is an interval which includes its end
points a and b. A function is said to be continuous on a closed interval if it is defined and 
continuous at each point of the interval. Functions of this kind have several important 
properties that we now discuss and prove. 

Theorem 1 (Boundedness Theorem) Let f (x) be a function continuous on a closed interval [a, b]. Thenf(x) is bounded on [a, b]; that is, there exists a number C with the property that If (x)I :s C for all x in [a, b). 
A good way to study a theorem like this critically is to see what happens if the hy

potheses are weakened or removed. In Theorem 1 there are two main hypotheses: ( 1 )  the 
interval [a, b] is closed; and (2) the function f(x) is continuous at each point of the in
terval. We show by examples that if either hypothesis is weakened, then the conclusion 
of the theorem can be false. 

Example I The function f (x) = 1 Ix is clearly continuous on the closed interval [ 1, 2), 
so according to Theorem 1 ,  f (x) should be bounded on this interval. Indeed, a bound C 
is easy to find: 

lf(x) I :s 1 for all x in [ l ,  2) .  

Further (see Fig. A.3), f(x) is continuous on the closed interval [ l/n, 2) for any positive 
integer n, and in this case the number n is a bound: 

lf(x) I :s n for all x in [ l /n, 2 ) .  

On the other hand, f(x) is also continuous on the nonclosed interval (0, 2), butf(x) i s  
not bounded on this interval. For, no matter how large a value of C we take, there are 
points in the interval for which f (x) > C; specifically, if 0 < x < l /C, then f (x) = 1/x > 
C. This shows that the hypothesis requiring that the interval [a, b] be closed is necessary. 

We now extend the definition off (x) to include the point x = 0, by putting { l/x f(x) = 0 
if 0 < x :s 2, 
if x = 0.  

This function is defined on the entire closed interval [O, 2) , and i t is unbounded on this 
interval for the same reason. This time the conclusion of Theorem 1 is false because the 
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function f(x) is not continuous at each point of the closed interval: it is discontinuous at 
the single point x = 0. 

These remarks show that the hypotheses of Theorem 1 cannot be weakened, and the 
following proof demonstrates that with both hypotheses in place the conclusion of the the
orem is inescapable. 

Proof of Theorem J* Our proof uses the fact that a nonempty set of real numbers with 
an upper bound necessarily has a least upper bound (see Appendix A. l ). Let S be the set 
of all points c in [a, b) with the property that f (x) is bounded on [a, c ]. It is clear that S 
is nonempty and has b as an upper bound, and therefore has a least upper bound which 
we denote by c0. We claim that c0 = b. To establish this, suppose that c0 < b. Since f (x) 
is continuous at x = c0, it is easy to see thatf(x) is bounded on [co - E, c0 + E) for some 
E > 0. Since f(x) is also bounded on [a, c0 - Ej, it is clearly bounded on [a, c0 + E) . This 
contradicts the fact that c0 is the least upper bound of S, so c0 = b. This tells us that 
f(x) is bounded on [a, c] for every c < b. One more step is needed to finish the proof. 
Since f (x) is continuous at x = b, it is bounded on some closed interval 
[b - E, b]. By what we just proved, f(x) is also bounded on [a, b - E], so it is bounded 
on all of [a, b]. 

If a function f(x) is bounded on [a, b], then its range-the set of all its values-has 
an upper bound and a lower bound. If M and m are the least upper bound and greatest 
lower bound of the range, then 

m sf(x) s M for all x in [a,b]. 

For bounded functions in general, the numbers M and m need not belong to the range. 
However, our next theorem asserts that if f (x) is continuous, then both numbers M and m 
are actually assumed as values of the function. 

Theorem 2 (Extreme Value Theorem) Letf(x) be a function continuous on a closed 
interwl [a, b]. Then f(x) assumes a maximum wlue M and a minimum wlue m; that 
is, there exist points x1 and x2 in [a, b] such that 

for all x in [a, b]. 

This statement is intuitively clear if we think of a continuous function on a closed in
terval as one whose graph consists of a single continuous piece, without any gaps or holes; 
for as we move along the curve from the left endpoint (a, f (a)) to the right endpoint 
(b, f(b), we feel compelled to believe that there must be a high point on the curve where 
f (x) has its maximum value and a low point where f(x) has its minimum value. This is 
true, but the situation is again very delicate, because if either hypothesis is weakened
even slightly-then the conclusion of the theorem can be false. 

Example 2 Consider the function f (x) defined by f (x) = x on the nonclosed interval 
[O, 1 ), and also the function g(x) defined by 

g(x) = g if 0 $ x < 1 ,  
if l $ x $ 2 

on the closed interval [O, 2). Both functions are shown in Fig. A.4. The functionf(x) does 
not assume a maximum value even though it is continuous on the interval [O, 1 ), because 

*Some of the details of the proofs in this Appendix are left for students to fill in. 
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this interval is not closed; and the function g(x) does not assume a maximum value even 
though the interval (0, 2] is closed, because g(x) is discontinuous at the single point x = 

1 .  In each case the values of the function get close to the number 1 (which is the least 
upper bound M of the range) as x � 1 from the left, but there is no point where the func
tion actually has the value 1 . 

Proof of Theorem 2 We prove the statement about assuming a maximum value. By The
orem 1 , f(x) is bounded on [a, b], so the range has an upper bound and therefore a least 
upper bound M. We must show that there exists a point x2 in [a, b] such thatf(x2) = M. 
Suppose there is no such point, that is, suppose that f(x) < M for all x in [a, b] . Then 
M - f(x) is positive on [a, b], the function 

g(x) = M - f (x) 

is continuous on [a, b], and Theorem 1 implies that this function is bounded. This means 
that there exists a number C such that 

for all x in [a, b ], so 

l s C 
M - f(x) 

1 - s  M - f(x) c or 1 f( x) s M - -. c 
This contradicts the fact that M is the least upper bound of the set of allf(x)'s and we are 
thereby forced to the desired conclusion: there exists at least one point x2 in [a, b] for 
which f (x2) = M. The statement that f(x) assumes a minimum value at some point x1 is 
proved similarly. 

The Extreme Value Theorem says that a function continuous on a closed interval actu
ally takes on a maximum value and a minimum value. There is a companion to this the
orem which states that such a function also takes on every value between its maximum 
and minimum values. Thus, a function continuous on a closed interval has a range which 
is itself a closed interval. To put it another way, such a function does not skip any values. 
We begin with a preliminary theorem that has many applications of its own (see Sec
tion 4.6). 

Theorem 3 Letf(x) be a function continuous on a closed intenxil [a, b] . If f(a) and 
f(b) have opposite signs, that is, if 

f(a) < 0 < f(b) or f(a) > 0 > f(b), 

then there exists a point c between a and b such that f(c) = 0. 
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y 

This says-in effect-that the graph of a function continuous on a closed interval can
not get from one side of the x-axis to the other side without actually crossing this axis at 
a definite point (Fig. A.5, left). However, this conclusion can be false if the function fails 
to be continuous even at a single point. This is shown (Fig. A.5, right) by the function f(x) defined on the interval [ l ,  3] by 

{ - 1  f(x) = I 
if l $ x < 2, 
if 2 $ x $ 3. 

Proof of Theorem 3 Suppose first that f (a) < 0 < f (b). Since f (a) < 0 and f (x) is con
tinuous at x = a, there exists a number d in the open interval (a, b) such thatf(x) is neg
ative on [a, d). Let c be the least upper bound of the set of all such d's, and observe that f(x) is negative for all x < c. It cannot be true thatf(c) > 0, for by continuity this would 
imply thatf(x) is positive on some interval (c - E, c] , contrary to what we have just ob
served. Also, it cannot be true thatf(c) < 0, for by continuity this would imply thatf(x) 
is negative on some interval [a, c + 1:), contrary to the definition of c. We conclude that f(c) = 0. The argument for the other case is similar. 

Theorem 4 (The Intermediate Value Theorem) Let f (x) be a function continuous on a closed interval [a, b] . If M and m are the maximum and minimum rnlues off (x) on [a, b ], and if C is any number between M and m so that m < C < M, then there exists a point c in [a, b] such thatf(c) = C. 

Proof The function g(x) = f(x) - C is also continuous on [a, b] . If x1 and x2 are points 
in [a, b] at whichf(x1 ) = m andf(x2) = M, then g(x) is negative at x1 and positive at x2: 

g(x1 ) = f (x1 ) - C = m - C < 0 
and 

By Theorem 3, there exists a point c between x1 and x2 (and therefore in [a, b]) such that g(c) = 0. But this means f(c) - C = 0 or f(c) = C. 

As another consequence of Theorem 3, we have 

Theorem 5 Letf(x) be afunction continuous on the closed unit interrnl [O, l ]  which has the further property that its rnlues also lie in this intenril (Fig. A.6). Then there exists at least one point c in [0, l ] such that f(c) = c. 
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Proof The function g(x) = f(x) - x is continuous on [0, l ]  and has the property that --------1--.....,i--- x g(O) = f(O) - 0 = f(O) 2: 0 and g( l ) = f(l )  - 1 $ 0. By Theorem 3, there exists a point O 
in c in [O, l ]  such that g(c) = f(c) - c = 0, so f(c) = c. Figure A.6 
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A functionf(x) with the properties assumed here is often called a continuous mapping 
of the interval [0, 1 ]  into itself, and the point c is called a fixed point of this mapping. 
Theorem 5 is a special case of a famous and far-reaching theorem of modern mathemat
ics called Brouwer's fixed point theorem, which asserts that continuous mappings of cer
tain very general spaces into themselves always have fixed points. 

This theorem is one of the most useful facts in the theoretical part of calculus. In geo
metric language, it is easy to state and intuitively plausible. It asserts that between any 
two points P and Q on the graph of a differentiable function there must exist at least one 
point where the tangent line is parallel to the chord joining P and Q, as shown in Fig. 
A.7. For the curve in the figure there are two such points. There may be many or there 
may be only one, but the theorem guarantees that there must always be at least one such 
point. By using the notation in the figure, we can express the statement of the theorem 
analytically by saying that there exists at least one number c between a and b (a < c < 
b) with the property that 

f' (c) = f(b; =�(a)
. 

The significance of the Mean Value Theorem lies not in itself but in its consequences, for 
it provides a convenient way of getting a grip on many theoretical facts of practical im
portance. This will become clear in Theorems 3 and 4, and also in later sections of this 
appendix. 

-+--<o---.-----b---- x A rigorous proof of the Mean Value Theorem is usually developed in the following way. 
a We begin by establishing the special case of the theorem in which the points P and Q 

Figure A.7 both lie on the x-axis: 

Theorem l (Rolle's Theorem* ) If a function f(x) is continuous on the closed inter
val a :s x :s b and differentiable in the open interval a < x < b, and if f(a) = f(b) = 

0, then there exists at least one number c between a and b with the property that 
J'(c) = 0. 

This theorem says that if a differentiable curve touches the x-axis at two points, then 
there must be at least one point on the curve between these points at which the tangent 
is horizontal (Fig. A.8) .  Equivalently, the zeros of a differentiable function are always sep
arated by zeros of its derivative. 

Economists have a maxim, "There is no such thing as a free lunch." For us-in the 
realm of pure mathematics-this means we cannot get something for nothing; or in other 
words, strong conclusions require strong hypotheses. The conclusion of Rolle's Theorem 
depends heavily on its hypotheses, and the following examples show that these hypothe
ses cannot be weakened without destroying the conclusion. 

Example 1 The function 

O :s x :s  I ,  
l :S x :S 2  

'Michel Rolle ( 1 652- 1 7 1 9) was an otherwise obscure French mathematician whose name is insepa
rably linked to one of the principal foundation stones of the theory of calculus. This is deliciously 
ironic, because, having studied the emerging subject and finding it unconvincing, he vigorously at
tacked it in the French Academy of Sciences as a bundle of ingenious fallacies. When his friends 
convinced him that things were not quite as bad as that, the opposition faction collapsed and the new 
analysis began a century of rapid and luxuriant growth in continental Europe. Rolle stated a poly
nomial version of his theorem in an almost-forgotten book on the algebra of solving equations ( 169 1 ). 
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Figure A.8 

(see Fig. A.9) is zero at x = 0 and x = 2 and is continuous on the closed interval 0 :S x :S Y 
2. It is differentiable in the open interval 0 < x < 2, except at the single point x = I ,  where 
the derivative does not exist. The derivative J'(x) is clearly not zero at any point in the in
terval, and this failure of the conclusion of Rolle's Theorem arises from the fact that the 
function fails to be differentiable at a single crucial point. 

Example 2 The function 

f(x) = { � O s x < l ,  
x = l 

(see Fig. A. I 0) is zero at x = 0 and x = I and is differentiable in the open interval 0 < 
x < I .  It is continuous on the closed interval 0 :S x :S I ,  except at the single point x = I .  
The derivative J'(x) i s  not zero at any point in the interval, and i n  this case the failure of 
the conclusion of Rolle's Theorem arises from the discontinuity of the function at a sin
gle point. 

Pmof <!l Theorem I By  Theorem 2 in Appendix A.3, our continuity hypothesis implies 
that f(x) assumes a maximum value M and a minimum value m on [a, b]. The fact that 
f (x) is zero at the endpoints a and b tells us that m :5 0 :S M. If f (x) is zero at every point 
of [a, b], then clearly J'(c) = 0 for every c in (a, b), and in this trivial case the conclu
sion is true. We may therefore suppose that the function assumes nonzero values, so ei
ther M > 0 or m < 0 (or perhaps both) . We first consider the case in which M > 0. If c 
is a point at whichf(c) = M, then a < c < b because the function is zero at the endpoints 
a and b. Since f(x) is differentiable in the open interval a < x < b, the derivative 

J'(c) = l im f(x) -f(c) 
x�c X - C 

( l )  

exists.* It is part o f  the meaning of ( 1 )  that this limit must exist and have the same value 
when x approaches c from the left and from the right. If x approaches c from the left, we 
have 

x - c < O  and f(x) - f(c) :S 0, 

where the second inequality follows from the fact thatf(c) = M is a maximum value. This 
implies that 

'Equation ( I )  is clearly an equivalent way of writing 

!'( ) = r f(c + Lil) -f(c) c .J�o Lil 
. 

0 

Figure A.9 

0 

Figure A.10 
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f'(c) = Jim f(x) -f(c) 
� 0. x--+c- X - C 

(2) 

Similarly, if x approaches c from the right, we have 

so 

x - c > O  and f(x) - f(c) :s 0, 

f'(c) = Jim f(x) -f(c) :s 0. x-+c+ X - C 
(3) 

We conclude from (2) and (3) thatf'(c) = 0, as asserted. If M = 0, then m < 0, and this 
case can be treated by a similar argument. 

Our main theorem can now be stated as follows (see Fig. A.7) . 

Theorem 2 (Mean Value Theorem) If a functionf(x) is continuous on the closed in
terval a :S x :s b and differentiable in the open interval a < x < b, then there exists at 
least one number c between a and b with the property that 

f'(c) = 
f(bi =�(a) . 

Proof It is easy to see that the equation of the chord joining P and Q in Fig. A.7 is 

The function 

y = f(a) + [f(b) - f(a) ]< x - a). b - a  

F(x) = f(x) - f(a) - [ f(bi =�(a) ] <x - a) 

(4) 

(5) 

is therefore the vertical distance from the chord up to the graph of y = f(x). It is easy to 
see that the function (5)  satisfies the hypotheses of Theorem 1 ,  so there exists a point c 
between a and b with the property that F'(c) = 0. But this is equivalent to 

f'(c) - f(bi =�(a) 
= 0, 

which in tum is equivalent to (4), so the proof is complete. 

We now consider some of the applications of this theorem. 
It is clear that the derivative of a constant function is zero. Is the converse true? 

That is, if the derivative of a function is zero on an interval, is the function necessarily 
constant on that interval? At the beginning of Section 5 .3 we encountered an important 
piece of reasoning about indefinite integrals in which this converse was needed, and 
we took it for granted. We are now in a position to prove it by using the Mean Value 
Theorem. 

Theorem 3 If a function f(x) is continuous on a closed interval /, and if J'(x) exists 
and is zero in the interior of/, then f (x) is constant on /. 

Proof To say that f (x) is constant on I means that it has only a single value there. To 
prove that this is the case, suppose it has two different values, say f(a) * f(b) for a < b 
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in /. Then the Mean Value Theorem implies that for some c between a and b we have 

j'(c) = f(bi =�(a) * 0. 

But this cannot be true, since f'(x) = 0 at all points in the interior of I. This contradiction 
shows that f(x) cannot have different values in /, and is therefore constant on /, as we 
wished to prove. 

At the beginning of Chapter 4 we based our work on curve sketching on the "intuitively 
obvious" fact that a function is increasing or decreasing according as its derivative is pos
itive or negative. The Mean Value Theorem makes it possible to give a rigorous proof of 
this. 

Theorem 4 Letf(x) be a function continuous on a closed interval I and differentiable 
in the interior of I. If J'(x) > 0 in the interior of I, then f(x) is increasing on I. Simi
larly, if J'(x) < 0 in the interior of I, then f(x) is decreasing on I. 

Proof We shall prove only the first statement, in which we assume thatf'(x) > 0 in the 
interior of I. For any two points a < b in /, the Mean Value Theorem tells us that 

f'(c) = f(b) - f(a) 
b - a  

for some c between a and b. Butf'(c) > 0, so the fraction on the right side of this equa
tion is positive. Since b - a is positive, it follows that f(b) - f(a) is also positive, so 
f(a) <f(b) and consequently f(x) is increasing on /. 

Finally, we use Rolle's Theorem to prove a technical extension of the Mean Value The
orem that is needed for establishing L'Hospital 's rule in Chapter 12 .  

Theorem S (Generalized Mean Value Theorem) Letf(x) and g(x) be  continuous on 
the closed interval a s x s b and differentiable in the open interval a < x < b, and as
sume further that g'(x) * 0 for a < x < b. Then there exists at least one number c be
tween a and b with the property that 

j'(c) f(b) - f(a) 
g'(c) 

= 

g(b) - g(a) · (6) 

Proof We begin by noticing that if g(a) = g(b), then by Rolle's Theorem g'(x) vanishes 
at some point between a and b, contrary to hypothesis. Therefore g(a) * g(b), and the 
right side of (6) makes sense. To prove the theorem, consider the function 

F(x) = [f(b) - f(a)] [g(x) - g(a)] - [f(x) - f(a)] [g(b) - g(a)] . 

It is easy to see that this function satisfies the hypotheses of Rolle's Theorem, so 
there exists a point c between a and b with the property that F'(c) = 0. But this is 
equivalent to 

[f(b) - f(a)]g'(c) - j'(c)[g(b) - g(a)] = 0, 

which is equivalent to (6). 

Students should notice that this theorem reduces to Theorem 2 if g(x) = x. 
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In Section 6.4 the definite integral of a function over an interval was defined by means 
of a complicated passage to the limit, as follows. 

We start with an arbitrary bounded functionf(x) defined on a closed interval [a, b]. We 
subdivide this interval into n equal or unequal subintervals by inserting n - 1 points of 
division X 1 , x2, . . .  , Xn- 1 .  so that 

a =  Xo < X1 < X2 < . . .  < Xn - 1  < Xn = b. 

These points are said to constitute a partition P of [a, b] into the subintervals 

[xo, xi ] ,  [X1 > x2] ,  . . .  , [Xn- 1 > Xnl ·  

( I ) 

If !!.xk = Xk - Xk- 1 is the length of the kth subinterval, then the length of the longest subin
terval is called the norm of the partition and is denoted by the symbol l lPl l . 

l lPl l  = max { !!.x1 , ih2, . . .  , ihn l · 
In each of the subintervals [xk- I · xk] we choose an arbitrary point xz. We now multiply 
the value of the function f (x) at the point xZ by the length !!.xk of the corresponding subin
terval and form the sum of these products as the subscript k varies from 1 to n, 

(2) 

For each positive integer n we consider all possible partitions ( I )  and all possible choices 
of the points xk, and therefore all possible values of the sum (2). If there exists a number 
I such that the sum (2) approaches I as n ---7 oo and l lPl l ---7 0, regardless of how the parti
tions P are formed and the points xZ are chosen, then we call this number I the definite 
integral (or briefly the integral) of f(x) on [a, b] and denote it by the symbol 

I =  r f(x) dx. 

Under these circumstances the function f(x) is said to be integrable on [a, b]. It is cus
tomary to express these ideas by writing 

lb n 
f(x) dx = Jim I f(x*,J !!.xk, 

a l lPll-->0 
k= I 

(3) 

where there is no need to specify that n ---700 because this is implied by the stronger con
dition l lPl l  ---7 0. 

As we said at the beginning, the limit operation in (3) is quite complicated and bears 
only a superficial resemblance to such straightforward limits as 

Jim (x2 + 1 )  = 5 
x-->2 and Jim (2 + l) = 2.  n�oo n 

In each of these cases we consider the behavior of a certain function in terms of the be
havior of an independent variable, but (3) does not lend itself to this way of thinking. We 
could try to use l lPl l as an independent variable, and describe the limit in terms of the idea 
expressed by the symbol l lP l l  ---7 0. But this is difficult, because the sum (2) is not a sin
gle-valued function of the quantity l lPl l ; to a given value of l lPl l there correspond an infi
nite number of different partitions P and an infinite number of ways of choosing the points 
xk, and therefore an infinite number of values of the sum (2). 

The complexity of the limit operation in (3) is a considerable inconvenience when it 
comes to giving rigorous proofs of theorems. The cumbersome notation required for such 
proofs forces the reasoning itself to be awkward and clumsy. For this reason, it is cus
tomary in modern treatments of the theory of integration to define the definite integral in 
a very different way, one which avoids appealing to any kind of passage to the limit. We 
now describe this more convenient approach and use it to prove our main theorem. 
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We therefore ignore our previous definition and begin all over again at the beginning, 
with an arbitrary bounded function f(x) defined on a closed interval [a, b] . Since f(x) is 
bounded, it has a greatest lower bound m and a least upper bound M. If P is any given 
partition of [a, b], we denote by mk and Mk the greatest lower bound and least upper bound 
ofj(x) on the kth subinterval [xk- J .  xkl .  (Iff(x) were assumed to be continuous on [a, b], 
then by Theorem 2 in Appendix A.3 the m's and M's would be minimum values and max
imum values of the function. But we are not assuming continuity at this stage, so we must 
work instead with greatest lower bounds and least upper bounds.) We now form the lower 
sum 

and the upper sum 
ll 

Sp = I Mk t:..xk. k= I 
I t  is obvious that sp :S Sp. Further, we have the important 

Lemma Every lower sum is less than or equal to every upper sum; that is, if P 1 and 
P2 are any two partitions of [a, b], then sp, :S Sp,. 

Proof It is east to see that if a single point is added to a partition, then the lower sum is 
unchanged or increases and the upper sum is unchanged or decreases; and the same is 
true if any finite number of points are added to produce a refinement of the given parti
tion. We now apply this fact to the new partition P3 which is formed from the points of 
P1 and P2 taken together. Since P3 is clearly a refinement of both P1 and P2, it follows 
that 

which completes the argument. 

Among other things, this lemma tells us that every upper sum is an upper bound for 
the set of all lower sums, and that every lower sum is a lower bound for the set of all up
per sums. We can therefore form the least upper bound of all possible lower sums, which 
is called the lower integral and denoted by 

l = J: f (x) dx. 

Similarly, the greatest lower bound of all upper sums is called the upper integral and de
noted by 

I = t f(x) dx. 

At this point we make a further application of the lemma to conclude that 

l :S I. 
Accordingly, every bounded function defined on a closed interval has a lower integral and 
an upper integral, and these two integrals are defined without making any appeal to the 
concept of a limit. If the lower and upper integrals coincide, then we call their common 
value the integral of f(x) on [a, b] and denote it by the usual symbol, 

I = I: f (x) dx; 

805 



806 THE THEORY OF CALCULUS 

and in this case the function f (x) is said to be integrable on [a, b]. On the other hand, it 
is quite possible to have l < l, in which case/(x) is not integrable. The function described 
in Remark 4 of Section 6.4 provides a good example of this recalcitrant behavior. 

We now come to our main theorem, which guarantees that most of the functions we 
meet in practice are integrable. First, a bit of new terminology that will be useful in the 
proof. If f(x) is a bounded function defined on an interval [a, b], and if m and M are its 
greatest lower bound and least upper bound on this interval, then the difference M - m 
is called the oscillation of f(x) on [a, b ] .  

Theorem If a function f (x) is continuous on a closed interval [a,  b] ,  then it  is inte
grable on [a, b]. 

Proof Consider a partition P of [a, b) into subintervals [Xk- I · xk], and form the lower 
and upper sums 

n 

Sp = L mk t:uk 
k= J  

The difference between these sums is 

and 

n 

Sp - Sp = L (Mk - mk) t:uk, 
k= J 

(4) 

where Mk - mk is the oscillation of f(x) on the kth subinterval [Xk- J ,  xk]. If we can show 
that the difference (4) can be made as small as we please by choosing a suitable partition 
P, then this will clearly be enough to prove the theorem. We accomplish this in the fol
lowing way. Let E be a given small positive number. If it can be shown that there exists 
a partition P such that the oscillation of the function is less than El(b - a) on every subin
terval, that is 

for k = l ,  2, . . . , n, 

then it will follow that 
n € n E Sp - Sp = L (Mk - mk) t:uk < -

b _ L t:uk = -
b _ (b - a) = E. 

k= 1 a k= 1 a 

Since E can be made as small as we please, this will complete the proof. 
We must therefore prove the existence of a partition P with the required property. If we 

simplify the notation by writing E1 = El(b - a), so that E1 is perceived as merely another 
positive number that can be made as small as we please, then this property of the parti
tion P can be stated as follows: The oscillation of the continuous function f (x) on every 
subinterval of the partition must be less than E1 .*  

We give an indirect proof, that is, we assume that for at least one number E1 > 0 no 
partition of the desired type exists, and we show that this assumption leads to a contra
diction. Let c be the midpoint of [a, b]. Then no partition of the desired type exists for at 
least one of the two subintervals [a, c] and [c, b],  for if each of these subintervals has 
such a partition, then the full interval [a, b] also has. Let [a1 ,  b i ]  be that half of [a, b) 
with no such partition; and if both halves have no such partition, let [a i ,  b i ]  be the left 
half, [a, c]. Now bisect [a1 , b i ] ,  and in the same way produce one of its halves, say 
[a2, b2], with no such partition; and continue the process indefinitely. We observe that the 

'This fact about a continuous function defined on a closed interval is usually referred to in the liter
ature as the Theorem on Uniform Continuity. 
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oscillation off (x) on the nth subinterval [an, bnl is at least i:-1 , and also that the length of 
this subinterval is (b - a)/2n. Let a0 be the least upper bound of the set of left endpoints 
a 1 , a2, a3, • . •  of this nested sequence of subintervals. Then a0 certainly lies in the inter
val [a, b] ; and by the continuity of f(x) at a0, there exists an interval (a0 - 8, a0 + 8) in 
which the oscillation off (x) is less than i:-1 . However, if n is large enough, the interval 
[an, bnl lies wholly within the interval (a0 - 8, a0 + 8), and therefore the oscillation of 
f (x) on [an, bnl must also be less than E i .  contradicting our previous inference that the os
cillation off (x) on [an, bnl is at least i:-1 • This contradiction finally concludes the proof of 
the theorem. 

If students wonder whether a discontinuous function can be integrable, the answer is 
Yes. The function whose graph is shown in Fig. A. I I provides an example of this asser
tion. It is defined on the closed interval [0, l ] ,  and its values are 

1 I - for 0 s x < -2 2 ' 

3 I 3 - for - s x < -4 2 4 ' 

7 3 7 - for - s x < -8 4 8 ' 

I for x = 1 . 

This function has an infinite number of points of discontinuity, but it also has the prop
erty of being nondecreasing, in the sense that x1 < x2 implies f(x1) :5 f (x2), and any such 
function is integrable on any closed interval [a, b] . Students are invited to prove this for 
themselves by noticing that in this case the difference (4) can be written as 

n 
Sp - sp = L (Mk - mk) tuk 

k= l 
n 

s l lPl l L (Mk - mk) = l lPi i [f(b) -f(a)]. 
k= I 

The set of all integrable functions can be characterized in a simple and absolutely precise 
way, but we do not pursue this matter any further here. 

y 

...r r-fl I 11 : : 1,' I I I : I I I I 
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807 

Figure A . 1 1  



808 

A. 6 
ANOTHER PROOF OF 

THE FUNDAMENTAL 
THEOREM OF 

CALCULUS 

A. 7 
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The proof given here uses the Mean Value Theorem established in Appendix A.4 and as
sumes that students understand the concepts developed in Appendix A.5. 

To set the stage for the argument, we consider a function f (x) that is continuous on a 
closed interval [a, b]. If F(x) is any function such that F'(x) = f(x), we must prove that 

r f(x) dx = F(b) - F(a). ( l )  

We accomplish this by showing that the number o n  the right of ( l )  lies between the lower 
sum and the upper sum associated with an arbitrary partition 

a = xo < X1 < Xz < · · · < Xn- 1 < Xn = b (2) 

of the interval [a, b] . 
The reasoning is as follows. The function F(x) satisfies the hypotheses of the Mean 

Value Theorem on each subinterval of the partition (2). This theorem therefore guaran
tees the existence of points x; , xi, . . .  , x� in these subintervals such that 

F(x1 )  - F(a) = F'(x;)(x1 - a) = f(x;) .:ix,, 
F(x2) - F(x1 ) = F'(xi )(x2 - x1 )  = f(xi) ilxz, 

F(b) - F(Xn- 1 ) = F'(x�)(b - Xn- 1 )  = f(x�) .:l.xn. 

If we add these equations and take advantage of the cancellations on the left, we get 
" 

F(b) - F(a) = L f(xk) !:uk. (3) 
k= I 

The right side of (3) clearly lies between the lower sum and the upper sum associated 
with the partition (2), so the proof is complete. 

In Section 7 .5 we introduced the concept of the length of a curve, and we suggested there 
that the theory of arc length is more complicated than it seems. We now offer a few fur
ther thoughts on this subject, with some examples to illustrate the bizarre situations that 
can arise. 

Let AB be the graph of a function y = f (x) that is continuous on a closed interval 
[a, b ] . We connect A and B by a broken line whose vertices lie on the graph and use this 
line to define the length of the curve, as follows. We partition the interval [a, b] into n 
subintervals by inserting n - l points x1, x2, . . .  , Xn- I• with xo = a and x,, = b, as shown 
in Fig. A. 1 2. Let Pk be the point (xk, Yk), where Yk = f (xk), and let Ln be the length of the 
inscribed polygonal line: 

Ln = AP1 + P1P2 + . . .  + Pn- 18. 

If for all partitions of [a, b ] -or equivalently, all choices of the points P1 , P2, . . .  , Pn- I 
-the set of lengths Ln is bounded, then the curve is said to be rectifiable and the least 
upper bound L of the set of Ln's is called the length of the curve. 

On the other hand, if the set of all lengths L,, is unbounded, then the curve is said to 
be nonrectifiable and has no length. Most of the continuous curves we encounter are rec
tifiable, but it is not true that every continuous curve has this property. Since this contra
dicts the intuitive preconceptions most people have about curves, we shall give an exam
ple below of a continuous curve that has no length. 

First, however, a bit of theory, which we hope will clarify the ideas. We begin by con
sidering the case of a curve that rises as we move along it from left to right; that is, we 
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assume that the continuous functionf(x) is increasing (Fig. A. 1 3). If we introduce the no
tation 

t:.yk = Yk - Yk- 1 ,  

then we see that 

and by adding we obtain 

Ln = AP1 + P1P2 + . . . + Pn- 18 < AC + CB. 

This upper bound is independent of the number and location of the points Pk. so the curve 
is rectifiable. A curve that falls  as we move from left to right-the graph of a decreasing 
function-is easily seen to be rectifiable in the same way. 

A curve that rises and falls a finite number of times is clearly rectifiable, because the 
sum of the bounds for the parts is a bound for the whole. This is equivalent to saying that 
the graph of y = f (x) is rectifiable if it has a finite number of local maxima and minima. 
Nonrectifiable curves must therefore be highly oscillatory, with an infinite number of wig
gles. 

It is convenient to express this idea in a more precise way. For a general curve the num
ber t:.yk can be positive or negative, but always 

lt:.Ykl < Pk- 1Pk $ t:.xk + it:.Ykl . 
and by adding we see that 

If the set of all sums on the left, that is, the numbers 

is bounded for all possible partitions of the interval [a, b], then the function y = f(x) is 
said to be of bounded variation on the interval . We see from this discussion that since 
Vn < Lm if the set of Ln's is bounded, then the set of Vn's is also bounded; and since 
L,, $ b - a + V,,, if the set of Vn's is bounded, then the set of Ln's is also bounded. We 
therefore have 
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Theorem 1 The graph of y = f(x) is rectifiable on an interval [a, b] if and only if 
f(x) is of bounded variation on this interval. 

If the set of Vn's is bounded, its least upper bound V is called the total variation of the 
functionf(x) on the interval [a, b]. V is a measure of the total amount of rising and falling 
of the graph. As examples, for the function y = x2 on -2 :5 x :5 3 we have V = 13, since 
the graph falls four units and rises nine units; and for y = cos x on 0 ::5 x ::5 27T we have 
V = 4. Each curve therefore has a length, but this length may be difficult to calculate. 

Our blanket assumption is that the function y = f (x) is continuous on the closed inter
val a ::5 x ::5 b. Let us now make the further assumption that f (x) has a derivative on the 
open interval a <  x < b. Then the Mean Value Theorem tells us (Fig. A. 1 4) that there ex
ists a point xk> Xk- I < xk < xk> with the property that 

f'(- ) = �Yk Xk �k ' 

so 

We can now prove 

Theorem 2 If y = f(x) has a bounded derivative on the open interval a < x < b, then 
its graph is rectifiable. 

The proof is easy: If IJ'(x) I ::5 M, then l�Ykl ::5 M�k and 

Vn = l�Yd + . . .  + l�Yn l 

::5 M(�1 + �2 + · · · + �n) 

= M(b - a). 

The function is therefore of bounded variation, and by Theorem I its graph is rectifiable. 

Now for some instructive examples. 

Example 1 Define y = f (x) on 0 :5 x :5 1 by {X COS 1T/X 
f(x) = 0 

if 0 < x :5 1 ,  
i f  x = 0. 

The graph of this function is shown in Fig. A. 1 5 ;  it clearly has an infinite number of wig
gles as it approaches its left endpoint. We take the points A, P1, . . .  , Pn- l •  B to be the 
points on the graph corresponding to x = 0, l ln, l l(n - 1 ), . . . , 1/2, 1 . We know that 

( 1 ) I ( - l )k f k = k cos k1T = -k-, 

so 

Vn = l�Y i l  + · · · + l�Y,,I 

= _!_ + (_!__ + -
1-) 

+ . . .  + (_!__ + _!_) + (_!_ + 1
)
. n n n - 1  3 2 2 

The right side of this is greater than the sum 

I 1 I 
l + - + - + · · · + -

2 3 n ·  
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It is known from the elementary theory of infinite series that these sums are unbounded 
as n increases. The function f(x) is therefore not of bounded variation, and by Theorem 
I its graph is not rectifiable. 

Example 2 We next consider a close relative of the function discussed in Example 1 .  
This time we define y = f(x) on the interval 0 � x � 1 by 

{x2 cos 7Tlx if 0 < x � I , f (x) = 0 if x = 0. 

The graph is shown in Fig. A . 16, and it also has a infinite number of wiggles. The deriv
ative of this function in the open interval is 

J'(x) = 7T sin 7T + 2x cos 7T. x x 

This derivative is easily seen to be bounded, 

lf'<x>I � 7T + 2, 

so by Theorem 2 its graph is rectifiable. Even though we know this curve has a length, 
the problem of finding its value is far beyond our capabilities. 

In this discussion we begin by defining e to be the limit 

e = lim ( 1 + ..!.)". 
n-....+oo n ( 1 )  

We then carefully extend this formula step b y  step until we reach the more general con
clusion that 

e = Jim ( 1  + h) 11h 
h-70 ' (2) 

where h is allowed to approach 0 in any manner whatever, through rational or irrational, 
positive or negative, values. 

Our first task is to prove the existence of the limit ( 1 ), and thereby to legitimize this 
definition of e. By the binomial theorem the quantity 

can be express. ' as the following sum of n + 1 terms, 

1 + n . _!_ + n(n_- 1) . J_ + n(n - l )(n - 2) . J_ + 
. . . 

+ J_ 
n 1 · 2 n2 1 · 2 · 3 n3 n" 

= 1 + 1 + -
1- ( 1 - _!_) + l ( 1 - .!.)( 1 _ l) + · · · + J_ .  (3) 1 · 2 n 1 · 2 · 3 n n n" 

As n increases, the number of terms in this sum increases, and also each term after the 
second increases. This shows that 

X1 < Xz < X3 < . . .  < Xn < Xn+ I  < . . .  · (4) 

Also, the expansion (3) tells us that 

Xn < l + l + G + I · 2 · 3 + . .
. 
+ 1 · 2 · 3 · · · n 

y 

/ 
/ 

A 

Figure A.16 

A. 8 

I 
I 

/ 

I 

I 
I 

I 
I 

THE EXISTENCE OF 
e = lim (1 + h)11h 

h�O 

8 1 1  

x 

B 



8 1 2  

A. 9  
FUNCTIONS THAT 

CANNOT B E  
INTEGRATED 

THE THEORY OF CALCULUS 

< l + l +  - + - + · · · + -- < 1 + 1 + 1 = 3 ( I I 1 ) 
2 22 2n- I ' 

since the expression in parentheses is part of the familiar geometric series 

I l 1 - + - + · · · + -- + · · · = l  
2 22 2n- I . 

(5) 

By (4) and (5) the x,,'s steadily increase but always remain < 3, so they necessarily ap
proach a limiting value. In the present context this limiting value is e by definition. This 
argument proves ( l ), and also we clearly have 

which will be needed below. 

( I )n+ I  e = Jim I + --1 , 
n�oo n + 

We next consider the limit (2) for the special case in which h is required to approach 
0 through positive values. When h < 1 ,  there exists a unique positive integer n such that 

This implies that 

1 n :S - < n + 1 .  
h 

which in turn can be written as 

[ I  + l/(n + l )Jn + I ( I )n( I ) < ( l  + h) l lh < l + -n I + -n . 
l + l /(n + l ) 

(6) 

As h -7 0, n ---7 oo and the first and third terms of the inequality (6) approach e. Since ( I  + 
h) 11h is caught between the two, it must have the same limit, and therefore (2) is proved 
for the case in which h -7 0 through positive values. 

We conclude our analysis by establishing (2) for the case in which h approaches 0 
through negative values. If we put h = -k, then 

( 1  + h) l lh = (1 - k)- l lk = (-'-) I lk 
l - k 

= ( I + _k ) Ilk = ( l + _k )( 1 -k)lk( l + _k ) 
1 - k 1 - k 1 - k 

by the result of the previous paragraph. 

---7 e · I = e, 

In spite of the many successes achieved by the methods of Chapter I 0, certain integrals 
have always resisted every attempt to express them in terms of elementary functions: for 
instance, 

J -x' d e x, 

J l�x '  

J ex - dx  
x ' 

J � dx, 
J cos x2 dx, 

J si: x 
dx. 

There are also the so-called elliptic integrals, of which 

and J dx 
Vl=7 
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are examples.* In the nineteenth century it was finally proved, by the great French math
ematician Liouville and his followers, that the problem of working out these integrals in 
terms of elementary functions is not merely difficult-it is actually impossible. 

The full depth of Liouville's ideas cannot be plumbed in a calculus course.t Neverthe
less, it is quite possible to gain some impression of how these ideas work without neces
sarily undertaking a long program of preliminary study.* 

Among other things, Liouville discovered and proved the following theorem: 

If f (x) and g(x) are rational functions and g(x) is not a constant, and if J f(x)eg(x) dx 
is an elementary function, then this integral must have the form 

J f (x)eg(x) dx = Reg(x) 

for some rational function R. 

We illustrate the value of this theorem by using it to prove that the integral 

( I )  

i s  not elementary (that is, cannot be expressed in terms of elementary functions). Sup
pose, on the contrary, that this integral is elementary. Then by Liouville's theorem we 
know that 

for some rational function R. But this means that 

or 

so 

_!_ = R + R'. (2) x 

Since R is rational, it can be written in the form R = PIQ, where P and Q are polynomi
als with no common factor. We know that 

so (2) becomes 

which is equivalent to 

or 

QP' - PQ' R' = �-_,,..�� 
Q2 

1 P QP' - PQ' - = - + �-��-x Q Q2 

Q2 = PQx + x(QP' - PQ') 

*In general, an elliptic integral is any integral of the form f R(x, y) dx, where R(x, y) is a rational 
function of the two variables x, y and where y is the square root of a polynomial of the third or fourth 
degree in x. The name elliptic integral is used because an integral of this type arises in the problem 
of finding the circumference of an ellipse. 

tLiouville's theory is expounded in full in the monograph by J. F. Ritt, Integration in Finite Terms 
(Columbia University Press, l 948). 
tsee D. G. Mead's article "Integration," Amer. Math. Monthly, 68 ( 1 96 1 ), pp. 152- 156. 

8 1 3  
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Q(Q - Px - P'x) = -PQ'x. (3) 

Our purpose is to deduce a contradiction from (3), and we proceed as follows. Let xn be 
the highest power of x that can be factored out of the polynomial Q, so that Q(x) = xnQ1 (x) 
where Q1 (x) is a polynomial such that Q1 (0) * 0. We first observe that n > O; for if 
n = 0, so that Q(O) i= 0, then x = 0 reduces the right side of (3) to zero but not the left 
side, which cannot happen because (3) is an identity in x. This implies two facts that we 
need in order to obtain our final contradiction. First, P(O) * 0, because P and Q have no 
common factor and therefore x cannot be a factor of P. Second, we have 

Q'(x) = xnQi(x) + nxn- IQi(x) 
= xn- l [xQ!(x) + nQi(x)]; 

and since the polynomial in brackets has a nonzero value when x = 0, we know that xn- I 

is the highest power of x that can be factored out of Q'. These two facts taken together 
tell us that x" is the highest power of x that can be factored out of the polynomial on the 
right side of (3), whereas xn+ 1 can be factored out of the left side. This contradiction 
brings us to the conclusion that (2) is impossible, so the integral ( 1 )  is not elementary. 

Remark I We know from our work in Section 6.7 that for any continuous integrand the 
definite integral 

F(x) = I: j(t) dt (4) 

exists and has the property that 

d 

dx 
F(x) = f (x). (5) 

Since (5) is equivalent to 

J f (x) dx = F(x), 

we see that the indefinite integral of every continuous function exists. However, this fact 
has nothing to do with the issue of whether the integral can be expressed in terms of the 
elementary functions. When such an expression is not possible, formula (4) can be thought 
of as providing a legitimate and sometimes useful method for creating new functions. For 
example, the nonelementary function of x defined by 

1 rx 
-- Jc e -r't2 dt \12; 0 

has important applications in the theory of probability, and for this reason it has been stud
ied and tabulated and has thereby acquired a certain status as a "known function." 

Remark 2 It is easy to see that the integral 

becomes f dt 

In t 

under the substitution t = ex; for x = In t, dx = dt/t, and therefore 

f £ dx = f -
t dt 

= f _E!_ x In t t In t · 

Since we know that the first integral is not elementary, it is clear that the second integral 
is also not elementary. This is worth noticing because the function of x defined by 

(x dt 
J2 In t (6) 
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NOTE ON LIOUVILLE 
Joseph Liouville ( 1 809-1882) was a highly 

respected professor at the College de France in Paris and the 
founder and editor of the Journal des Mathematiques Pures 
et Appliquees, a famous periodical that played an important 
role in French mathematical life through the latter part of 
the nineteenth century. For some reason, however, his own 
remarkable achievements as a creative mathematician have 
not received the appreciation they deserve. 

His theory of integrals of elementary functions as de
scribed above was perhaps the most original of all his 
achievements, for in it he proved that many familiar inte
grals are not merely difficult to work out, but actually im
possible. 

The fascinating and difficult theory of transcendental 
numbers is another important branch of mathematics that 
originated in Liouville's work. The irrationality of TT and e 
(that is, the fact that these numbers are not roots of any lin
ear equation ax + b = 0 whose coefficients are integers) had 
been proved in the eighteenth century by Lambert and Euler. 
In 1 844 Liouville showed that e is also not a root of any 
quadratic equation with integral coefficients. This led him 
to conjecture that e is transcendental, which means that it 
does not satisfy any polynomial equation 

anxn + an- 1Xn- 1 + · · · + a1x + ao = 0 

with integral coefficients. His efforts to prove this failed, but 

his ideas contributed to Hermite's success in 1 873 and then 
to Lindemann's 1882 proof that 7T is also transcendental. 
Lindemann's result showed at last that the age-old problem 
of squaring the circle by a ruler-and-compass construction 
is impossible. One of the great mathematical achievements 
of modem times was Gelfond's 1929 proof that e'TT is tran
scendental, but nothing is yet known about the nature of any 
of the numbers 7T + e, 7Te, or TT". Liouville also discovered 
a sufficient condition for transcendence and used it in 1851 
to produce the first examples of real numbers that are prov
ably transcendental. One of these is* 

- 1 1 1 1 �I lQn! = lQl + 1Q2 + 1Q6 + ' ' '  = 0. 1 1000100 . . . .  

His methods here have also led to extensive further work in 
the twentieth century. 

The ancient Greek philosopher-scientist Democritus said, 
"I would rather discover one cause than be King of Persia." 
What Liouville accomplished was certainly better than be
ing King of Persia, or being any king or political leader what
soever. He was a thinker whose work will live as long as 
people care about beautiful ideas. 

*For the details of this, see pp. 288-290 of the present writer's book, 
Calculus Gems (McGraw-Hill, 1992). 

is of great importance in the theory of prime numbers, and the behavior of this func
tion for large values of x has been studied exhaustively for more than a century.* [The 
lower limit of integration in (6) is chosen to be 2 in order to avoid the point t = 1 ,  where 
In t = O.] 

•see pp. 2-4 of H. M.  Edwards, Riemann's Zeta Function (Academic Press, 1 974). 

PROBLEMS 

1 Consider an integral of the form JR(sin x, cos x) dx, 
where the integrand is a rational function of sin x and 
cos x. Show that the substitution 

z = tan h 
converts this integral into the integral of a rational func
tion of z. which can then be worked out by routine pro
cedures. Hint: Show that 

1 sec2 - x = 1 + z2 2 ' 
( 1 ) 1 - z2 cos x = cos 2 2 x = I + z2 , 

. 2z sm x = 1 + z2 ' and dx = -2:!!!:._ 1 + z2 · 
2 Use the method of Problem I to find 

( ) J dx . (b) J sin x dx a 2 + cos x ' 2 + sin x · 
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3 Use the method of Problem I to find 
(a) J sec x dx; (b) J tan x dx. 
Express your answers in the usual form [i .e. , In (sec x + 
tan x) and -In (cos x)] . 

4 Use the method of Problem I to obtain the following 
formulas 

(a) J dx 
= J 2dz . 

a + b sin x az2 + 2bz + a '  

J dx 
(b) _a_+_b-si_n_x_+_c_c_o_s_x_ 

J 2dz 
= (a - c)z2 + 2bz + (a + c) ; 

J sin x dx J 4z dz 
(c) 1 + sin x 

= 
( I + z)2( 1 + z2) ; 

(d ) J cos x dx 
= J ( l  - z2) dz 

1 + cos x I + z2 . 

A rationalizing substitution is a change of variable that elim
inates radicals or fractional exponents. Find the following in
tegrals by using this idea. 

5 J ___!!!.____ . Hint: Put u = Vx. 
I + Vx 

6 f Vx + l --- dx. 
Vx - 1  

7 . Hint: Put u = v x. J dx . ,6/ 
Vx + Vx 

8 J 3Vx dx 
4( I + x314) '  

9 J Vx 
dx. IO J x213 

-
1
-- dx. 

l + x + x  

1 1  J � dx. 1 2  J dx 
I + Vx x( I - �) 

13  J Vx+2 dx. 1 4  J� dx. 
x + 3  

I S  The special ell iptic integral 

J du 
Y( l  - u2)( 1 - k2u2) 

is called the elliptic integral of the first kind. Show that 
each of the following integrals can be brought into this 
form by means of the indicated substitution: 

(a) J dx 
= J du , 

VI - k2 sin2 x Y( l - u2)( 1 - k2u2) 
u = sin x; 

(b) J dx = J du 
, u = sin x; 

Yeas 2x Y( l  - u2)( 1 - 2u2) 

(c) J � = 2 J du 
' � Y( I  - u2)( 1 - 2u2) 

. I 
u = sin 2 x; 

(d) J dx 
Vcos x - cos a 

Vlk J du 
Y( l  - u2)( 1 - k2u2) ' 

. 1 1 
u = sin 2 x and k = csc 2 a. 

16 Consider the integral in part (b) of Problem 1 5, 

J dx = f dx . 
Yeas 2x Yl - 2 sin2 x 

Show that the substitution u = tan x transforms this in
tegral into the special elliptic integral 

1 7  I f  p and q are rational numbers, show that the integral 

J xP( J - x)4 dx 

is elementary in each of the following cases: 
(a) p is an integer (hint: if q = min with n > 0, put 1 -

X = un) ;  
(b) q is an integer; 
(c) p + q is an integer [ hint: 

J xP( J - x)q dx = J xp+q ( 1 � xy dx J 
The Russian mathematician Chebyshev proved that these 
are the only cases for which the integral (*) is elemen
tary.t Accordingly, 

j Vx � dx, J Vx � dx, 

J Y/x - x2 dx 

are not elementary. 
1 8  Use the theorem of Chebyshev stated in Problem 17 to 

prove that each of the following integrals is not elemen
tary: 
(a) f� dx; 
(b) f� dx; 
(c) J� dx, where n is any integer > 2; 

tsee Ritt, p. 37. 
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J dx . . (d) 
, �

· where n 1s any mteger > 2. 
v 1 - x" 

(b) J sinP x dx, where p is a rational number, is elemen
tary if and only if p is an integer; 

19 Use Problem 17  to  prove that 
(a) J� dx is not elementary (hint: put u = sin2 x); 

(c) J sinP x cosq x dx, where p and q are rational num
bers, is elementary if and only if p or q is an odd in
teger or p + q is an even integer. 

In making the direct substitutions discussed in Section I 0.2, our procedure was to put 
u = g(x) where g(x) was part of the integrand. For this method to work, we had to have 
du = g'(x) dx as another part of the integrand, and this meant that altogether the integrand 
had to have a rather special form. 

A much more natural way to change the variable in an integral J f (x) dx is to introduce 
a new variable u by writing x = h(u) and dx = h'(u) du, where h(u) is some function that 
is suggested by the form of the integral. This means that if we translate the given integral 
from the x-notation to the u-notation by writing 

J f(x) dx = J f[h(u)]h'(u) du = J g(u) du, ( 1 )  

where g(u) = f[h(u)]h'(u), then we hope the integral o n  the right will be easy to calcu
late. In fact, if 

J g(u) du = G(u), (2) 

then we expect to have 

J f(x) dx = G[k(x)], (3) 

where u = k(x) is the inverse function of x = h(u).* This process is called inverse substi
tution. It is a very useful method, if we can find G(u) and if we know the inverse func
tion u = k(x) . These remarks constitute a general description of what is going on in the 
method of trigonometric substitutions. 

We can prove the validity of inverse substitution as follows. The point is this: In direct 
substitution as discussed in Section 1 0.2 we used the integral transformation ( I )  in the 
other direction, to calculate J g(u) du. We showed that if 

J f (x) dx = F(x), 

then 

J g(u) du = F[h(u)] .  

Thus, i n  the present context, where we  also have (2), i t  follows that 

F[h(u)] = G(u) + c 

for some constant c. But this says that 

F(x) = Gfk(x)] + c, 

and therefore G[k(x)] is an integral of /(x), as claimed in (3) . 
Even more, we can use the same method for dealing with definite integrals if the lim

its of integration are correctly changed; that is, 

*That is, u = k(x) is the result of solving x = h(u) for u in terms of x. The concept of an inverse func
tion is discussed in Remark 2 in Section 9.5. 
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A. 1 1  
PROOF OF THE 

PARTIAL FRACTIONS 
THEOREM 

THE THEORY OF CALCULUS 

r f (x) dx = r g(u) du, 

where c = k(a) and d = k(b). This can be established very easily by thinking of it in the 
other direction, as 

r g(u) du = r f (x) dx, 

where a = h(c) and b = h(d), because this second version was proved in Section 10.2. 

Our purpose here i s  to establish the validity of the partial fractions decomposition as stated 
in a piecemeal manner in Section 1 0.6. We are considering a rational function P(x)/Q(x), 
and we assume that Q(x) is a polynomial of degree n that is completely factored into real 
l inear and quadratic factors of various multiplicities. In the beginning we do not assume 
that P(x)/Q(x) is proper. This enables us to understand more clearly the significance of 
this assumption when it becomes necessary to make it. Our basic tool is the following 
lemma about the removal of a linear factor from the denominator. 

Lemma Let x - r be a linear factor of Q(x) of multiplicity 1 so that Q(x) = 
(x - r)Q1(x) with Q1 (r) * 0. Then P(x)/Q(x) can be written in the form 

P(x) 
Q(x) 

__ P_(_x_) _ = _A_ + _P_1(x_) 
(x - r)Q1 (x) x - r Q1 (x) ' ( 1 )  

where A is a constant and P1 (x) is a polynomial such that P1 (x)/Q1 (x) is a proper ra

tional function whenever P(x)IQ(x) is. The constant A can be calculated from either of 
the formulas 

(2) 

Proof We must find a suitable A and P1 (x), and we do this by letting ( I )  suggest what 
their definitions ought to be. With these definitions we then show that ( 1 )  is valid. 

By combining the fractions on the right side of ( 1 ) ,  we see that A and P1(x) must be 
chosen so that the numerators are identical, 

(3) 

Since this is to be an identity, it must hold in particular for x = r. This gives P(r) = 
AQ1 (r) + 0, so we put 

(4) 

This is a legitimate definition because Q1(r) * 0. Since 

Q(x) = (x - r)Qi(x) and Q'(x) = (x - r)Qf (x) + Q1 (x), 

we see that Q'(r) = Q1 (r), and this establishes the second formula for A stated in (2). Us
ing the formula for A given by (4), we now solve (3) for P1 (x), 

P(x) - [P(r)/Q1(r)]Qi(x) 
x - r  

1 P(x)Q1 (r) - P(r)Q1(x) = Q1 (r) x - r (5) 
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We adopt this as our definition of P1 (x). It may appear that this function is not a polyno
mial. However, the numerator of this fraction is clearly a polynomial that has the value 0 
for x = r, so by the factor theorem of algebra it has x - r as a factor. The common fac
tor x - r can now be canceled from the numerator and denominator, and we conclude that 
P1 (x) is indeed a polynomial. We now show that ( I )  is valid when A and P1 (x) are de
fined as they are above: 

A Pi(x) AQi(x) + (x - r)P1 (x) �� + �� = �������� 
x - r Q1 (x) (x - r)Q,(x) 

[P(r)/Q1 (r)]Qi(x) + [ l /Q1 (r)] [P(x)Q1 (r) - P(r)Qi (x)] 
(x - r)Qi (x) 

P(x) 

Finally, the statement that P1 (x)/Q1 (x) is proper whenever P(x)IQ(x) is proper follows from 
(3) by using the fact that the degree of Q 1 (x) is n - 1 ; for if the degree of P 1 (x) is 2: n -
1 ,  then (3) shows that the degree of P(x) is 2: n. 

This lemma enables us to do everything we wish with respect to splitting off partial 
fractions generated by linear factors of Q(x). At this stage we specifically assume that 
P(x)IQ(x) is proper, so that each time the lemma is applied the residual rational function 
P1 (x)/Q1 (x) will also be proper. 

We first observe that if Q(x) can be factored completely into distinct linear factors, so 
that 

then 

for we can remove the factors from the denominator one at a time in accordance with the 
lemma. At the last step the residual denominator is x - rn. and since the numerator is nec
essarily of lower degree, this numerator must be a constant. 

Suppose next that x - r is a linear factor of Q(x) of multiplicity m, so that Q(x) = 
(x - rrQ1 (x) with Q1 (r) =f. 0. To cope with this situation we apply the lemma repeatedly 
in a slightly different way. First, by ( 1 )  we have 

P(x) = � + P1 (x) . (x - r)Q1 (x) x - r Q 1 (x) 

Dividing through by x - r and applying ( 1 )  again yields 

P(x) Bm + P1(x) 
(x - r)2 (x - r)Qi (x) 

Bm + Bm- 1 + P2 (x)
_ (x - r)2 x - r Qi(x) 

By continuing in this way, we find in the end that 

P(x) = P(x) 
Q(x) (x - rrQ1 (x) 

Bm + . . . + � + Pm(x) 
(x - rr x - r Qi (x) 

= Pm(x) + __!!J_ + . . . + Bm . Qi(x) x - r (x - rr 

In this manner we strip off all the linear factors from the denominator of our proper ra
tional function P(x)IQ(x) and generate the corresponding partial fractions as described in 
Section 1 0.6. 

8 1 9  
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The rest of the proof requires an acquaintance with complex numbers, because the imag
inary zeros of a real polynomial come in conjugate pairs and this fact plays an essential 
role in the argument. Before we begin, it is necessary to observe that our fundamental 
lemma works in just the same way if the number r happens to be imaginary. 

Now suppose that x2 + bx + c is a quadratic factor of Q(x) of multiplicity 1 which is 
irreducible in the sense that b2 - 4c < 0, so that the roots r1 and r2 of the equation x2 + 
bx + c = 0 are conjugate complex numbers.* Then 

Q(x) = (x2 + bx + c)Q2(x) = (x - r1 )(x - r2)Q2(x), 

and by two applications of our lemma we can find constants A 1 and A2 and a polynomial 
P2(x) such that 

P(x) P(x) 
= � + � + Pi(x) . Q(x) (x - r1 )(x - r2)Q2(x) x - r1 x - r2 Q2(x) 

By using (2) we see that 

A _ P(ri) 
I - Q'(r1 ) 

and 

and these formulas imply that A1 and A2 are also conjugate complex numbers. By com
bining the corresponding partial fractions, we can now write 

P(x) (A1 + A2)x - (A 1 r2 + A2r1) P2(x) Ax + B P2(x) -- = + -- = + --Q(x) (x - r 1 )(x - r2) Q2(x) x2 + bx + c Q2(x) ' 

where the numbers A =  A 1 + A2 and B = - (A 1r2 + A2r1 )  are real because ri , r2 and 
A1 , A1 are conjugate pairs of complex numbers. Also, we know from the last ex
pression that P2(x) is a real polynomial. If the factor x2 + bx + c occurs with multi
plicity m > 1 ,  then we s imply remove it over and over in the way used above with 
repeated linear factors. This produces exactly the partial fractions decomposition described 
in Section 1 0.6. 

When these procedures have been applied to each of the real linear and quadratic fac
tors of Q(x), and all the corresponding partial fractions have been stripped away, then there 
is nothing left of Q(x), the decomposition is complete, and the partial fractions theorem 
is fully proved. 

Up to this point we have said nothing about uniqueness, but it is worth remarking 
that a proper rational function can be decomposed into partial fractions in only one 
way. This will follow at once from our overall discussion if we can show in the lemma 
that the expansion ( 1 )  is unique. But this is easy; for if we assume two forms for this 
expansion, 

then we have 

A P1(x) B P2(x) 
-- + -- = -- + -
x - r Q1 (x) x - r  Qi (x) ' 

By letting x -7 r, we see from this that B = A, so A in ( 1 )  is unique; and this implies that 
P1 (x) in ( 1 )  is also unique. 

'If x2 + bx + c were not irreducible, it would already have been factored into real linear factors in 
the "complete" factorization of Q(x) previously mentioned. 
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The convergence tests we discuss in this appendix are more delicate than the ratio test 
and enable us to arrive at a definite conclusion for many series with the property that 
an+ 1 /an � 1 from below. We begin with the following general theorem of Kummer.* 

Theorem I Assume that an > 0, bn > 0, and l l lbn diverges. If 

. (b an+ I b ) hm n - --;;: · n+ 1 = L, 

then lan converges if l > 0 and diverges if L < 0. 

Proof' If L > 0, then 

for all n ::::: some n0, so 

( 1 )  

for these n's. This shows that { anbn } i s  a decreasing sequence of positive numbers for 
n 2: no, so K = Jim anbn exists. It i s  now clear that L':=n0(anbn - an+ 1 bn + 1 )  is a conver
gent telescopic series (with sum an,bno - K), so by ( I )  and the comparison test we con
clude that "Lha11 converges, and therefore Lan also converges. 

Next, if L < 0 we have 

for all n ::::: some n0, so { anbn } is an increasing sequence of positive numbers for these 
n's .  It follows that 

or 

for n 2: n0, so La11 diverges because L l lbn diverges. 

Students will observe that if we take bn = 1 in Kummer's theorem, we obtain the ratio 
test. As another application we deduce Raabe's test. t 

Theorem 2 If an > 0 and 

*The German mathematician Ernst Eduard Kummer ( 1 8 10-1893) is remembered mainly for his work 
on the arithmetic of algebraic number fields, by means of which he proved Fermat's last theorem for 
many prime exponents. He also contributed to geometry (the entity known as Kummer's surface was 
much later found by Eddington to be related to Dirac's theory of the electron) and extended Gauss's 
work on hypergeometric series. He was a good-humored and rather easygoing man with a ready (and 
sometimes racy) wit. He taught at Breslau until 1 855, when the death of Gauss dislocated the math
ematical map of Europe. Dirichlet succeeded Gauss at Gottingen, and Kummer replaced Dirichlet at 
Berlin. 

t Joseph Ludwig Raabe ( 1 80 1- 1 859) was born of poor parents in Galicia and studied in Vienna. When 
cholera swept that city in 1 83 1  he moved to Ziirich. In 1 833 the Austrian embassy in Bern demanded 
that the government in Ziirich return Raabe to Austria, because he had broken Austrian law by tak
ing a position with the University of Ziirich. This ludicrous demand was very sensibly ignored, and 
Raabe spent the rest of his life in various posts at the University. He was a man of unusual modesty 
and was considered a very gifted teacher. He is now known only for the convergence test discussed 
here, but he also worked on the summation of series, on systems of linear differential equations, and 
on the problem of the motion of the center of gravity of the planets. 
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a,.+ 1 = l _ � + An 
an n n 

where An -7 0, then La,. converges if A > l and diverges if A < 1 .  

Proof Take bn = n i n  Kummer's theorem. Then 

lim ( bn - a�: 1 • bn+ 1 ) = lim [ n - ( 1 - � + �n ) (n + I )] 

= lim [- l + A(n 
n
+ 1) _ An(n

n
+ I ) ] 

= A - 1 ,  

(2) 

and by Kummer's theorem it follows that Lan converges if A > 1 and diverges if A < 1 .  

For practical purposes, i t  i s  worth noting that Raabe's test can b e  formulated more con
veniently as follows: If an > 0 and 

I . ( l an+ l ) - A 1m n - -- -an 
, (3) 

then �a11 converges if A > 1 and diverges if A < I . To prove this, it suffices to express 
(3) in the equivalent form 

n ( I - a�: 1 ) = A - An 

where A11 -7 0, since (4) is merely another way of writing (2) . 

Example 1 If we apply the ratio test to the series 

(4) 

1 1 · 3 1 · 3 · 5 1 · 3 · 5 · · · (2n - 1 )  
(5) - + -- + + · · · +  + · · - ,  2 2 · 4 2 · 4 · 6 2 · 4 · 6 · · · (2n) 

then we find that 

1 · 3 · 5 · · · (2n - 1 )(2n + 1 )  
2 · 4 · · · (2n)(2n + 2)  

2n + 1 = 2n + 2 -7 1 from below, 

2 · 4 · · · (2n) 
1 · 3 · · · (2n - 1 )  

so the test fails. however 

n ( 1 - �) = n ( 1 -
2n + l ) = -n- --? l_ 

an 2n + 2 2n + 2 2 ' 

so (5) diverges by Raabe's test. 

Example 2 Now consider the related series in which each term i s  squared, 

- + -- + + · · · +  + · · ·  [ l ]2 [ 1 · 3 ]2 
[ 1 · 3 · 5 ]2 [ 1 · 3 · 5 · · · (2n - 1) 

]2 2 2 · 4 2 · 4 · 6 2 · 4 · 6 · · · (2n) · 

Here we see that 

an+ 1 (2n + 1 )2 

---;,:- = (2n + 2)2 -7 1 from below� 

so the ratio test fails again. Furthermore, we also have 

(6) 
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n ( l _ 
an+ I ) = n ( l _ 

4n2 + 4n + I ) = 4n2 + 3n 
� 1 

an 4n2 + 8n + 4 4n2 + 8n + 4 ' 
so even Raabe's test fails in this case 

When A = 1 in Raabe's test, we turn to Gauss 's test. 

Theorem 3 If an > 0 and 
an+ l = l - .1. + � 
an n nl +c 

where c > 0 and An is bounded as n � =, then 2:an converges if A > 1 and diverges 
ifA :S I . 

Proof If A =F I ,  the statement follows from Raabe's test, since Anlnc � 0. We therefore 
confine our attention to the case A = I .  Take bn = n In n in Kummer's theorem. Then 

Jim (bn - a�: 1 · bn+ 1) = Jim [ n ln n - ( 1 - � + n��c ) (n + 1 )  In (n + 1 )] 

= Jim [n In n - (n2 - 1) ln (n + 1 )  - (n + 1) . An In (n + l ) ] 
n n nc 

= Jim [n In (-n-) + In (n + 1 )  
_ 

(n + 1) . An In (n + 1) ] 
n + l n n � 

= - 1 + 0 - 0 = - 1 , 
and the divergence of the series in this case is a consequence of Kummer's theorem. 

Gauss actually expressed his test in a specialized form adapted to series in which an+ 1/an 
is a quotient of two polynomials having the same term of highest degree. This version is 
also known as Gauss's test. 

Theorem 4 If an > 0 and 

an+ I  nk + ank- 1 + . . .  
an nk + {3nk- I + . . . ' 

then 2:an converges if f3 - a > 1 and diverges if f3 - a :S 1 . 

Proof If the quotient on the right of (7) is worked out by long division, we get 

an+ 1 = l _ 
f3 - a + An 

an n n2 ' 

where An is a quotient of the form 

ynk-2 + . . . 
nk-2 + . . . 

(7) 

and is therefore clearly bounded as n � =. The statement now follows from Theorem 3 
with c = 1 .  

Example 3 For a simple application we consider the series (6), for which Raabe's test 
failed. Here we have 

an+ 1 4n2 + 4n + 1 
an 4n2 + 8n + 4 

n2 + n + + 
n2 + 2n + 1 ' 

so {3 - a = 2 - 1 = 1 and the series diverges by Gauss's test. 
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PROBLEMS 

Show that 

THE THEORY OF CALCULUS 

Example 4 Gauss's original purpose in devising his test was to study the important hypergeometric series 

when x = 1 :  
1 + � a(a + I ) · · · (a + n - l )b(b + 1 ) · · · (b + n - 1) x" L n!c (c + 1 )  · · · (c + n - 1 )  n= I (8) 

1 + � + a(a + l )b(b + 1) + . . .  1 · c I · 2c(c + 1 ) 
a(a + I ) ·  · · (a + n - l )b(b + I ) · · · ( b + n - l ) + + . . . . (9) n!c(c + 1 )  · · · (c + n - 1 )  

Here w e  assume that none of the constants a, b, c is zero or a negative integer. This con
dition on a and b keeps the series from terminating, while that on c avoids division by 
zero. The ratio 

an+ I (a + n)(b + n) 
an (n + l )(c + n) 

n2 + (a + b) n + ab n2 + (c + l )n + c 
is positive for all sufficiently large n, so the terms of (9) ultimately have the same sign. 
Any such series can be treated by Gauss's test (or the ratio test, or Raabe's test); and since 
in this case f3 - a = (c + I )  - (a + b), we see that (9) converges if c > a + b and di
verges if c :s a + b. 

The hypergeometric series (8) is extremely interesting and versatile, and is capable of 
representing virtually every function that occurs in elementary analysis.* Here we confine 
ourselves to remarking that when a = 1 and b = c it reduces to the ordinary geometric 
series -hence its name. 

*See Problem I on p. 203 of the present writer's book, Differential Equations, 2nd ed. (McGraw
Hill, 1 99 1 ). 

00 2 · 4 · 6 · · · (2n) . � [ 1 · 3 · 5 · · · (2n - I )  ]3 n�I 2 · 4 · 6 · · · (2n) 
(d) I s . 1 . 9 . . . c2n + 3) , n = I  

converges. More generally, let k be a n  arbitrary positive 
integer and show that 

� [ 1 · 3 · 5 · · · (2n - I )  ]k n�I 2 · 4 · 6 · · · (2n) 
converges if k > 2 and diverges if k :s 2. 

2 Determine the convergence behavior of the following series: 
00 l · 3 · 5 · · · (2n - 1 ) . 

(a) L 4 · 6 · 8 · · · (2n + 2) ' n= I  
2 · 7 · 1 2 · · · (5n - 3 )  . (b) n�I 6 · 1 1  · 1 6 · · · (5n + I ) ' 

� 2 · 4 · 6 · · · (2n) 
(c) n�I 3 · 5 · 7 · · · (2n + 1) ; 

(e) I I · 3 · 5 · · · (2n - 1 )  
n= I  2 · 4 · 6 . . ' (2n) n 

3 Find the positive integers k for which the following series 
converge :  

(a) . � [ 2 · 4 · 6 · · · (2n) ]k n�I 3 · 5 · 7 · · · (2n + I ) ' 

(b) . � [ 2 · 4 · 6 · · · (2n) ]k ,�1 5 · 7 · 9 · · · (2n + 3) ' 

� 1 · 3 · 5 · · · (2n - 1 ) 
(c) L 2 · 4 · 6 · · · (2n) . nk · n=I 
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4 Determine the values of a and b (where neither is zero or 
a negative integer) for which the following series con
verge: 

(b) E._ + a(a + 2) + . . .  
b b(b + 2) 

825 

a a(a + I )  (a) - + + . . .  
a(a + 2) · · · (a + 2n - 2) + b(b + 2) · · · (b + 2n - 2) + · · . · 

b b(b + 1 )  

a(a + I )  · · · (a + n - 1 )  
+ + . . .  ; b(b + I )  · · · (b + n - 1 )  

We begin with two simple examples: 

and 

� + I I I I L (- l )n I - = ] - - + - - - + . . .  
n= l  n 2 3 4 

� + I I 1 I I <- 1r ' - = 1 - - + - - - +  · · · 
n= I n2 22 32 42 . 

( 1 )  

(2) 

As we saw in Section 1 3 .8, there is an important distinction between these series. By the 
alternating series test, each is convergent as it stands. However, if we change the signs of 
all the negative terms-that is, if we replace each term by its absolute value-then the 
series become 

and 

� 1 I I I I - = I + - + - + - +  . . .  
n= I n 2 3 4 

� 1 1 1 I L - = I + - + - + - +  . . . . 
n= I n2 22 32 42 , 

and the first of these altered series now diverges, while the second still converges. 
It was this phenomenon that led us in Section 1 3 . 8  to make the following definition: A 

series Lan is said to be absolutely convergent if Lian! converges.Thus, (2) is absolutely 
convergent but ( I )  is not. The careful reader will notice that this definition in itself says 
nothing about the convergence of Lan . However, we proved in Section 1 3 .8 that absolute 
convergence does indeed imply ordinary convergence. 

The series ( I )  shows that the converse of this theorem is false, that is, convergence does 
not imply absolute convergence. Absolute convergence is therefore a stronger property 
than ordinary convergence, and we shall see that absolutely convergent series have sev
eral important properties which they do not share with convergent series in general . This 
brings us to another definition that was given but not pursued very far in Section 13 .8 :  A 
series that is convergent but not absolutely convergent is said to be conditionally conver
gent. Our present purpose is to establish some of the general properties of absolutely con
vergent series, and also to emphasize the sharp contrast between these series and those 
which are only conditionally convergent. For instance, we shall see that rearranging the 
terms of an absolutely convergent series has no effect on its behavior or its sum, but that 
rearranging a conditionally convergent series can have a drastic effect. 

It is convenient to begin this program by considering an arbitrary series La,, and defin
ing p,, and qn by 

la,, I + a,, Pn = 2 
and (3) 

It is clear that p,, = a,, and qn = 0 if an > 0, and that Pn = 0 and qn = -an if an < 0. Ac
cordingly, if the given series is a mixture of positive and negative terms, then we can think 

A. 1 3 
ABSOLUTE VS . 
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of Lp11 as consisting of the positive terms of Lan, and of Lqn as consisting of the nega
tives of its negative terms. This is not quite correct because many Pn's and q11's can be 
zero, but it does provide a point of view which is useful for understanding the following 
theorems. 

Theorem 1 Consider a series Lan and define p,, and qn by (3) . If Lan converges con
ditionally, then LPn and Lqn both diverge; and if Lan converges absolutely, then LPn 
and Lqn both converge and the sums of these series are related by the equation Lan = 
LPn - Lqn. 

Proof It is clear from (3) that an = Pn - qn and la11I = Pn + qn. Our basic tools are these 
equations and the fact that convergent series can be added or subtracted term by term. 

To prove the first statement, we assume that Lan converges and L lanl diverges. If Lqn 
converges, then the equation Pn = an + qn tells us that LPn must also converge. Similarly, 
if LPn converges, the equation q11 = Pn - an tells us that Lqn also converges. Thus, if ei
ther LPn or Lq11 converges, both must converge; and in this case the equation lanl = Pn + 
qn implies that L lanl converges-contrary to the assumption. This proves that the condi
tional convergence of Lan implies that Lp11 and Lqn both diverge. To establish the second 
statement, we assume that Lla11 I converges. We know that Lan also converges, so equa
tions (3) imply that LPn and Lq11 both converge. It follows from this that 

L Pn - L q,, = L (pn - qn) = L an, 

and the proof is complete. 

The first part of this theorem is illustrated by the conditionally convergent series ( l ) ,  
in  which LPn and Lqn are the divergent series 

l 1 
l + O + - + O + - + · · ·  

3 5 
and I 1 

O + - + O + - + · · ·  
2 4 

. 

In the case of the absolutely convergent series (2), LPn and Lqn are 

1 l 
l + 0 + - + 0 + - + · · ·  

32 52 and 
1 1 

O + - + O + - + · · ·  
22 42 , 

both of which are convergent. B riefly, Theorem 1 tells us that the convergence of an ab
solutely convergent series is due to the smallness of its terms, while that of a condition
ally convergent series is due not only to the smallness of its terms but also to cancella
tions between its positive and negative terms. 

In the last paragraph of Section 1 3 .5 we proved a theorem about rearranging a conver
gent series of nonnegative terms. We now extend this theorem to the case of absolutely 
convergent series. 

Theorem 2 If Lan is an absolutely convergent series with sum s, and if the an' s are 
rearranged in any way to form a new series Lbm then this new series is also absolutely 
convergent with sum s. 

Proof The series Lia11I is convergent and consists of nonnegative terms. Since the bn 's 
are just the a,,'s in a different order, it follows from the theorem just mentioned that Llb11I 
also converges, and therefore Lb11 is absolutely convergent. If Lbn = t, then Theorem 1 
allows us to write 

(4) 

and 
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(5) 

where each of the constituent series on the right is convergent and consists of nonnega
tive terms. But the Pn's and Qn's are simply the Pn 's and q/s in a different order, so by 
another application of the theorem in Section 1 3.5 we have 2.Pn = 2.pn and LQn = Lqn. 
The fact that t = s now follows at once from (4) and (5). 

This theorem was proved in 1 837 by Dirichlet, who discovered the phenomenon dis
cussed in Problem 10 of Section 1 3 .4 and was the first to understand the significance of 
absolutely convergent series. 

In striking contrast to the behavior of absolutely convergent series as stated in Theo
rem 2, we find that the sum of a conditionally convergent series depends in an essential 
way on the order of its terms, and that the value of this sum can be changed at will by a 
suitable rearrangement of these terms. This fact was discovered and proved in 1 854 by 
the great German mathematician Riemann, and is known as Riemann 's rearrangement 
theorem. It can be formulated as follows. 

Theorem 3 Let Lan be a conditionally convergent series. Then its terms can be re
arranged to yield a convergent series whose sum is an arbitrary preassigned number, 
or a series that diverges to oo, or a series that diverges to - oo . 

Proof The idea of the proof is surprisingly simple. We begin by using Theorem 1 to 
form the two divergent series of nonnegative terms LPn and Lqn. 

To establish the first statement, let s be any number and construct a rearrangement of 
the given series as follows. Start by writing down p's in order until the partial sum 

P1 + P2 + · · · + Pn1 
is first 2: s; next, continue with -q's until the total partial sum 

Pl + P2 + . . . + Pn1 - q1 - q2 - . . . - qm, 
is first s s; then continue with p's until the total partial sum 

Pl + · · · + Pn1 - q1 - · · · - qm, + Pn1+ l + · · · + Pnz 

is first 2: s; and so on. The possibility of each of these steps is guaranteed by the diver
gence of LPn and Lqn; and the resulting rearrangement of Lan converges to s because 
Pn -7 0 and qn � 0. 

In order to make the rearrangement diverge to oo, it suffices to write down enough p 's 
to yield 

P1 + P2 + · · · + Pn, 2: 1 ,  

then to insert -q1,  then to continue with p's until 

Pl + · ' · + Pn1 - q, + Pn1+ l + · · · + Pnz 2: 2, 
then to insert -q2, and so on. We can produce divergence to -oo by a similar construc
tion. 

One of the principal applications of Theorem 2 relates to the multiplication of series. 
In this connection it is notationally convenient to index the terms of the series we con
sider by n = 0, 1 ,  2, . . . .  If we multiply two series 

ao + a1 + · · · + an + · · · and ho + b1 + · · · + bn + · · · (6) 

by forming all possible products a;bj (as in the case of finite sums), then we obtain the 
following doubly infinite array: 
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(7) 

There are many ways of arranging these products into a single infinite series, of which 
two are important. The first is to group them by diagonals ,  as indicated by the arrows: 

aobo + (aob1 + a 1bo) + (aob2 + a1b 1  + azbo) + · · · . (8) 

This series can be defined as 2:;;'=o Cn, where 

It is called the product (or sometimes the Cauchy product) of the two series (6), and is 
particularly useful in working with power series. 

A second method of arranging (7) into a series is by squares, as suggested by the bro
ken lines: 

aobo + (aob 1  + a1b1 + a1 bo) + (aob2 + a1b2 + azb2 + a2b1 + a2bo) + · · · . (9) 

The advantage of this arrangement is that the nth partial sum Sn of (9) is given by 

( 1 0) 

and this is useful in proving a preliminary fact about the multiplication of series. 

Theorem 4 If the two series (6) have nonnegative terms and converge to s and t, then 
their product (8) converges to st. 

Proo( It is clear from ( 1 0) that (9) converges to st. Now denote the series (8) and (9) 
without parentheses by (8') and (9'). The series (9') of nonnegative terms still converges 
to st; for if m is an integer such that n2 :s m :s (n + 1 )2, then the mth partial sum of (9') 
lies between Sn - I and Sm and both of these converge to st. By Theorem 2, the terms of 
(9') can be rearranged to yield (8') without changing the sum st; and when parentheses 
are suitably inserted, we see that (8) converges to st. 

The force of this result can best be appreciated by observing that the product of the 
convergent series 

i (- l )n 
= 

_l _ _ _ l_ + _1 _ _ . . . 
n=O Vn+I VJ \/2 \/3 

( I I )  

with itself does not converge at all. We ask students to convince themselves of this in 
Problem 9. 

We now extend Theorem 4 to the case of absolutely convergent series . 

Theorem 5 If the series 2:;;'=o an and L;;'=o bn are absolutely convergent, with sums s 
and t, then their product 

� 

L (aobn + a 1bn- 1 + · · · anbo) = aobo + (aob1 + a 1bo) + (aob2 + a 1b i + a2bo) + · · · 
n=O 

+ (aobn + a 1bn- I + · · · + anbo) + · · · ( 1 2) 

is also absolutely convergent, with sum st. 
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Proof The series 2:;;'=o lanl and 2:;;'=o lbn l are convergent and have nonnegative terms, so 
by the proof of Theorem 4 we see that the series 

laol lbol + laol lbd + la 1 l lbol 
+ laol lb2I + lad lb 1 I + la2l lbol + · · · 
+ laol lbnl + lad lbn- i l  + · · · + Ian l lbol + · · · 

= laobol + laobd + Ja ,bol 
+ laob2I + la 1b i l  + la2bol + · · · 

+ laobnl + Ja1bn - d  + · · · + lanbol + · · · ( 1 3) 

converges, and therefore 

aobo + aob1 + a1bo + · · · + aobn + · · · + anbo + · · · ( 14) 

is absolutely convergent. It follows from Theorem 2 that the sum of ( 14) will not change 
if we rearrange its terms and write it as 

aobo + aob 1 + a , b , + a 1bo 
( 1 5) 

We now observe that the sum of the first (n + 1 )2 terms of ( 1 5) is (ao + a 1  + · · · + 
an)(bo + b1 + · · · + bn), so it is clear that ( 1 5), and with it ( 14), converges to st. Since 
( 1 2) is obtained by suitably inserting parentheses in ( 1 4), we see that ( 1 2) also converges 
to st. All that remains is to show that ( 1 2) converges absolutely; but this follows by the 
comparison test from the inequality 

laobn + a 1bn- 1  + · · · + Gnbol ::S lao bnl + la 1bn- i l  + · · · + lanbo l 
and the fact that the series 

laobol + (Jaob i l  + la 1 bol) + · · · 

+ ( laobnl + la 1bn- i l  + · · · + lanbol) + · · · , 
obtained from ( 1 3) by inserting parentheses, is convergent. 

This theorem shows that the absolute convergence of both of the given series is a suf
ficient condition for the convergence of their product to st. It is an interesting fact that 
this conclusion can also be obtained from the weaker hypothesis that only one of the two 
series is absolutely convergent (the example following Theorem 4 shows that the product 
of two conditionally convergent series need not converge at all !) .  A proof of this result is 
outlined in Problem 10 . 

PROBLEMS 

(c) 1 - t - ± + f - t - t + · · · = t In 2 ;  
(d ) 1 - t - t - t - t + t - -fo - -A- - ft -

-ft + . . .  = 0. 

829 

1 Use the formula 1 + t + · · · + 1 /n = In n + y + o( l )  
to establish the validity of the stated sums of the fol
lowing rearrangements of the series 1 - t + f - ± + 
· · · = In 2: 
(a) 1 + f + t - t -

(b) I + f + t - t -
- t + · · · = In 2; 
+ · · · = t In 6; 

2 A series 2'.an is sometimes said to be unconditionally 
convergent if it converges and every rearrangement con-
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verges to the same sum. Show that 2:an converges un
conditionally if and only if it converges absolutely. 

3 If 2:an is absolutely convergent, prove that 2:an2 con
verges. 

4 If a1 + a2 + a3 + a4 + · · · is absolutely converg
ent, prove that a 1  + a2 + a3 + a4 + · · · = (a1 + 
a3 + · · · ) + (a2 + a4 + · · · ). Is this necessarily true 
for any convergent series? 

5 Let 2:a" be a convergent series with sum s. If 2:bn is a 
rearrangement in which no term of the first series is 
moved more than n0 places from its original position, 
prove that 2:bn still converges to s. 

6 What is the sum of 

I + t - t + t - t + t - t + · · · ? 

*7 Prove that the series 

1 - t + t - t + · · · = In 2 

converges to In 2vpiq if its terms are rearranged by 
writing the first p positive terms, then the first q nega
tive terms, then the next p positive terms, then the next 
q negative terms, etc. 

*8 We know that the harmonic series 1 + t + ± + t + 
· · · diverges but the alternating harmonic series I -
t + ± - t + · · · converges .  
(a) Show that I + t - ± + t + t - i + + - · · · di

verges. 
(b) If the signs are changed in the harmonic series in 

such a way that p positive signs are followed by q 
negative signs, then p positive signs by q negative 

signs, etc., show that the resulting series diverges if 
p -:f. q and converges if p = q. 

9 Show that the product of the series ( I  I )  with itself di
verges. 

*10 If 2:;;'=o an and 2:;;'=o bn converge to s and t, and if 
2:;;'=0 an converges absolutely, prove that their product 

I (aobn + a1bn- 1 + · · · + anbo) 
n=O 

converges to st (this result is known as Mertens ' theo
remt). Hint: Put Sn = ao + · · · + an, tn = bo + · · · + 
bm and <Xn = tn - t; show that the nth partial sum of the 
product can be written as 

and prove that if f3n is defined by 

then f3n -7 0. 

tFranz Mertens ( 1 840-1927) was born in  Poland, studied at Berlin 
under Kummer and Kronecker, and taught at Cracow, Graz, and Vi
enna. He retained extraordinary vigor of mind and body to an ad
vanced age, and wrote the last of his more than 100 research papers 
at the age of 86. His main interest was analytic number theory, where 
he was a master in the use of elementary methods to simplify diffi
cult proofs. H e  discovered the theorem given here in connection with 
his success (after Euler had failed ) in proving the convergence of the 
series L (:±:: llpn), where the Pn

's are the primes and the signs are + 
or - according as Pn is of the form 4n + 1 or 4n + 3. 

A. 1 4  
With one exception, all of our convergence tests in Chapter 1 3  are tests that apply only 
to series of positive (or nonnegative) terms; that is, they are tests for absolute convergence. 
This exception is the alternating series test, which says that the series 

DIRICHLET'S TEST ( I )  

converges i f  the bn ' s  form a decreasing sequence of positive numbers and bn -7 0 .  We can 
think of ( I )  as generated by multiplying the terms of the series 1 - 1 + 1 - 1 + · · · by 
the terms of the sequence bi ,  b2, b3, b4, . . . . From this point of view it is natural (and 
profitable) to generalize by considering a series 

a1 + a2 + · · · + a,, + · · · 
and sequence 

and the problem is to find conditions under which the series 

a1b1 + a2b2 + · · · + anbn + · · · 

(2) 

(3) 

(4) 
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converges. It is obvious that if (2) is absolutely convergent and (3) i s  bounded, then (4) 
is also absolutely convergent. Our purpose here, however, is to obtain criteria for the con
vergence of (4) that are not merely tests for absolute convergence. 

To accomplish this, we need Abel's partial summation formula: If Sn = a 1 + a2 + 
· · · + an, then 

a1b1 + a1b2 + · · · + anbn = s1 (b1 - bz) + s2(b2 - b3) + · · · 

+ Sn- i (bn- 1 - bn) + Snbn. (5) 

The proof is  easy. Since a 1 = s1 and an = Sn - Sn- l for n > 1 , we have 

a 1b1 = s1b1 
a1b2 = s2b2 - s1b2 
a3b3 = s3b3 - s2b3 

On adding these equations and suitably grouping the terms on the right, we obtain (5).This 
result enables us to establish Dirichlet's test. 

Theorem 1 If the series (2) has bounded partial sums, and if (3) is a decreasing se
quence of positive numbers such that bn --7 0, then the series (4) converges. 

(6) 

where 

Tn = s, (b1 - b1) + s2(b2 - b3) + . . .  + Sn- I (bn- l - bn). 
We must prove that lim Sn exists, and we do this by showing that lim Tn and lim snbn both 
exist. Our first assumption says that there is a constant M such that isn l :s M for every n, 
so lsnbnl :S Mbn; and since bn --7 0, we conclude that snbn --7 0. Next, Tn is the (n - l )st 
partial sum of the series 

(7) 

so Jim Tn will certainly exist if (7) converges. To establish this, it suffices to show that (7) 
is absolutely convergent. We now use the assumption that the bn's are positive and de
creasing, which yields 

ls1 (b1 - b1)J + Js2(b2 - b3) J + · · · + lsn- 1 (bn- 1 - bn) J 

:S M(b1 - b1) + M(b2 - b3) + . . . + M(bn- 1 - bn) 
= M(b1 - bn) :s Mbi . 

This implies that (7) is absolutely convergent, and the proof is complete. 

In order to make effective use of Dirichlet's test, we must be acquainted with a few se
ries having bounded partial sums. Naturally, all convergent series have this property, but 
many that are divergent also have it. Perhaps the simplest is 1 - 1 + 1 - 1 + · · · ; and 
from this we see at once that the alternating series test is an immediate consequence of 
Theorem 1 .  

8 3 1 
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Dirichlet's test is particularly useful in demonstrating the convergence of certain trigono
metric series, and here we encounter some further series that do not converge but never
theless have bounded partial sums. 

As an example, we show that if x is any number =fa k1r, where k = 0, :!:: I, :!:: 2, . . .  , 
then the series 

cos 3x cos Sx cos (2n - I )x 
cos x + --- + --- + . . .  + + . . . 

3 5 2n - l 
(8) 

converges. Here the b11's can be taken as I ,  +, t, . . . , so i t  suffices to prove that the par
tial sums of 

cos x + cos 3x + cos Sx + · · · + cos (2n - l )x + · · · 
are bounded. To do this, we use the trigonometric identity 

2 cos a sin b = sin (a + b) - sin (a - b). 

By putting b = x and a =  x, 3x, Sx, . . .  , (2n - l )x, we obtain 

2 cos x sin x = sin 2x  - 0 

2 cos 3x sin x = sin 4x - sin 2x 

2 cos Sx sin x = sin 6x - sin 4x 

2 cos (2n - I )x sin x = sin 2nx - sin(2n - 2)x; 

and adding yields 

2 sin x[cos x + cos 3x + · · · + cos (2n - I )x] = sin 2nx 

or 

cos x + cos 3x + · · · + cos (2n - l )x = 
sin 

.
2nx

. 2 Sm X 
But lsin 2nx l :s I ,  so 

I !cos x + cos 3x + · · · + cos (2n - l )xl :'.S -
2
-1 -. -1 . Sm X 

(9) 

( 10) 

This proves that the partial sums of (9) are bounded, so (8) converges. It should now be 
apparent why we assumed that x =fa k1r: We must have sin x =fa 0 in ( 1 0) .  Actually, of course, 
it is obvious that (8) diverges if x = k1r. 

1 Let p be a positive constant. It is clear from the discus
sion in the text that 

2 sin a sin b = cos (a - b) - cos (a + b) 

cos 3x cos Sx cos x + --- + --- + . . .  
3P 5" 

converges for every x * k1r; and when x = k'Tr, the series 
converges if p > 1 and diverges if p :s 1 .  Use the identity 

to show that 

. sin 3x sin Sx 
sm x + --- + --- + · · · 

3P 5" 

converges for all x. 



2 Prove the identities 

2 sin f (sin x + sin 2x + · · · + sin nx) 

and 

x (2n + l )x 
= cos 2 - cos 2 

. x 2 sm 2 (cos x + cos 2x + · · · + cos nx) 
. (2n + l )x . x = sin 2 - sm 2· 

Let b1 , b2, . . .  , b,,, . . .  be a decreasing sequence of posi
tive numbers such that b,, � 0, and use these identities to 
show that 
(a) L;;"= 1 b,, sin nx converges for all x; 
(b) L;;"= 1 b,, cos nx converges for all x * 2k7r. 

3 Investigate the convergence behavior of 

cos 3x cos 6x cos 9x -
2
- + -

3
- + -

4
- + · · · . 

4 Show that the following series converge: 

1 I I I I 1 I I + - - - - - + - + - - - - - + . . .  2 3 4 5 6 7  8 , 

,� lAJ 
NOTE ON DIRICHLET 

. 

M P. G. L. Diri<hlot ( 1 805-1 859) w" ' Gec
man mathematician who made many contributions of last
ing value to analysis and number theory. One of his earliest 
achievements was a milestone in analysis: In 1 829 he gave 
the first satisfactory proof that certain specific types of func
tions are actually the sums of their Fourier series. Previous 
work in this field had consisted wholly of the uncritical ma
nipulation of formulas; Dirichlet transformed the subject 
into genuine mathematics in the modem sense. As a by-prod
uct of this research, he also contributed greatly to the cor
rect understanding of the nature of a function, and gave the 
definition which is now most often used, namely, that y is a 
function of x when to each value of x in a given interval 
there corresponds a unique value of y. He added that it does 
not matter whether y depends on x according to some "for
mula" or "law" or "mathematical operation," and he em
phasized this by giving the example of the function of x 
which has the value 1 for all rational x's and the value 0 for 
all irrational x' s. 

A. 1 4  D IRICHLET'S TEST 8 3 3  

I 1 1 1 1 I -- + -- - -- - -- + -- + -- - . . .  
In 2 In 3 In 4 In 5 In 6 In 7 ' 

and 

3 4  3 2 3  4 3 2 
- - - + - - - + - - - + - - - + · · ·  

1 2  3 4 5  6 7 8 . 

5 A series of the form L;;"= 1 a,,lnx is called a Dirichlet se
ries. If it converges for x = x0, show that it also converges 
for every x > xo. 

6 Prove Abel 's test: If the series (2) converges and (3) is a 
bounded increasing or decreasing sequence, then the se
ries (4) also converges. (Note the relation of this statement 
to Dirichlet's test-more is assumed about the series, but 
less about the sequence. It is almost certain that Abel knew 
Dirichlet's test.) 

7 Use Abel 's test to show that the following series con
verge: 
(a) cos I + t cos t - t cos t + t cos ± + t cos t -

± cos t + . . . ; 
3 4 5 6 7 (b) 2 + 22 - 32 - 42 + 52 + 62" - . . . . 

g If La11 converges, so do La,,ln, La,,lln n, La,, cos l ln, 
La,, sin l ln, L ( l  + l ln)a,,, L( l + l ln)"a,,, and LVn an. 
Why? 

Perhaps his greatest works were two long memoirs of 
1 837 and 1 839 in which he made very remarkable applica
tions of analysis to the theory of numbers. It was in the first 
of these that he proved his wonderful theorem that there are 
an infinite number of primes in any arithmetic progression 
of the form a + nb, where a and b are positive integers with 
no common factor. His discoveries about absolutely con
vergent series also appeared in 1837. His convergence test, 
discussed above, was published posthumously in his Lec
tures on Number Theory ( 1 863). These lectures went through 
many editions and had a very wide influence. 

In later life Dirichlet became a friend and disciple of 
Gauss, and also a friend and advisor of Riemann, whom he 
helped in a small way with his doctoral dissertation. In 1855, 
after lecturing at Berlin for many years, he succeeded Gauss 
in the professorship at Gottingen. 
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Consider a power series La,,.xn with positive radius of convergence R, and letf(x) be its 
sum. Our purpose here is to prove that f(x) is continuous and differentiable on (-R, R), 
and also that its derivative and integral can legitimately be calculated by differentiating 
and integrating the series term by term. 

Let Sn(x) be the nth partial sum of the series, so that 

Sn(x) = ao + a1x + a2x2 + · · · + a,,.xn. 
We write 

f (x) = Sn(x) + Rn(x) 
and call Rn(x) the remainder. Evidently, 

For each x in the interval of convergence, we know that Rn(x) -7 0 as n -7 oo; that is, for 
any given e > 0 we have 

IRn(x)I < e for sufficiently large n, n 2: no. ( 1 )  

We emphasize here that this is true for each x individually, and i s  merely an equivalent 
way of expressing the fact that 2'.a,,.xn converges to f(x). However, much more can be said: 
Throughout any given closed interval inside the interval of convergence, say lxl s lx1 I < R, ( 1 )  holds for all x simultaneously. Since Rn(x) = f(x) - Sn (x), we can express this in 
another way by saying that throughout the given closed interval, Sn(x) can be made to ap
proximate f(x) as closely as we please by taking n large enough. 

To prove this, we observe that for every x in the given closed interval lxl s lxd < R, 
we have 

S lan + lxn+l l + lan+2xn+2J + . . .  
S lan+ tXtn+ l J + lan+2X1n+2I + · · · · 

The argument is completed by using the fact that the last-written sum can be made < e 
by taking n large enough, n 2: n0, because of the absolute convergence of La,,.x1n. The 
point is, that the same n0 works for all x's in the given closed interval. The conclusion 
proved here, that Rn(x) can be made small independently of x in the given closed interval, is expressed by saying that the seri.es is uniformly convergent in this interval. 

CONTINUITY OF THE SUM 

We will prove that f(x) is continuous at each interior point x0 of the interval of conver
gence. Consider a closed subinterval lxl s lxd < R containing x0 in its interior. If e > 0 
is given, then by uniform convergence we can find an n with the property that IRn(x)I < 
e for all x's i n  the subinterval. S ince the polynomial Sn(x) is continuous at x0, we can find 
8 > 0 so small that Ix - xol < 8 implies x lies in the subinterval and ISn(x) - Sho)I < e. 
By putting these conditions together we find that Ix - x01 < 8 implies 

IJ(x) -f(xo) I = l lSn(x ) + Rn(x)] - [Sn(xo) + Rn(xo)J I 
= l lSn(x) - Sn(xo)J + Rn(x) - Rn(xo) I 
:S ISn(x) - Sn(xo) I + IRnCx)I + IRho)J 
< € + € + € = 3€. 

Since 3e can be taken as small as we please, this proves thatf(x) is continuous at x0. 



A. 1 5  UNIFORM CONVERGENCE FOR POWER SERIES 

INTEGRATING TERM BY TERM 

We have just proved that 

(2) 

is continuous on (-R, R). We can therefore integrate this function between limits a and 
b that lie inside the interval, 

J: f (x) dx = J: ( LanXn) dx. (3) 

Our purpose here is to show that the right side of this can legitimately be integrated term 
by term, 

In words, the integral of the sum equals the sum of the integrals. An equivalent statement 
is that (3) can be written as 

(4) 

To prove this, we begin by observing that since Sn(x) is a polynomial, and therefore 
continuous everywhere, all three of the functions in 

f (x) = Sn(x) + Rn(x) 

are continuous on (-R, R). This allows us to write 

J: f (x) dx = J: Sn(x) dx + J: Rn(x) dx. (5) 

Since any polynomial can be integrated term by term, the first integral on the right of 
(5) is 

= J: ao dx + J: a1x dx + J: a2x2 dx + · · · + J: anXn dx. 

To prove ( 4 ), it therefore suffices to show that 

J: Rn(x) dx � 0 as n � oo. 

For this we use uniform convergence, which tells us that if E > 0 is given and lxl s lxd < 
R is a closed subinterval of (-R, R) that contains both a and b, then IRn(x) I < E for all x 
in the subinterval if n is large enough. All that remains is to write 

and to notice that this can be made as small as we wish. 
As a special case of (4) we take the limits 0 and x instead of a and b, and obtain 

J: f(t) dt = I n ! l anxn+ I 

1 1 I = aQX + - a1x2 + - a2x3 + · · · + -- anXn+ l + · · · (6) 2 3 n + I ' 
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where the "dummy variable" t is used in the integral for the reason explained in Sec
tion 6.7. 

DIFFERENTIATING TERM BY TERM 

We now prove that the function f(x) in (2) is not only continuous but also differentiable, 
and that its derivative can be calculated by differentiating (2) term by term, 

J'(x) = I,na,,xn- l . (7) 

To do this, we begin by recalling from Section 14.3 that the series on the right of (7) con
verges on ( -R, R). If we denote its sum by g(x), so that 

g(x) = I,na,,xn- l = a l +  2a2x + 3aµ2 + · · · + na,,xn- l + · · · , 
then (6) tells us that 

= f(x) - ao. 

Since the left side of this has a derivative, so does the right side, and by differentiating 
we obtain 

as required. 

In order to justify the division of power series as described in Section 14.7, it suffices to 
justify dividing a power series into 1 .  To see this, we have only to notice that 

Lanxn 
_ L n . (-1 -) · 

Lbnxn - ( anX ) Lbnx" , 

for this tells us that if we can expand l l(Lb,,x") in a power series with positive radius of 
convergence, then we can achieve our purpose by multiplying this series by Lanxn. It i s  
clearly necessary to assume that bo =t- 0 (why?). We may assume that bo = 1 without any 
loss of generality, because if b0 has any other nonzero value, we simply factor it out, leav
ing the leading coefficient equal to 1 :  

In view o f  these remarks, we direct our efforts a t  proving the following statement: 

If Lb,,xn has bo = 1 and positive radius of convergence R, then l /(Lb11xn) can be ex
panded in a power series LC,,X" which also has positive radius of convergence. 

We begin by determining the c11's. The condition l/(Lb,,x") = LC,,X" means that 
(Lb,,xn)(Lc11x11) = 1, so 

boco + (boc 1 + b1co)x + (boc2 + b1c1 + b2co)x2 

+ · · · + (bocn + b1Cn- 1 + · · · + bnco)x" + · · · = 1 , 
and therefore 
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boco = 1 ,  

bocn + b1 Cn- 1 + · · · + bnco = 0, . . . .  

Since b0 = 1 ,  these equations determine the en's recursively: 

c0 = I , 

All that remains is to prove that the power series 2:cn.xn with these coefficients has pos
itive radius of convergence, and for this it suffices to show that the series converges for 
at least one nonzero x. This we now do. 

Let r be any number such that 0 < r < R, so that 2:bnrn converges. Then there exists a 
constant K 2: 1 with the property that Jb,.rnl ::::; K or Jbn l ::::; Kirn for all n. It now follows 
that 

JcoJ = 1 ::::; K, 

K K K 2K2 
icz l ::::; Jb1c i l  + Jb2col ::::; - · - + - · K = -, 

r r r2 r2 

K3 4K3 22K3 
$ (2 + 1 + 1 )  -3 = -3 = -3-, r r r 

since K2 < K3. In general, 

Jeni :::=; Jb 1Cn- i J  + Jb2Cn-2 J + · · · + JbncoJ 

K 2n-2Kn- 1 K 211-JK"-2 K $ - · + - ·  + · · · + - · K  r rn- 1 r2 rn-2 rn 

We therefore have JcnxnJ ::::; J(2K/r)x I ", so the series 2:cnxn is absolutely convergent-and 
therefore convergent-for any x that satisfies the condition Jxl < r/2K. This shows that 
2:cnxn has nonzero radius of convergence, and the argument is complete. 

We shall prove that 

f xy(xo, Yo) = fyx(xo, Yo) , ( 1 )  

under the assumption that both mixed partials f xy and hx exist at all points near (x0, y0) 
and are continuous at (xo, Yo). 

Let Lil and !1y be so small thatfxy andfyx exist throughout the rectangle with vertices 
(xo, Yo), (xo + Lil, Yo) , (xo, Yo + 11y), (xo + Lil, Yo + /1y)(see Fig. A. 1 7) .  We carry out the 
proof by applying the Mean Value Theorem (Appendix A.4) in various ways to the ex
pression 

D = f(xo + !1x, Yo + 11y) - f(xo + Lil, Yo) - f(xo, Yo + 11y) + f(xo, Yo) . (2) 

We begin by considering the function 

F(x) = f(x, Yo + /1y) - f(x, Yo), 

A. 1 7 
THE EQUALITY OF 
MIXED PARTIAL 
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(xo + t.x, Yo + t.y) 

I 
: (x2 . Y2 )  

(Xo , Y 2 )  � - - - - - - - , - - - --- - - - --
! 
I 
• (X1 , y l ) 
I 
I 
L <xo ,  Yo l ----------------

(x 1 ,  Yo ) (xo + t.x, yo ) 

where Ay is held fixed. The expression (2) can be written in the form 

D = [J(xo + llx, Yo + Ay) - f(xo + llx, Yo)] - [f(xo, Yo + Ay) - f(xo, Yo)] 

= F(xo + llx) - F(xo), 

so by applying the Mean Value Theorem we obtain 

D = llx F'(x 1 )  

= llx[jx(x, , Yo + Ay) - fx(x, , Yo)] , 

where x1 is some number between xo and xo + llx. Since fx(x1 ,  y) is differentiable as a 
function of y, we can apply the Mean Value Theorem again to obtain 

D = llx Ay fxy(x, ,  y,) , 

where y1 l ies between Yo and Yo + Ay. 
We now start all over again with the function 

G(y) = f(xo + llx, y) - f(xo, y), 

where llx is held fixed. The expression (2) can be written in the form 

D = [f(xo + llx, Yo + Ay) - f(xo, Yo + Ay)] - [f(xo + llx, Yo) -f(xo, Yo)] 

= G(y0 + Ay) - G(yo). 

Just as before, by two applications of the Mean Value Theorem we find that 

D = Ay G'( y2) = Ay[fy(xo + llx, Y2) - Jy(xo, Y2)] 

= Ay llx fyxCx2, Y2), 

where y2 lies between Yo and y0 + Ay and x2 lies between x0 and x0 + Ax. 
Finally, by equating (3) and (4) we see that 

f xy(X1 ,  Y 1 )  = fyx(X2, Y2) .  

(3) 

(4) 

(5) 

Now let Ax and Ay approach zero, so that the rectangle shrinks toward the point (x0, y0). 
As this happens, it is clear that the points (x 1 ,  y 1 )  and (x2, y2), which lie inside the rec
tangle, approach (x0, y0), and we obtain our conclusion ( 1 )  from (5) and the continuity of 
fxy andfyx at (xo, Yo) .  

In  Problems 32 in Section 19.2 and 1 9  in Section 1 9.6, we used the formula 

d (b (b 
dx Ja J(x, y) dy = Ja Jx(x, y) dy. ( 1 )  

Our purpose here is to prove this under the assumption thatf(x, y )  and its partial deriva
tivefx(x, y) are both continuous functions on the closed rectangle x0 :s x :s xi ,  a :s y :s b. 

It is convenient to write 



A. 1 9  A PROOF OF THE FUNDAMENTAL LEMMA 

F(x) = r f(x, y) dy. 

If x and x + Ax both lie in the interval x0 :s x :s x1 ,  then 

F(x + Ax) - F(x) = J: f(x + Ax, y) dy - J: f(x, y) dy 

= J: [f(x + Ax, y) - f(x, y)] dy. 

Next, the Mean Value Theorem enables us to write this integrand in the form 

f(x + Ax, y) - f(x, y) = Ax fx(x, y), 

where x lies between x and x + Ax. Further, sincefx(x, y) i s  assumed to be continuous on 
the closed rectangle, it can be shown that the absolute value of the difference 

fxCx, y) -Jh, y) 
is less than a positive number E which is independent of x and y and approaches zero with 
Ax.* By putting these ingredients together, we obtain 

I F(x + Ax) - F(x) (b I I (b _ I Ax - Ja fx(x, y) dy = Ja Ux(X, y) - fx(x, y)] dy 

:s J: lfxCx, y) -fx(x, y) I dy 

< I: € dy = E(b - a). 

If we now let Ax approach zero, then E also approaches zero, and we have 

which is ( 1 ). 

I " F(x + Ax) - F(x) 
= (b , ( ) d J�o Ax Ja Jx X, Y y, 

This lemma is stated and discussed in Section 19.4, and is the linchpin that holds together 
the main tools of Chapter 1 9. It has to do with a function z = f(x, y) whose partial de
rivativesfx andfy exist at (xo, y0) and at all nearby points, and are continuous at the point 
(x0, y0) itself. The assertion of the lemma is that under these conditions the increment 

Az = f(xo + Ax, Yo + Ay) - f(xo, Yo) 
can be expressed in the form 

Az = fx(xo, Yo) Ax + fy(xo, Yo) Ay + E1 Ax + E2 Ay, ( I )  

where E1 and E2 are quantities that � 0 as Ax and Ay � 0. 
To prove this statement, we analyze the change Az in  two steps, as shown in Fig. A. 1 8, 

first changing x alone and moving from (x0, y0) to (x0 + Ax, y0), and then changing y 
alone and moving from (x0 + Ax, y0) to (x0 + Ax, y0 + Ay). We denote the first change 
in z by A1z, so that 

A1z = f(xo + Ax, Yo) - f(xo, Yo) .  

By the Mean Value Theorem we can write this as 

*This is the two-dimensional analog of the property of uniform continuity that we discussed and 
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y 
(x0 + Ax, Yo + .:iy) 

.:iy 

Ax 

proved in Appendix A.5. Figure A. 18 
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(2) 

where x1 is between x0 and x0 + ilx. Similarly, if we denote the second part of the change 
in z by d2z, so that 

d2Z = f(xo + ilx, Yo + dy) -f(xo + ilx, Yo), 
then 

(3) 

where y1 i s  between Yo and Yo + �y. As Llx and �y � 0, xi -7 xo and Yi �  Yo· By the as
sumed continuity of fx and fy at (xo, Yo), we can therefore write 

fx(X1 ,  Yo) = fx(xo, Yo) +  Et 
and 

fy(xo + ilx, Yi) = fy(xo, Yo) +  e2, 
where e1 and e2 � 0 as ilx and �y � 0. This permits us to write (2) and (3) as 

d1z = fx(xo, Yo)Llx + Et ilx 
and 

(4) 

(5) 

Since dz = �1z + �2z, we now complete the proof by adding (4) and (5) to obtain ( 1 ) . 

We stated and discussed the Implicit Function Theorem in Section 1 9  . 10, and our purpose 
here is to provide a proof. 

To restate the situation, we assume that F(x, y) has continuous partial derivatives 
throughout some neighborhood of a point Po = (x0, y0), and also that F(x0, y0) = c and 
Fy(x0, y0) * 0. We shall prove that there exists a rectangle centered on P0 within which 
the graph of F(x, y) = c is the graph of a single differentiable function y = f(x), and also 
that the derivative of this function is given by the formula 

dy = _ Fx 
dx Fy . ( I )  

First, we  know from the Fundamental Lemma (Section 1 9.4) that since F has continu
ous partial derivatives in the neighborhood mentioned above, F itself is continuous in this 
neighborhood. 

Let us suppose, for definiteness, that Fy > 0 at P0. (A similar proof can be constructed 
if Fy < 0 at P0.) We observe that if Fy > 0 along a vertical segment, then F is an in
creasing function of y along that segment. It follows that no value of F (such as F = c, 
in which we are interested ) can be taken on more than once on such a segment. 

We begin by constructing a rectangle Ro centered on Po within and on the boundary of 
which F and Fy are continuous and Fy > 0. This is possible because of the continuity of 
the functions. Along any vertical segment across Ro the function F is an increasing func
tion of y. By the Intermediate Value Theorem (Appendix A.3) we have F = c on this seg
ment if and only if f < c at the lower end and F > c at the upper end. Consider, for ex
ample, the vertical segment P1P2 through P0• Since F = c at P0, we have F < c at P1 ,  
and by  continuity we have F < c in some neighborhood of P1 on  the lower edge o f  R0. 
Similarly, we have F > c in some neighborhood of P2 on the upper edge of R0. A verti
cal segment close enough to P1P2 will have its ends in both neighborhoods and will there
fore intersect the graph of F = c in exactly one point. 
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It is evident from this that we can shrink the base of R0, if necessary, to form a new 
rectangle R centered on Po such that F < c on its lower edge and F > c on its upper edge. 
See Fig. A. 19 .  Inside this rectangle there is one y that corresponds to each x in such a 
way that F(x, y) = c, and this defines our function y = f(x). It is clear that this function 
is continuous, because the height of Ro can be taken as small as we please to begin with. 

To establish differentiability and formula ( 1 ), we consider a change ax and the corre
sponding change ily = f(x0 + .ix) - f(x0). Since the new point (xo + ax, y0 + iiy) is still 
on the graph of F(x, y) = c, we have 

F(xo, Yo) = c and F(xo + .ix, Yo +  iiy) = c, 
But the Fundamental Lemma gives 

iiF = Fx ax + Fy iiy + €1 ax + E2 ily, 

where e1 , e2 � 0 as <ix and ily � 0, and therefore 

or 

ily = _ Fx + E1 
ax Fy + e2 · 

so iiF = 0. 

(2) 

We know that y = f(x) is continuous. If <ix �  0, it therefore follows that ily � 0, so e1 ,  
e2 � 0 and (2) implies that y = f(x) is differentiable with derivative given by ( ! ). Finally, 
this proof of differentiability applies in just the same way to any other point on the graph 
inside the rectangle R. 

Our basic tools for integrating in polar, cylindrical, and spherical coordinates are the for
mulas 

dA = r dr d8, dV=  r dr d(j dz, and dV= p2 sin <P dp d¢ d8, ( 1 )  

for the elements of area and volume i n  these three coordinate systems. However, the jus
tifications we gave in Chapter 20 were purely intuitive and geometric. Our purpose in this 
brief final appendix is to describe a broader theoretical setting within which these for
mulas can be understood as merely different aspects of a single idea. 

The problem that we now consider is the following: What happens to a multiple inte
gral 

JI . . .  J f<x. y, . . .  ) dx dy . . . 
R 

if we change the variables from x, y, . . . to u, v, . . . ? 
We know the answer to this question in the case of a single variable: If f(x) is contin

uous and the function x = x(u) has a continuous derivative, then 

(b (d dx 
Ja f(x) dx = Jc f[x(u)] du du, (2) 

where a = x(c) and b = x(d). As an example of the use of this formula, we point out that 
the trigonometric substitution x = sin 8, dx = cos 8 d(j enables us to write 

( I , ;.----:; { 7T/2 { 7T/2 1 7T 
Jo v 1 - x2 dx = Jo cos 8 · cos (j d(j = Jo 2 ( I  + cos 2 8) d(j = 4· 
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Students should observe particularly that the change of variable in this calculation is ac
companied by a corresponding change of the interval of integration. 

Our only similar experience in the two-variable case is with changing double integrals 
from rectangular to polar coordinates by using the transformation equations 

x = r cos (}, y = r sin 8. (3) 

Up to this stage we have interpreted these equations as expressing the rectangular coor
dinates of a given point in terms of its polar coordinates. However, they can also be in
terpreted as defining a transformation or mapping that carries points (r, 8) in the r8-plane 
over to points (x, y) in the xy-plane. That is, if a point (r, (}) is given, then equations (3) 
determine the corresponding point (x, y), as suggested in Fig. A.20. Further, in order to 
make this correspondence one-to-one, it is customary to restrict the point (r, (}) to lie in 
the part of the r8-plane specified by the inequalities 0 :s r, 0 :s (} < 27T. 

From this point of view, the formula for changing a double integral into polar coordi
nates [formula (3) in Section 20.4) can be written as 

ff f(x, y) dx dy = ff f(r cos (}, r sin (}) r dr d(}. 
R S 

(4) 

Thus, we are allowed to substitute x = r cos (} and y = r sin (} in the integral on the left, 
but we must then replace dx dy by r dr d(} and R by the corresponding region S in the 
r8-plane. In our previous work we made no mention of the region S, but instead-and 
equivalently-changed the limits of integration on iterated integrals to describe the same 
region R in terms of polar coordinates. 

Formula (4) is a special case of a very general formula for changing variables in dou
ble integrals. The detailed proof is beyond the scope of this book, but at least we can state 
the result. First we need a definition. Consider a pair of functions of two variables, 

x = x(u, v), y = y(u, v), (5) 

and assume that they have continuous partial derivatives. The Jacobian of these functions 
is the determinant defined by 

dx dx 
d(x, y) = 

du dv 
_ 

dx dy _ dx dy . 
(6) 

d(u, v) dy dy du dv dv du · 
du dv 

•oeterrninants of this form were first discussed by the German mathematician C. G. J. Jacobi 
( 1 804-1 85 1  ) . He did important work in the theory of elliptic functions, and applied his discoveries 
in astonishing ways to the theory of numbers. He also created a new and fruitful approach to theo
retical dynamics. The Hamilton-Jacobi equations are part of the standard equipment of every student 
of mathematical physics. Also, Jacobi uttered the following magnificent and unforgettable defense 
of science for its own sake: "The sole aim of science is the honor of the human mind, and from this 
point of view a question about numbers is as important as a question about the system of the world." 
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This is often called a functional determinant, because it is a function of the variables u 
and v. As an example, we see that the Jacobian of the polar coordinates transformation 
(3) is 

ax ax 
acx. y) ar ae 
acr, (J) = ay ay 

ar ae 
= I cos (J 

sin (J -r sin (J I . = r cos2 (J + r sm2 (J = r. r cos (J 

The general change of variables formula for double integrals can now be stated as fol
lows: If (5) is a one-to-one transformation of a region S in the uv-plane onto a region R 
in the xy-plane, and if the Jacobian (6) is positive, then 

ff ff acx. y) f(x, y) dx dy = f[x(u, v), y(u, v)] acu. v) du dv. R S 
(7) 

Since r is the Jacobian of the polar coordinates transformation (3), it is clear that (4) is a 
special case of (7). Further, we can think of (7) as a two-dimensional extension of (2), 
with the derivative dxldu being replaced by the Jacobian acx. y)ta(u, v) . 

Formula (7) in tum can be extended to triple integrals. First, we define the Jacobian of 
the transformation 

ax ax ax 
au av aw r : x(u, V, w), 

by acx. y, z) = ay ay � y - y(u, v, w), a(u, V, w) au av aw z = z(u, v, w), az az az au av aw 
Then, under the similar assumptions, we have the following extension of (7): 

ff If (x, y, z) dx dy dz = JJJ F(u, V, w) :r· y, Z» du dv dw, 
R S 

U, V, W 
(8) 

where F(u, v, w) = f[x(u, v, w), y(u, v, w), z(u, v, w)] . The main thing to notice here is 
that 

dx dy dz is replaced by acx. y, z) d d d a u v w. (u, v, w) 
Two important special cases of (8) are those of cylindrical coordinates, 

JJJ f (x, y, z) dx dy dz = Jf J F(r, 8, z)r dr d(J dz, 
R S 

where F(r, 8, z) = f (r cos 8, r sin 8, z) ; and spherical coordinates, 

JJJ f(x, y, z) dx dy dz = JJJ F(p, </>. 8)p2 sin </> dp d</> d(J, 
R S 

where F(p, </>, 8) = f(p sin </> cos 8, p sin </> sin 8, p cos </>). We leave it to the student to 
verify the spherical coordinates formula by using the transformation equations 

to calculate the Jacobian 

[x = p sin </> cos 8, 
y = p sin </> sin 8, 
z = p cos </>. 
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AvD (u, v)  Au 

a(x, y, z) -

a(p, </>, e) -
sin </> cos (} 
sin </> sin (} 

cos </> 

u 

y 

p cos </> cos (} 
p cos </> sin (} 

- p  sin </> 

- p  sin </> sin (} 
p sin </> cos (} = rJ- sin ¢. 0 

x 

It is in this way that we can understand a little more fully what lies behind formu
las ( I ). 

One question remains, and for the sake of simplicity we state it only for the two-vari
able case: What is the underlying reason for the presence of the Jacobian on the right side 
of formula (7)? We now give a very brief intuitive explanation of this by means of vec
tors. In the u1f-plane the equations u = a constant and v = a constant determine a network 
of straight lines parallel to the axes, whereas in the .xy-plane these equations determine a 
network of intersecting curves. A small rectangle in the u 1f-plane with sides D.u and D.v 
corresponds to a small parallelogram in the .xy-plane (see Fig. A.2 1 )  with sides that can 
be written in vector form as 

and 

aR D. _ ( ax . + ay ·) D. a; U - au I au J U 

aR A ( dX . dy ·) A --a;- uv = av 1 +  av J uv, 

approximately. In calculating the integral on the left side of (7) as a limit of sums, it is 
natural to abandon the usual rectangular cells and instead use these small parallelograms. 
If we denote by M the area of the parallelogram in the figure, then M equals the mag
nitude of the cross product of the two vectors given above. Since this cross product is 

j 

ax dy 
au dU 

dX ay 
av  av 

we have 

k 

0 [ d(x, y) ] 
D.u D.v = a(u, v) D.u D.v k, 

0 
D.A = a(x, y) /::,. D. a(u, v) u v. (9) 

This shows that the Jacobian plays the role of a local magnification factor for areas. Fur
ther, these remarks constitute a sketch of a proof of (7), because all that remains to es
tablish (7) is to form the integral on the left side as a limit of sums and make use of (9). 
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A FEW REVIEW 
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The binomial theorem is a general formula for the expanded n-factor product 

(a + b)" = (a + b)(a + b) · · · (a + b). 

If we compute a few cases by repeated laborious multiplication, we find that 

(a + b)' = a + b, 

(a + b)2 = a2 + 2ab + b2, 

(a + b)3 = a3 + 3a2b + 3ab2 + b3, 

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4, 

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5. 

( I )  

I t  is clear that the expansion of ( I )  begins with a"  and ends with b", and also that the in
termediate terms involve steadily decreasing powers of a and steadily increasing powers 
of b so that the sum of the two exponents is exactly n in each term. What is not so clear 
is the way the coefficients are calculated. To anticipate our final result, the expansion in 
question (the binomial theorem) is 

(a + b)" = a" + na"- 1b + n(n - l )  a"- 2b2 
2 

+ n(n - l )(n - 2) a"-3b3 + . . .  2 · 3  

n(n - l )(n - 2) · · · (n - k + 1 )  
+ 1 . 2 . 3 . . . k a"-kbk 

(2) 

Our purpose is to understand the reasons behind the form of these coefficients . The best 
way to do this is to take a short detour through the closely related topics of permutations 
and combinations. 

Before starting this detour, we remind students that if n is a positive integer, then the 
product of all the positive integers up to n is denoted by n ! ,  called nfactorial: 

n !  = 1 · 2 · 3 · · · n. 

Thus, 1 ! = 1, 2 ! = 1 · 2 = 2, 3 ! = 1 · 2 · 3 = 6, 4 ! = 1 · 2 · 3 · 4 = 24, etc. For reasons 
that will appear below, we define O! to be 1 .  These numbers increase very rapidly, as we 
see by doing a little arithmetic: 
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5! = 1 20, 6! = 720, 

9 !  = 362,880, 

7! = 5040, 8 !  = 40,320, 

10 !  = 3,628,800. 

Further, with the aid of a calculator we learn that 

20! = 2.433 x 101 8 and 40 ! = 8 . 1 59 x 1047. 

Any product of consecutive positive integers can easily be written in terms of factorials. 
For example, 

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 
6 . 7 . 8 . 9 . 10 = ___ 

1
_

·
_

2
_

·
_

3
_

·
_

4
_

·
_

5 
__ _ 

In general, if k < n, then 

PERMUTATIONS 

n '  (k + l )(k + 2) · · · n = kl . 

10! 
5 !  . 

We now discuss certain methods of counting that are useful in many applications of math
ematics. 

The reasoning on which our work is based can be illustrated by a simple example. Con
sider a journey from a city A through a city B to a city C. Suppose it is possible to go 
from A to B by 3 different routes and from B to C by 5 different routes. Then the total 
number of different routes from A through B to C is 3 · 5 = 15 ; for we can go from A to 
B in any one of 3 ways, and for each of these ways there are 5 ways of going on from B 
to C. 

The basic principle here is this: If two successive independent decisions are to be made, 
and if there are c1 choices for the first and c2 choices for the second, then the total num
ber of ways of making these two decisions is the product c 1c2. It is clear that the same 
principle is valid for any number of successive independent decisions. 

The following is our main application of this idea. Given n distinct objects, in how 
many ways can we arrange them in order, that is, with a first, a second, a third, and so 
on? The answer is easy. There are n choices for the first object. After the first object is 
chosen, there are n - 1 choices for the second, then n - 2 choices for the third, etc. By 
the basic principle stated above, the total number of orderings is therefore 

n(n - l )(n - 2) · · · 2 · 1 = n ! . 

Each ordering of a set of objects is called a permutation of those objects. We have reached 
the following conclusion: 

The number of permutations of n objects is n ! .  

Example 1 (a) There are 5 !  = 120 ways of arranging 5 books on a shelf. (b) There are 
9 !  = 362,880 possible batting orders for the 9 players on a baseball team. (c) There are 
52! = 8.066 X 1067 ways of shuffling a deck of 52 cards. 

We next consider a slight generalization. Suppose again that we have n distinct objects. 
This time we ask how many ways k of them can be chosen in order. Each such ordering 
is called a permutation of n objects taken k at a time, and the total number of these per
mutations is denoted by P(n, k). There are evidently n choices for the first, n - 1 choices 
for the second, n - 2 choices for the third, and n - (k - 1 )  = n - k + 1 choices for the 
kth. The total number of these permutations is therefore 

P(n, k) = n(n - l )(n - 2) · · · (n - k + 1 ). 
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If we write this number in terms of factorials, then our conclusion can be formulated as 
follows: 

The number of permutations of n objects taken k at a time is 

n '  P(n, k) = n(n - l )(n - 2) · · · ( n  - k + 1 )  = 
· 

(n - k) ! 

Example 2 (a) If we have 7 books and only 3 spaces on a bookshelf, then the number 
of ways of filling these spaces with the available books (counting the order of the books) is 

7 !  7 !  P(7, 3 )  = 
(7 _ 3) ! = 4! = 7 · 6 · 5 = 2 10. 

(b) The number of ways (counting the order of the cards) in which a 5-card poker hand 
can be dealt from a deck of 52 cards is 

52 ! 52 ' P(52, 5) = (52 _ 5) ! = 47; = 52 · 5 1  · 50 · 49 · 48 = 3 1 1 ,875,200. 

Of course, the order of the cards in a poker hand is immaterial to the value of the hand, 
so the number of distinct poker hands is a considerably smaller number. We take account 
of this below, in our discussion of combinations. 

COMBINATIONS 

A set of k objects chosen from a given set of n objects, without regard to the order in 
which they are arranged, is called a combination of n objects taken k at a time. The total 
number of such combinations is sometimes denoted by C(n, k), but more frequently by ( � ). For reasons to be explained, the numbers ( �) are called binomial coefficients. 

Permutations and combinations are related in a simple way. Each permutation of n ob
jects taken k at a time consists of a choice of k objects (a combination) followed by an 

ordering of these k objects. But there are ( �) ways to choose k objects, and then k! ways 

to arrange them in order, so 

P(n, k) = (�) · k !  or (n ) 
= 

P(n, k) 
k k! . 

Our formula for P(n, k) now yields the following conclusion: 

The number of combinations of n objects taken k at a time is (n ) n! 
k = k ! (n - k)! · 

The binomial coefficients have many properties, of which we mention only a few: 

and 

(n ) (n ) n!  
0 = n = O!n !  = l , (n ) ( n ) n!  

1 = n - 1 = 1 ! (n - l ) !  = n, 

The last fact can be established easily from the formula, or, more directly, by simply ob
serving that a choice of k objects from a set of n objects is equivalent to a choice of the 
n - k objects that are left behind. 
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Exampl e 3 (a) The number of committees of 3 people that can be chosen from a group 
of 8 people is 

(b) A certain governmental commission is to consist of 2 economists and 3 engi
neers. If 6 economists and 5 engineers are candidates for the appointments, how 
many different commissions are possible? From the 6 economists, 2 can be chosen in ( � ) ways; and from the 5 engineers, 3 can be chosen in ( � ) ways. The number of pos

sible commissions is therefore 

( 6 )( 5 ) 6 I 5 ! 6 · 5 5 · 4 
2 3 = 2!4 !  

. 
3 ! 2 !  = -2- . -2

- = 1 50· 

(c) The number of different 5-card poker hands that can be dealt from a deck of 52 
cards is 

( 52 ) 52 ! 52 . 51 . 50 . 49 . 48 
5 = 5 !47 ! = --

2
-

· 3
-

. 4
-
.
-

5
-- = 2,598,960. 

THE BINOMIAL THEOREM 

To establish the binomial theorem (2), all that is necessary is to look at ( I )  and observe 
that each term of the expansion can be thought of as the product of n letters, one taken 
from each factor of the product 

(a + b)(a + b) · · · (a + b), n factors. 

Thus, a product a11 -kbk is obtained by choosing k b's and the rest a's. The number of ways 

this can be done is (: ) . The coefficient of a11 -kbk on the right side of (2) is therefore (: ). 

and the proof is complete. 

(a) 5 · 6 · 7 · 8 · 9; (b) 22 · 2 1  · 20 · 19 · 1 8  · 1 7 ;  
6 How many batting orders are possible for a baseball team 

if the fielders are the first 3 to bat and the pitcher bats 
last? 

(c) 
52 . 5 1  . 50 . 49 . 48 

1 · 2 · 3 · 4 · 5 
2 Compute 

8 !  
Cb) J...!.L 1 5 !  

(a) 51; 
8! 

, (c) 
3 ! 1 2 ! ; 

25 ! 
(d) 

4 ! 2 1  ! ; 
(e) P(22, 2); (f) P(7, 5). 

3 If 6 horses run in a race, how many different orders of 
finishing are there? How many possibilities are there for 
the first 3 places (win, place, and show)? 

4 A club has 1 0 members. In how many ways can a pres
ident, a vice president, and a secretary be chosen? 

s How many batting orders are possible for a baseball team 
if the 4 best hitters are the first 4 to bat? 

7 How many I O-digit numbers can be formed from all 1 0  
digits 0, 1 ,  2, 3 ,  4, 5 ,  6, 7 ,  8 ,  9 if 0 is not allowed as the 
first digit? 

8 How many 5-digit numbers can be formed from the I 0 
digits if the first digit cannot be 0 and no repetitions are 
allowed? If repetitions are allowed? 

9 How many license plates can be made using 7 symbols, 
of which the first 3 are different letters of the alphabet 
and the last 4 are digits of which the first cannot be O? 

to How many ways can 3 history books and 4 physics books 
be put on a shelf if books on the same subject must be 
kept together? If the history books must be kept together 
but the physics books need not be? 
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1 1  How many different signals can be made from 5 differ
ent flags if each signal consists of 5 flags placed one 
above the other on a flagpole? If each signal consists of 
3 flags? If each signal consists of one or more flags? 

12 In how many ways can 6 people be seated in a row of 6 
chairs? 

13 In how many ways can 6 people be seated in a row of 8 
chairs? 

14 In how many ways can 6 people be seated in a row of 6 
chairs 
(a) if a certain 2 insist on sitting next to each other? 
(b) if a certain 2 refuse to sit next to each other? 

15 In how many ways can 3 men and 3 women be seated 
in a row of 6 chairs if the men and women alternate? 

16 Compute ( 1 00 ) 
(a) 2 ; 

( 1 50 ) 
(b) 3 ; 

17 A contractor employs 10  workers. In how many ways 
can he choose 4 of them to do a certain job? 

18 In how many ways can 1 2  jurors be selected from a panel 
of 20 eligible citizens? 

19 At a meeting, 28 people all shake hands with one an
other. How many handshakes are there? 

20 In an examination a student has a choice of any 10 out 
of 1 2  questions. In how many ways can she choose her 
questions? 

21 From a committee of 10, in how many ways can one 
choose a subcommittee of 4 and another subcommittee 
of 3, with no overlap? 

22 How many committees of 4 can be chosen from a group 
of 12 men? How many of these will include a specific 
man? How many will exclude this man? 

23 In how many ways can a committee of 5 men and 4 
women be chosen from a club of 10  men and 7 women? 

24 In how many ways can we select a conunittee of 5 from 
a group of 1 1  

(a) if 2 of the group insist on serving together or not at 
all? 

(b) if 2 of the group refuse to serve together? 
25 In how many different orders can we shelve sets of 5 

books, each set consisting of 3 history books and 2 chem
istry books, if the books are to be chosen from a set of 
9 history books and 7 chemistry books? 

26 Three bags contain 8 black, 6 white, and 10 red marbles, 
respectively. In how many ways can we choose 6 black, 
4 white, and 7 red marbles? 

27 From a deck of 52 cards, how many 5-card poker hands 
are flushes (all cards of the same suit)? How many are 
full houses (3 cards of one kind together with a pair of 
another kind )? 

28 How many lines are determined by 1 2  points in a plane 
if no 3 of the points are collinear? 

29 How many triangles are determined by 1 3  points in a 
plane if no 3 of the points are collinear? 

30 How many lines are determined by m points in a plane 
if k of them (where k < m) lie on the same line and, ex
cept for these, no 3 of the points are collinear? 

31 How many planes are determined by 9 points in space if 
no 4 of the points are coplanar? 

32 How many rectangles are formed by 5 vertical lines in
tersecting 8 horizontal lines? 

33 How many diagonals can be drawn in a regular polygon 
with n sides? (A diagonal is a segment joining 2 nonad
jacent vertices.) 

34 Use the binomial theorem to expand each of the follow
ing: 
(a) (2x - y)7; (b) (3a + 2b;6; 
(c) (x2y - 3z3)5 . 

35 Find the term of 
(a) (x - 4) 1 5 that involves x1 1 ; 
(b) (2x - 3)9 that involves x4; 
(c) (a2 - b3) 1 4 that involves a1 0. 

Discoveries in mathematics are sometimes made by carefully examining empirical evi
dence. As an illustration, let us try to find a formula for the sum of the first n odd num
bers, where n is any positive integer. We compute: 

B . 2  
MATHEMATICAL 
INDUCTION for n = I ,  1 = 1 = 1 2, 

for n = 2, 1 + 3 = 4 = 22, 

for n = 3, 1 + 3 + 5 = 9  = 32, 

for n = 4, I + 3 + 5 + 7 = 1 6  = 42, 

for n = 5, I + 3 + 5 + 7 + 9 = 25 = 52. 

The pattern emerging from this evidence seems to suggest that the value of the sum al
ways equals the square of the number in terms in the sum. Since 2n - 1 is the nth odd 
number, we can formulate this conjecture as follows: 
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1 + 3 + 5 + · · · + (2n - 1 )  = n2 ( 1 )  

for every positive integer n. 
The evidence for ( 1 )  is suggestive but far from conclusive. If we continue to test our 

conjecture for n = 6, 7, 8, and so on, and if it continues to hold up for these additional 
values of n, then this will certainly increase our confidence that ( 1 )  is probably true for 
every positive integer n. However, verifications of this kind can never constitute a proof, 
no matter how far they may be carried. If we verify ( 1 )  for all values of n up to n = 1 000, 
then the logical possibility still remains that ( l )  might fail to be true for n = I 001 .  • There 
is an infinite chasm between "probably true" and "absolutely certain." What is needed is 
a logical argument proving that ( I )  is always true, for all values of n, beyond any doubt 
whatsoever. This is what the method of proof by mathematical induction accomplishes. 
We explain this method of reasoning by showing how it works in the case of formula ( 1 ), 
and then we state it as a formal principle. 

Example 1 To prove ( 1 )  by mathematical induction, we begin by observing that this 
formula is true for n = 1 ,  because it reduces to 1 = 1 2. (We already knew this.) We next 
prove that if k is a value of n for which ( 1 )  is true, then ( 1 )  is necessarily also true for the 
next integer, n = k + 1 .  Thus, we assume that ( 1 )  is true for n = k, 

l + 3 + 5 + . . .  + (2k - 1) = k2. 

With the aid of this hypothesis we try to prove that ( 1 )  is also true for n = k + 1 ,  

1 + 3 + 5 + . . .  + (2k - 1 )  + (2k + 1 )  = (k + 1 )2 .  

(2) 

(3) 

(The next-to-the-last term on the left here is displayed for the sake of clarity in our next 
step.) By using (2) we see that the left side of (3) can be written as 

1 + 3 + 5 + · · · + (2k - I) + (2k + 1 )  = k2 + (2k + 1 )  

= (k + 1 )2, 

so (3) is true if (2) is true. But this is enough to guarantee that ( 1 )  is actually true for all 
n. To see this, suppose we wish to assure ourselves that ( 1 )  is true for some specific value 
of n, say n = 37. The reasoning is as follows: We know by actual computation that ( 1 )  is 
true for n = 1 ;  since it is true for n = l, the argument just given tells us that it is also true 
for n = 2 ; since it is true for n = 2, it must be true for n = 3; and so on, up to n = 37 (or 
any other value of n). 

Our main principle is little more than a distillation of the essence of this example. 

Principle of Mathematical Induction Let S(n) be a proposition depending on a pos
itive integer n. t Suppose that each of the following conditions is known to be satisfied. 

S( 1 )  is true. 
II If S(n) is assumed to be true for an integer n = k, then it is necessarily true for the 

next integer, n = k + 1 .  

Under these circumstances it follows that S(n) is true for every positive integer n. 

'As a trivial illustration of this point, the equation 

n2 - 1 = (n + l )(n - 1 )  + [(n - l )(n - 2) · · · (n - 1 000)] 

is clearly true for the first thousand values of n, because the bracketed expression is zero, and yet it 
is false for n = 1001 ,  1002, . . . .  

tThis means that for each specific value of n, S(n) is a statement that is either true or false, without 
any ambiguity. 
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Briefly, if we write down the propositions S(n) in order, 

S( l ), S(2), S(3), . . .  , 

then the process of verification is started by I, and II is a link from each to the next guar
anteeing that the process continues without end. 

The idea of induction can be illustrated in many nonmathematical ways. For instance, 
imagine a row of dominoes standing on end. Suppose they are spaced in such a way that 
if any one of them falls, then it will knock over the next one. Suppose further that we ac
tually knock over the first domino. In this situation we know that all the dominoes will 
fall . Our knowledge is based on two facts, which are closely analogous to I and II: 

(i) The first domino does fall , because we knock it over. 
(ii) If any domino falls, then it will knock over the next one. 

We must be careful with the meaning of (ii) ; it does not state that any domino actually 
does fall , only that each domino is related to the next one in a certain way. 

We continue with two additional examples of the method, in which we establish two 
formulas that are needed in Chapter 6. These are formulas for the sum of the first n pos
itive integers, and for the sum of the first n squares: 

and 

1 + 2 + 3 + · · · + n = _n�(n_+_l�) 
2 , 

1 2 + 22 + 32 + . . .  + n2 = n(n + 1�2n + 1 ) . 

(4) 

(5) 

Several of the remarks and problems that follow are concerned with the natural question 
of how such formulas can be discovered and understood. For the moment, however, we 
confine our attention to proving them by the method of mathematical induction. 

Example 2 To prove ( 4) by induction, we start by verifying I in this case, that is, we 
note that (4) is obviously true for n = 1 :  

1 . 2 1 = -
2
-

· 

To verify II, we begin by assuming (4) for n = k, 

1 + 2 + 3 + . . .  + k = _k(�k_+_l�) 
2 , 

and we hope to prove (4) for n = k + 1 ,  

1 + 2 + 3 + . . . + k + ( k  + 1 )  = 
(k + l�k + 2) . 

By using (6) we can write the left side of (7) as 

1 + 2 + 3 + . . .  + k + (k + 1 )  = k(k; l )  + (k + 1 )  

= (k + 1 )  ( i + 1 ) 
(k + l )(k + 2) 

2 

(6) 

(7) 

Condition II is therefore satisfied, so by induction ( 4) is valid for all positive integers n. 
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Example 3 The proof of (5) is just as easy. To verify I, put n = I :  
1 . 2 . 3 1 2 = ---6 . 

To verify II, we must assume 

and use this to prove 

12 + 22 + 32 + . . . + k2 = k(k + 1 )(2k + 1 )  
6 

(k + l )(k + 2)(2k + 3) 12 + 22 + 32 + . . .  + k2 + (k + 1 )2 = �-�-��-� 
6 

The details are routine, 

1 2 + 22 + 32 + . . . + k2 + (k + 1 )2 = k(k + 1 )(2k + 1 ) + (k + 1 )2 6 

so by induction the proof of (5 )  is complete. 

= (k +  l ) [k(2kt. I )  + (k +  I )] 
= (k + I )  [ 2k2 +: k + 6 ] 

(k + l )(k + 2)(2k + 3) 
6 

Remark 1 Mathematical induction is a venerable method of proof that every student of 
mathematics ought to understand. Our purpose here has been to explain this method, and 
also to illustrate its use by proving two formulas [(4) and (5)] that are necessary for other 
parts of our work. However, much remains to be said. 

Proofs by induction produce belief without insight, and are therefore fundamentally un
satisfying. It is important to know that a mathematical theorem is true, but it is often more 
important to understand why it is true. There are other proofs of formulas ( I ), (4), and (5) 
which convey much more insight into these formulas, and which also suggest how they 
might have been discovered in the first place. We begin with (4). 

If we denote the sum of the integers from 1 to n by S, so that 

S = 1 + 2 + · · · + (n - I )  + n, 
then it might occur to us to write this sum in the reverse order, as 

S = n + (n - I )  + · · · + 2 + I .  
If we now notice that the two first terms on the right add up to n + I ,  and also the two 
second terms, and so on, then it is natural to add these two equations together to get 

n(n + I )  2 5  = n(n + I )  or S = 2 . 

These ideas serve to discover formula (4) and also to prove it, simultaneously. 
We next turn to formula ( I ), which again we discover and prove at a single stroke. Con

sider the sum of the first n odd numbers, 

I + 3 + 5 + · · · + (2n - 1 ) .  
We notice certain obvious gaps in this sum, where the even numbers ought to be. I f  we 
fill in these gaps, and at the same time compensate for this filling in, then, using (4), we 
easily obtain 
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1 + 3 + 5 + · · · + (2n - 1 )  = (1 + 2 + 3 + · · · + 2n) - (2 + 4 + · · · + 2n) 

= (1 + 2 + 3 + · · · + 2n) - 2( 1  + 2 + · · · + n) 

= 
2n(2n + 1 )  _ 2 . n(n + 1 )  

2 2 

= 2n2 + n - n2 - n = n2, 

which is ( 1 ) . 
We have discovered and proved the formula for the sum of the first n positive integers, 

l + 2 + 3 + . .  · + n = 
_n"-(n_+_l"'-) 

2 . (4) 

It is somewhat more difficult to discover (5), that is, a formula for the sum of the first n 
squares, 

1 2 + 22 + 32 + . . .  + n2. 

We know the answer by Example 3, but let us disregard this for a moment and try to think 
how we might discover it. It i s  natural to consider the two sums together: 

11 I : 1 + 2 +  . .  · + 11 
] 2 + 22 + . . . + 112 

2 

3 
5 

3 4 5 6 

6 I O  1 5  2 1  
1 4  30 55 9 1  

How are these sums related? I t  might occur to  u s  to consider their ratio: 

II 2 3 4 5 6 

1 + 2 +  . . · + 11  I 3 3 1 3 3 
1 2 + 22 + . . .  + 112 5 7 3 1 1  1 3  

I f  we write these ratios i n  the form 

3 3 3 3 3 3 
- - - -

3 5 7 9 1 1  13 

then it is difficult to miss the pattern that emerges. It seems clear that 

1 + 2 +  . .  · + n  
1 2  + 22 + . . .  + n2 

and by using (4) we easily find that 

3 
2n + l '  

1 2  + 22 + . . . + n2 = n(n + 1 )(2n + 1 )  
6 . (5) 

This i s  certainly not a proof of (5). Nevertheless, i t  presents us with a plausible conjec
ture which we can then try to prove by induction, as we have done in Example 3 .  

Remark 2 There is another very ingenious way of discovering (5) that also constitutes 
a proof. It begins with the expansion 

(k + 1 )3 = k3 + 3k2 + 3k + l , 

expressed in the more convenient form 

(k + 1 )3 - k3 = 3k2 + 3k + l .  

If we write down this identity for k = l ,  2, . . .  , n and add, then by taking advantage of 
wholesale cancellations we find that 
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23 - 13 = 3 · 12 + 3 · I + I 

33 - 23 = 3 · 22 + 3 · 2 + 1 

(n + 1 )3 - n3 = 3 · n2 + 3 · n + 1 

(n + 1 )3 - 13 = 3(12 + 22 + · · · + n2) + 3 ( 1  + 2 + · · · + n) + n 

This enables us to obtain a formula for the sum of the squares in terms of our known for
mula (4) for the sum I + 2 + · · · + n : 

1 2  + 22 + · · · + n2 = t[n3 + 3n2 + 3n - tn(n + 1) - n] 

= i<2n3 + 6n2 + 6n - 3n2 - 3n - 2n) 

n = 6 (2n2 + 3n + 1 )  

n(n + 1 )(2n + 1 )  
6 

The idea of this proof is due to the great French writer-scientist-mathematician-theolo
gian Blaise Pascal. It can be extended quite easily to yield the sum of the first n cubes, 

1 3  + 23 + . . .  + n3 = [ n(n; 1 )  r 
the sum of the first n fourth powers, and so on indefinitely. 

(8) 

Remark 3 Mathematical induction as a method of demonstrative proof originated in the 
work of Pascal on the binomial coefficients. The interested reader will find this work de
scribed and quoted in vol. 1 of G. Polya's remarkable book, Mathematical Discovery (Wi
ley, 1 962), pp. 73-75. 

PROBLEMS 

1 Use ( 1 )  and (4) to find a formula for each of the following: 
(a) 2 + 4 + 6 + · · · + 2n; 
(b) (n + 1 )  + (n + 2) + (n + 3) + · · · + 3n; 
(c) 1 + 3 + 5 + · · · + (4n - l ); 
(d ) (2n + 1 )  + (2n + 3) + (2n + 5) + · · · + (4n - l ) ; 
(e) 3 + 8 + 1 3  + · · · + (Sn - 2). 

2 Discover a formula for 12 + 32 + 52 + · · · + (2n - I )2 by 
using its relation to the sum 12 + 22 + 32 + · · · + (2n)2. 

3 Prove each of the following by induction: 
I I I I n (a) -- + -- + -- + . . .  + = --· 

I · 2 2 · 3 3 · 4 n(n + 1 )  n + 1 '  

(b) I · 2 + 2 · 3 + 3 · 4 + · · · + n(n + 1 )  = 

n(n + l )(n + 2) 
3 

1 1 1 I (c) -- + -- + -- + . . .  + ------

1 · 3 3 · 5 5 · 7 (2n - 1 )(2n + 1 )  
n 

2n + 1 '  

(d ) 1 · 3 + 3 · 5 + 5 · 7 + · · · + (2n - 1 )(2n + 1 )  = 

n(4n2 + 6n - 1 )  
3 

Prove (a) without using mathematical induction, by means 
of the algebraic identity 

- - --

n(n + 1 )  n n + I ' 

also, devise a similar method of proving (c). 
4 Prove each of the following by induction: 

(a) I + _!_ + _!_ + · · · + _!__ = 2 - _!__. 2 4 2n 2n ' 

1 - rn+ l  (b) 1 + r + r2 + · · · + rn = ---

1 - r (r * l ) ;  

1 2 3 n (n  + 2 )  (c) 2 + 22 + 23  + . . .  + 2n = 2 - -2-n-; 

(d) r + 2r2 + 3r3 + · · · + nrn = 
r - (n + l )r"+ 1 + nrn+2 

( 1  - r)2 

I 1 I 1 (e) -;; + -;;+! + n + 2 + · · · + 2n - 1 = 

(r * 1 ); 

1 1 1 I 1 - - + - - - + . . .  + --· 2 3 4 2n - I ' 
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l 2 4 2n 
(f) lh + l + x2 + l + x4 + . .

. + 
l + x2" = 

1 2n+ I 
-- + (x =t- ± 1) ·, x - l I - x2"+ ' 

(g) 1 3 + 23 + 33 + · · · + n3 = [ ±n(n + l )  ]2; 
(h) [ 4 + 24 + 34 + . . .  + n4 = 

1 30 n(n + 1 )(6n3 + 9n2 + n - 1) . 

5 Use the method of Remark 2 to discover and prove the 
formulas in parts (g) and (h) of Problem 4. 

6 In each of the following, guess the general law suggested 
by the given facts and prove it by induction: 
(a) 1 = 1 ,  

1 - 4 = - ( 1  + 2), 
1 - 4 + 9 = 1 + 2 + 3, 
1 - 4 + 9 - 1 6 = - ( 1 + 2 + 3 + 4); 

(b) 1 - t = t, 
( 1  - t)( l - t) = t, 

( 1 - t)( l - t)( l - t) = t, 
( 1  - t)( l - t)( l - t)C l - f) = f. 

7 Guess the formulas that simplify the following products, 
and prove them by induction : 

(a) ( l - ± )( 1 - t )( 1 - l�) · · · ( 1 - �2} 
(b) ( I  - x)( l + x)( l  + x2)(1 + x4) · · · ( I  + x2"). 

8 Let S(n) be the following statement: 

1 + 2 + 3 + . . .  + n = 
(n - l )(n + 2) 

2 
. 

(a) Prove that if S(n) is true for n = k, then it is also true 
for n = k + 1 . 

(b) Criticize the assertion, "By induction we therefore 
know that S(n) is true for all positive integers n." 



CHAPTER 1 

Section 1 .2, p. 8 
I . (a) Rational; (b) integer, rational ; 

(c) integer, rational; (d) rational; 
(e) integer, rational; (f) irrational; 
(g) integer, rational; (h) irrational; 
(i) rational; ( j )  rational. 
3. 1 1 .  5 . 7T - 3. 
7 . 5 - x. 9. x2 + 1 0. 
1 1 . 3x2 - I .  
1 3 . (a) x < 0 and x > I ; (b) - 2  < 

x < 1 ;  (c) x < -7 and x > 3 ;  
(d) -t < x <  l ; (e) -3 < x < f; 
(f) all x. 
I 5. (a) x > O; (b) -2 < x < 0 and 

x > 2; (c) x < - 1  and x > 3; (d) x < 
- 1 ,  0 < x < 1 ,  and x > 3. 
1 7 . a =  b. 
1 9 . (a) Vertical; (b) horizontal; 

(c) horizontal; (d) vertical; 
(e) horizontal; (f) vertical; (g) vertical; 
(h) horizontal. 
2 1 . (a) 5Vz; (b) Vi3; (c) v89; 
(d) la - bl Vz. 
27. Center ( - 2, t), radius f\/Ti3. 
29. (- 1 , - 1 ). 
3 1 . Symmetric with respect to the 
straight line through the origin that 
bisects the first and third quadrants. 
33 . tv'2 h. 

Section 1.3, p. 14 
1 . (a) -f; (b) f; (c) -/;; (d) - I ; (e) O; 

(f) 10. 
5 . (a) Yes; (b) no; (c) no; (d) yes. 
7. (a) y = -4x + 5; (b) 3x + 7y = 2; 
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(c) 2x - 3y = 12 ;  (d) y = -4; 
(e) x = 1 ; (f) x + 3y + 2 = O; (g) x + 
2y = l l ; (h) 3y - 2x =  1 7 ; (i) x +  
2y = 9; ( j )  x + y = 1 .  
9 .  (a) � + _L = l ;  (b) � + 

- 3  -5 - 8  

l. = 1 · (c) � + l. = 1 · (d) � + 3 ' 1 6 ' i 
y --=3 - 1 .  

1 1 . (Jf, --le\-). 

2 

1 3 . F = tc + 32 or C = t(F - 32). 

Section 1 .4, p. 22 
I . (a) (x - 4)2 + (y - 6)2 = 9; 

(b) (x + 3)2 + (y - 7)2 = 5 ;  
(c) (x + 5)2 + (y  + 9)2 = 49; 
(d) (x - 1 )2 + (y + 6)2 = 2; 
(e) (x - a)2 + y2 = a2 or x2 + y2 = 
2ax; (f) x2 + (y - a)2 = a2 or x2 + 
y2 = 2ay. 
3 . (a) Circle, center (2, 2) and radius 
2Vz; (b) point (9, 7); (c) circle, center 
(-4, -5)  and radius 1 ;  (d) circle, 
center (-t, 4) and radius 3; (e) empty; 
(f) point ctv'2, -f Vz); (g) circle, 
center (8, -3) and radius 1 1 .  
5 . Distinct real roots, b2 - 4ac > O; 
equal real roots, b2 - 4ac = O; no real 
roots, b2 - 4ac < 0. 
7. y = ± 2Yzx + 4. 
9. (a) y2 = - 12x; (b) x2 = 4y; 
(c) y2 = 8x; (d) 3x2 = -4y; (e) y2 + 
1 2x + 1 2  = 0; (f) x2 - 6x - Sy + 
1 7  = 0. 
1 1 . 20 ft. 

Section 1.5, p. 28 
1 .  (a) 42; (b) 1 7; (c) -3 ;  (d) 32; 
(e) 5a2 + 30a + 42; (f) 1 25t2 - 3. 
3 .  5 .  5 . 2x + h .  
7 .  - ---

x(x + h) · 
9. f( l )  = 0, /(2) = 2, f(3) = 10, 

f(O) = -2,f(- l )  = - 10, f(-2) = 
-30. 
1 3 . (a) x :=:: 0; (b) x s 0; (c) all x; 
(d) x s -2, x :=:: 2; (e) all x except 2, 
-2; (f) all x; (g) x s - 2, x :=:: 1 ;  
(h) x < -2, x > I ;  (i) -3  s x $ 1 ;  
( j )  x $ 0, x > 2. 
I 5 · f(O) = O, f( I )  does not exist, 

f(2) = 2, f(3) = t, JCJ(3)) = 3. In the 
last part, it is tacitly understood that x 
is restricted to those values for which 
f(j(x)) exists: that is, x * I .  
1 7  · f(O) = 1 ,  f( I )  does not exist, 

f(2) = - 1 ,f(f(2)) = f, J(f(f(2))) = 2. 
1 9 . f(x1 )f(x2) = f(x1 + x2) .  
2 1  · No; it is true if and only if ad + 
b = be +  d. 
23. (a) a = 4, b = -5, c = 3. 
25. y = -x + � and y = -x -
�-
27 . A = ±x�. 
29. A =  xY4a2 - x2. 

c2 3 1 .  (a) Yes, A = 4; (b) yes, A = -k p2; (c) no. 7T 
33. V = 27Tr2Y a2 - r2, A = 2TTr2 + 
47Tr �; V = ±7T(4a2h - h3), 
A = f7r(4a2 - h2) + 7Thv' 4a2 - h2. 



35 .  A =  2TTr2 + 2v
. r 

37. (a) Largest area = 625 ft2, both 
sides = 25 ft; (b) A = 1 00x - 2x2 = 
1 250 - 2(x - 25)2, largest area = 
1 250 ft2, sides = 25 and 50 ft. 

Section 1 .6, p. 37 
I . (a) , 

(b) 

(c) 

(d) 

(e) 

3 . (a) 
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(b) 

(c) 

(d) 

(e) 

(f) 

5 . (a) 

Ui 

I 
I 
I 
I 
I 
I 
I 
I 

I I 

- - -, - - - -- -
1 

---� - I  

8 5 7  

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

- 1  

7 .  Only (b). 

Section 1. 7, p. 45 
'TT S'TT 257T 'TT 

I . (a) U; (b) 6; (c) -3-; (d) - 5; 
l l 'TT 7 7T  

(e) -18; (f) 1 80 · 
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3. (a) -t; (b) ±v'3; (c) -t\13; 
(d) tV2; (e) -±; (f) -tv'2. 

7 . (a) sin ;; (b) sin O; (c) -sin ;; 

(d) -sin ;; (e) cos O; (f) cos ;; 

(g) -cos �; (h) sin f; (i) cos ; . 
1 1 . sin 15° = fv2-\73; cos 1 5 °  = 
tv'2 + \13. 

'TT 1 . � 37r  1 3 . (a) cos 4 = 2v2; (b) cos 4 = 

1 --v'2 2 . 

. 2TT \13 5TT  1 5 . (a) sm 3 = -2-; (b) cos 4 = 

_ _.!_ v'2· (c) sin 1 71T = _.!_ 
2 ' 6 2 ·  

1 9. tY2(\/3 + 1 ). 

Additional Problems, p. 47 
9. No, to both questions. 
1 5 . (y1 - Y2)x + (x2 - x1)Y = X2Y1 -
X1Y2· 
1 9 . (a) (b, ab � b) 
(a b2 + e2 - ab ) (b) 2' 2e ; 

(c) (a ; b ' f). 
23 . (a) x - 7y + 5 = 0, 7x + y -
1 5  = O; (b) x = ( I  ::+:: \i2)y. 
25 . lbl :5 2\/lo. 27. (a) (x - *a)2 + y2 = *a2; 
(b) (x2 + y2)2 = 2a2(x2 - y2) . 
3 1 .  7x + y = 1 0  and x - y + 2 = 0. 
33. y = -2x + 2; (0, 2) and (�, i). 
35.  x2 + y2 - 2xy - 4x - 4y + 4 = 

0. 37. The line is x = 2pm. 
4 1 .  No. 43. g(x) = x3. 
45 . V = tAr - Trr3. 

47. V = i Tra ( r2 � a2 ) . 
d -b 49· a = d b ' 

f3 = d b ' a - e  a - e 
-e a .,, - 8 - --, - ad - be ' - ad - be · 

5 1 . (x - l ) (x - 2) · · · (x - n) ; 
xn + l ; xn. 53. (a) Odd; (b) even; (c) even; 
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(d) odd; (e) neither; (f) odd; 
(g) neither; (h) neither. 
55. (a) Even; (b) even; (c) odd. 
57. y = 275(x - l)(x - 2) -

v'3(x - l )(x - 3) + ; (x - 2)(x - 3). 

59. (a) 

-

(b) 

(c) 

(d) 

(e) 3 

6 1 .  (a) 

(b) 

I 2 

I 2 

-

-

I 2 

/ 

(c) 

(d) 
I 
2 

CHAPTER 2 

Section 2.2, p. 57 

I 2 

I 
2 

I .  (a) 4x + y + 4 = O; (b) 8x - y = 
16 ;  (c) 8x - y = 1 6. 
5 . (a) 2xo - 4; (b) 2xo - 2; (c) 4x0; 
(d) 2xo. 7. 8x + y + 7 = 0. I I .  y = 4x + 1 ,  y = -4x + 25. 

Section 2.3, p. 62 3 . - 16x. 5 .  -72. 7 . - 10 + 30x. 
I I .  3500 - 14x. 
1 5 . -32x - 40. 
1 9 . (3, 0). 23. 5 - 3x2. 

1 27. 1 + 2· x 
-2 3 1 .  -3 . x 

9. 6y + 7. 1 3 . 1 0x + 25 .  
1 7 . (0, 6). 
2 1 .  ( I  0, 100). 
25. 6x2 - 6x + 6. 

I 29. (x + 1 )2 ·  
-2x 33. -----;;2-----;;-2 · (x + 1 ) 
1 -2(x2 + 1 )  35 . (x2 _ 1 )2 37 . 

2Yx"'=l 
39. (b) Area = 2. 
43. g'(O) = O; y = 3. 
45. ( 1 ,  1) .  

Section 2.4, p.  67 
I . v = 6t - 12; (a) t = 2, (b) t > 2 . 3 . v = 4t + 28; (a) t = -7, 
(b) t > -7. 
5. v = 14t; (a) t = 0, (b) t > 0. 
7 . v = 8t - 24; (a) t = 3, (b) t > 3 . 
9 . (a) 7 seconds; (b) 48 ft/s; 
(c) 1 76 ft/s; (d) 224 ft/s. 
1 1 . (a) 12; (b) 6; (c) 1 8. 
1 3 . 10 seconds. 
1 5 . (a) 3200 gal/min; (b) 2400 gal/min. 



1 7 . drldt decreases as r increases. 

Section 2.5, p. 73 
I .  15 . 3. -5. 
5. 3. 7. -3. 
9. 4. 1 1 . 5 . 
13 . 0 1 5 . f. 
17. (a) 6; (b) 4; (c) -2; (d) O; (e) does 
not exist; (f) ±. 
19. (a) 5; (b) t; (c) O; (d) l ;  (e) l ;  
(f) t; (g) f. 
23. See Fig. 2.20. 
25. (a) Limit = l ;  (b) x = 0.4. 

Section 2.6, p. 79 
I .  (a) None; (b) I ,  - 1 ;  (c) l ;  (d) all 
x < O; (e) all x :s O; (f) none; (g) 3, 
-4; (h) none. [Remember that a 
function is automatically discontinuous 
at every point not in its domain; thus, 
llx is discontinuous at x = 0 even 
though it is a continuous function.] 
3 . t. 5. 3. 
7. t. 9. l .  
1 5 . (a) t at x = TTl6; (b) tV2 at x = 
TTl4; (c) l at x = TTl2. 
1 7. (a) Yes ; (b) yes. 
1 9. (a) Yes, at x = O; (b) yes, at x = O; 
(c) no; (d) yes, at x = 0. 
2 1 .  (a) No; (b) yes, at x = 0. 
23. No maximum, minimum = l .  
25. Maximum = l ,  no minimum. 
27. Maximum = -3, minimum = -8. 
29. No maximum, minimum = 2. 

Additional Problems, p. 81 
l .  b = -6. 
5. (b) Drop the perpendicular from P 
to a point A on the axis of the 
parabola. Draw the circle whose center 
is the vertex V and which passes 
through A. Let B be the second point 
at which this circle intersects the axis, 
and draw the line PB. This line will be 
tangent to the parabola at P. 
7. (a) x = O; (b) x = ±2; (c) x = t; 
(d) differentiable at all points. 
1 3 . m = 2a, b = -a2. 
1 5 . When t = -j-; 8 ft/s. 
19. Does not exist. 
2 1 .  -5. 
23. Does not exist. 
25. Does not exist. 
27. 2. 29. 2. 
3 1 .  -3. 33. +. 

ANSWERS TO ODD-NUMBERED PROBLEMS 

35 . -5 .  
39. 4. 
43 . 1 . 

37. t. 
4 1 .  3a/2. 
45. 0. 

4 7 .  Does not exist. 
49. Does not exist. 
5 1 .  3 .  53 .  0. 
55 .  0. 57 .  1 . 
59 .  lim f(x), Jim f(x), and Jim f(x) 

x->0+ x->0- x--;0 
do not exist. 
6 1 .  Because there are rationals as 
close as we please to every irrational, 
and irrationals as close as we please to 
every rational. 
63 . Slope = 0.693 .  

CHAPTER 3 

Section 3.1, p. 87 
I .  (a) 54x8; (b) 0; (c) -60x3; 
(d) 1 500x99(x400 + l ) ;  (e) 2x - 6; 
(f) x4 + x3 + x2 + x + 1 ;  (g) 4x3 + 
3x2 + 2x + I ;  (h) 5x4 - 40x3 + 
1 20x2 - 160x + 80; (i) 1 2x(x10 + 
x4 - x - I ) ; (j) 1 8x2 - 6x + 4. 
3. (a) v = -6 + 6t, a = 6; (b) v = 
- 9  + 1 8t2, a =  36t; (c) v = 18t - 12, 
a =  1 8. 
5 . y = 7x - 10. 
7 .  ( 1 ,  -2) and c-t, -#). 
1 1 .  a = 1 , 3. 

1 3 . (-:a , c - !:) . 
1 5 .  (a) 3ac < b2; (b) 3ac = b2; 
(c) 3ac > b2. 
1 7 . y - a3 = 3a2(x - a); all a -=F O. 
1 9. y = 12x - 16 and y = 3x + 2. 
23 . ( - 1 , -2). 
Section 3.2, p. 91 
I .  2x. 
3 .  1 5x4 + 57x2 + 6 . 
5 .  1 8x2 + 2x - 1 . 
7. 72x5 + 20x4 + 6x + 1 . 

-2  9. (x - 1)2 · 
4x3 + 12x2 - 1 1 1 . (x + 2)2 

1 3 . 3 - 6x2 1 5 .  ( 1  + 2x2)2 . 

1 7 .  -4x 1 9 .  (x2 - 1)2 . 

-x2 + 2x + 3 2 1 . (x2 + 2x + 1 )2 · 

-4x 
( 1  + x2)2 · 

-3 
(2x - 3)2 ' 

10x3 - 36x2 + 42x 23 . (Sx - 7)2 
288x 10 - 360x5 25 . (24x5 - 5)2 
-x2 - 2x + 1 27. x2(x - 1 )2 
-4 29. -2 . x 

33 . -(x: 30) . x 

2x4 - 2 3 1 .  --3
-· x 

35. (3, 2) and (-3 ,  -2). 
37. Two; (-3 ± Vs)/2. 
39. 4x + Sy = 1 3, Sx - 4y = 6. 
4 1 .  2y = x + 2. 
43 . x - 3y = 2, 3x + y = 6. 
45 . Area = 1 .  
47. (0, 2), ( ± 1 , 1 ) .  

Section 3.3, p .  97  
10 

I . (2 - 5x)3 . 

3. 6(x + 2)(x2 + 4x - 1 )2. 
5 . ( 1 3  - 8x)(5 - x)2(4 + x)4. 

859 

- 1 2  7 · (3x + 1 )5 · 
12(x3 - 1 )3 

9. -36( 1 - 6x)5. 

I I .  -�
x-l-3

�-

13 . 16(2x + 1 )3 [ 1  + (2x + 1 )4]. 
-5(x5 - 5)(x5 - 1 )3 1 5 . x26 

1 7 . 4(x5 - 3x)3 · (5x4 - 3). 
1 9. 6(x + x2 - 2x5)5 · ( 1  + 2x - 10x4). 

4x 21 . ( 12 - x2)3 ' 
23 . 7(x2 + 3x - 5)6 · (2x + 3). 
25 . -6(3x2 - Sx + 2)-7 · (6x - 5). 
27. 4(5x + 3)3(4x - 3)6(55x + 6). 

29 2x(x2 + 9) . (9 - x2)3 . 
3 1 .  2(2x - 3)7(3x2 - x + 2)9(84x2 -
108x + 31 ) .  

-2(2t - 1 )2(t2 - 2t - 9) 
33 . (t2 + 3)3 

72 35 . (5 - 4t)4 . 

37. 5(2x2 + Sx - 3)4(4x + 5). 

39 20(3x + 1 )3 . ( l  _ 2x)5 . 4 1 .  50x - 55. 

43. y = 16x - 15 .  
du du 45. (a) 3u2 dx ; (b) 4(2u - 1 )  dx ;  
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du (c) 4u(u2 - 2) dx .  

Section 3.4, p. 101 
I .  5 cos (5x - 2). 
3. -cos (cos x) · sin x. 

5. 3 sin2 x · cos x. 

7 . ---

1 + cos x 
9. 3x2 cos x3. 

I I . 5 sec2 5x. 
1 3 . sec2 (sin x) · cos x. 
1 5 . 8x( l + tan2 x2)tan x2 • sec2 x2. 
1 7 . 1 5(cos 3x + sin 5x). 
19 . -45(5x - 3)2 sin 3(5x - 3)3 . 

3 2 1 .  cos x 2� 
( I  - sin x)2 ' · · I + cos 3x · 

-x sin x - cos x 25. 
x2 
1 I 27 .  3x2 sin - - 2 cos -. 

x2 x2 
29. 6 sin x cos x (2 - cos2 x)2. 
3 I . cos (tan x) · sec2 x. 

77T  7T 35. 2n7T + 6 or 2n7T - 6• n an 
integer. 
37. (a) The particle starts at s = A 
when t = 0, moves to s = -A when 
t = 7T/k, and moves back to s = A 
when t = 27Tlk. This oscillatory motion 
continues with period 27T/k. (b) v = 
-Ak sin kt. (c) v = 0 when x = ±:A 
and lv l has its largest value Ak when 
s = 0. (d) a = -Ak2 cos kt = - k2s . 

Section 3.5, p. 107 
3x2 

I . -
4y2 . 

3x2 - 4y 
5· 3y2 + 4x ' 

9. -�. 
1 3 . ±: 3  

2\/3x-=I 

17. ±:9x 

2V36 - 9x2 
1 9. �x- 11s 
23. %x-31S 

3. 
l - 7y6 ' 

7. -Ji;. 
2 I I . 

3x2 · 

- 2  1 5 . ( 1  + x)2
. 

2 1 .  -fx-714 

3(x3 - 1 6) J x2 25. 4x3 x3 + 8 . 

9 (x + 2) 1 12 
2 (x - l )s12

. 27 . 

ANSWERS TO ODD-NUMBERED PROBLEMS 

29. (a) x + 4y = 7; (b) x + 2y = 4; 
(c) x + 3y = O; (d) x + 3y = 1 9. 
33. (a) 2x312; (b) 2xs12. 

35. (Vl, V4). 37. �OS X . 3y + 2y 

39. -�Y'--
cos y - x 

cos Vx 
4 1 .  

2Vx 
. 

tan Vx sec2 Vx 
43 .  

45. 

47. 

Vx 

5 sin 2x 
V6 - 5 cos 2x 

3 sec2 (3x - 1 )- 1 12 
2(3x - 1 )312 

Section 3.6, p. 1 10 
I .  (a) 8, 0, 0, O; (b) 1 6x - 1 1 , 1 6, 0, 
O; (c) 24x2 + 1 4x - I ,  48x + 14, 48, 
O; (d) 4x3 - 39x2 + ! Ox + 3, 1 2x2 -
78x + 1 0, 24x - 78, 24; (e) %x312, 
_lfx 112 , Jtx- 112, --jtx-312 
3. (a) n ! ( l  - x)-(n+ I ) ; 
(b) (- l )nn !  3n( I  + 3x)-(n+ I ); 
(c) (- l )n+ ln ! ( I  + x)-(n+ L J. 

(n - I )a"x"-2 
y2n- I 5 . 

7 . (a) t = f, s = 0, v = 1 2; (b) t = 4, 
s = 32, v = 6; (c) t = 1, s = 6, v = 
-3 .  
9. 3 ,  *· 
1 3 .  (a) sin x, cos x; (b) - sin x,-cos x; 
(c) sin x, cos x; (d) -cos x, sin x. 

Additional Problems, p. 1 1 1  
I . ( - 1 ,  10) and (3, -22). 
3 .  ( 1 ,  2) and (- 1 ,  - 2); the smallest 
slope = 1 ,  at (0, 0). 
5. Slope = 4x3 - 4x; x = 0, ±: 1 ;  
- 1 < x < 0, x > I . 
7 . a =  l , b =  l , c = O. 
9. a = I ,  b = 0, c = - l .  
1 3 . a = l , b = - 2, c = 2, d = - I .  
1 7 .  (6, 9), ( -2, I ), (-4, 4). 

-4x -4(x + 1 )  1 9 . (a) 
(x2 _ ! )2 ; (b) 

(x _ 1 )3 
; 

x(4 - x3) -2x2 - 6x - 1 1  
(c) (x3 + 2)2 ; (d) (x2 + x - 4)2 

x2(3 - x2) - 2 (e) 
( I _ x2)2 ; (f) ( I + x)2

; 

1 8x4 - 24x3 - 9 - lO(x + 3) 
(g) (x - I )  2 ; (h) 

(x - 2)3 · 

23 .  (a) (x + 2)(x + 3) + (x + l )(x + 3) +  
(x + l )(x + 2); (b) (x3 + 3x2)(x4 + 4) X 
(2x + 2) + (x2 + 2x)(x4 + 4) X 

(3x2 + 6x) + (x2 + 2x)(x3 + 3x2) X 

(4x3) . 
25. (0, I OVs), (±:3, Vs). 
27 . (2, -2) and (- 1 0, %). 
29. (a) -6(1 + 2x)2(4 - 5x)s( l5x + I ); 
(b) 1 0x(x2 + 1 )9(x2 - 1 ) 14(5x2 + l ) ;  

-2x(2x2 - 19) . (d) -3x6(3 - 2x)2 (c) 
( 1 6  + x2)4 , 

X (4x - 9)(32x2 - 96x + 63). 
3 1 .  (a) y = (x4 + 1 )3 ;  (b) y = 
2(x6 + 1 )6. 
33 . (a) 3 sin ( I  - 3x); 
(b) -7x6 cos (1 - x7); 
(c) sin (cos x) · sin x; 
(d) sin [sin (cos x)] · cos (cos x) · sin x; 
(e) - 4  cos3 x · sin x; 
(f) 90x( I - 3x2)2 cos4 ( I  - 3x2)3 · 

l sm ( I  - 3x2)3; (g) . 1 - sm x 
(h) 1 5  sin4 3x · cos 3x; (i) -4x3 sin x4; 
( j )  1 5  sin x · cos4 x · ( I  - coss x)2; 
(k) - 3  sec2 ( 1  - 3x); 
(I) - 24x2 tan3 ( I  - 2x3) · 
sec2 ( I  - 2x3); (m) - sin (tan x) · sec2 x; 
(n) - cos [cos (tan x)] · sin (tan x) · 
sec2 x; (o) 20x4 tan3 xs · sec2 x5. 

7T . 35 .  2n7T ±: 2' n an mteger. 

39. (a) y -t 0 as x -7 ±: oo ;  

. l l 
(c) 2x sm - - cos -; (d) 0. 

x x 
6x + 5 2 4 1 .  (a) 

3(3x2 + 5x - 1 )2/3
; (b) 5x315 ; 

x 112 
(c) l ,  - -;\-; (d) 

(8 _ x312) 1 13 · 

43 . (a) y = 10x - 1 9; (b) x - 4y +  
9 = 0;  (c) 1 2x - 1 3y = 1 1 ; (d) y = 
- 2x - 1 5. 
47 . (a) -2( 1 + 3x)-513 ;  

(b) 
x + 4 4 -6/S. 

4(x + 1 )512
; (c) -25x , 

(d) l}-x312; (e) -±x-312 + fx-s12; 
(f) 20(x2 + l )(x2 + 4) 112 .  
53 . (a)  -20 cos x + x sin x ;  
(b)  - 362 sin 3x. 



CHAPTER 4 

Section 4.1, p. 1 19 
I .  

( 1 , - 1 )  

3 . 

5 . 

(0, I )  

7 .  

9. 

4 
3 

(- 1 , - 1) 

l ] ,  

- I  

ANSWERS TO ODD-N UM B ERED PROBLEMS 

1 3 . 

1 5 . 

1 9 . 

2 1 .  (a) 

(b) 

(c) 

(d) 

Ji 
- I  I 

I :A 
(2.2) 

/ 
/ / / 

/'. 

/. / / 

( L I )  

(- 1 , 2) 

(2,- 1 )  

-2 

/ 
/ / 

23. (0, 3), ( 1T, - 1 ), (27T, 3) and 
ch. -%). ct1T. -i) . 

8 6 1 

27 . max = %V3 at x = .!'.:.; min = 6 
3 . � 5 7T  -2v3  at x = 6· 

29. 125. 

Section 4.2, p. 122 
I .  

3 .  

5 . 

7 . 

9. 

I I .  

13 

-2 - I  

� 4++=--
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1 5 . (a) 

(b) 

1 7 .  (2, 0). 1 9. a =  3 . 
23. (a) a >  O; (b) a <  0. 
25.  (a) 

(b) 

(c) 

(d) 

-2 I 2 3 

2 - - - - --- -- - - - -

- 2  

I 
- - - - - - - 1- - - -

2 I 
I I 

27. (a) PI x = 7T, CU 0 < x < 7T, 
7T 3 7T  CD 7T < x < 27T; (b) PI x = 4' 4' 

57T 77T 7T 7T 4' 4' CU 0 < x < 4' CD 4 < 

37T 37T 57T 57T  x < - CU - < x < - CD -
4 , 4 4 ' 4 

77T 77T < x < 4• cu 4 < x < 27T; 

( c) PI x = 7T, CD 0 < x < 7T, CU 7T < 
x < 27T. 

ANSWERS TO ODD-NUM BERED PROBLEMS 

Section 4.3, p. 129 
I . }. 7. alb. 
9. $8.50. l l . 2 P.M. ;  30 mi. 
1 3 . 4, 4. 1 5 . 108. 
17 . 4 by 8 in . 19. 1 .  
2 l .  24 in. 23. v3. 
25. fa. 27. 1 .  
29. (a213 + b213)312 (convince yourself 
that this and the preceding problem are 
essentially the same). 

3 1 .  Vmin = .;/¥. A = 27T J'fa. 
33. }CB + H)2. 

Section 4.4, p. 137 
I .  1 .  3. �R. 
5. 4 by 4 in. 7. }. 
9. ( 1 ,  1 ) .  
1 1 . (a) t mi ;  (b) l h and 44 min; 
(c) 8 min longer. 
1 3 . 1 5/VlO mi/h. 
19. 1 .  2 1 .  a = 2 .  
23. x = ±v2 a. 25 . (a) O; (b) 1 .  
27. (2, 4) . 29. Amax = f'\1'3. 
3 1 . The spider should walk straight to 
the midpoint of a side not containing S 
or B, then straight on to B. 
Section 4.5, p. 142 
I .  (a) l 207T ft2/s; (b) 2407T ft2/s. 
3. 2/7T ft/min. 
5. 4 ft/s at each of the stated 
moments. 
7. 3 ft/s .  9. 4t ft/s. 
1 3 .  52 mi/h. 
1 5 . t lb/in2 per min. 

17 . (a) _!_ in/min; (b) -1- in/min. 7T 2-o/27T 
l 'n/ 19 . 5 7T I S. 

2 1 . 2/(-o/2 - 1) = 7.69 h. 
23. 40v2 ft/min. 

Section 4.6, p. 146 
3. 0.6 1 8034. 5. 2. 1 54435. 
7. 1 .305407 ft. 
I l .  0.9 1 8247 and 2.8635 80. 
13. (a) 1 .236123; (b) 0.876726. 

Section 4.7, p. 155 
I . $43/unit; $43.03. 
3. $80/unit; $80. 14. 
5.  $ 193 .89; x = 89. 
7. $0.85 ;  x = 232. 
9. $0.3 1 ;  x = 93. 1 1 .  200. 

1 3 . 5000. 1 5 . 345. 
1 7 .  (a) p = 1 10 - ix; (b) $55. 
1 9. $ 1 60. 2 1 .  $ 16. 
23 . $573.33; x = 20. 
25. 636. 

Additional Problems, p.  156 
I .  

3 . 

- I  

5 . 

(-2. - 24) 

7 . 

9. 

I I .  <-'2. 4) 

(3. - 1 1 ) 

(/2. 4) 

li 



1 3 . 
I 
I ( 1 . -i) 

- 1  I 

\i 
15 . (-12. I )  (ll. I )  

1 7 . 

- 2  

1 9. - - - - - - - s _ _ _ _ _ _  _ 

2 1 .  {), 9) 

23. 

25 . (-2. 18) 

(2. - 14) 

ANSWERS TO ODD-NUMBERED PROBLEMS 

27. 

-4 

(-3, -27) 

29. 

3 1 .  

33 . 

863 

79. A square with side t(a + b -
Va2 - ab + b2) . 
8 1 .  v2. 
83 . 3 by 6 by 1 2  inches. 

bs 'f h' b 85. a - � m, 1 t 1s num er 

is positive. 
87. x2 + y2 = 32. 
89. (3 , 3). 
9 1 .  (5, 0) and ( -5, 0). 
99. (a) 12 ft/s ; (b) 3 ft/s. 
I 0 I .  ll7r ft/min. I 03. At least 9 ft. 

1 07. dy = ax in/s. dt y x2 + r2 
1 09. 0.32 lb/min. 
1 1 1 . 14471" m3/min. 
I 1 5 . Decreasing 1 in2/min. 

1 1 7 . When t = 
Ro Vb - roVa . 
aVa - bYb 

1 1 9. (a) 3.3 1 6625; (b) 1 .903778 ;  
(c) 2.087798. 
1 23. 1 .856636 in approximately. 
1 25. $42. 1 27. 30. 

CHAPTER 5 

- I  Section 5.2, p .  169 

35. 

37. (a) Point of inflection at x = 1 ;  
(b) points of inflection at x = 1 ,  2; 
(c) points of inflection at x = -2, 0, 1 ,  
2, 3 . 
39. a =  -3. 4 1 .  tv'i 
43 . x = 2 1 ,  y = 35. 
45. 1 8  = 1 6  + 2. 47. 5, 5, 5. 
5 1 . tv3 a, th. 59. 2 in. 
63. 4000 knives at a price of $ 1 8  
apiece. 
65 . 20 days. 
67. (a) 1 20 ft; (b) 3 1 2  ft. 
69. ±. 7 1 .  v2. 
73. 7r/4. 75 . 4. 
77. 4/7r. 

I .  (63x8 - 1 5x4) dx. 
(2x - 3x3) dx 3 . � 
(2 - x) dx 5. . 
Y4x - x2 

7. (2x- ll3 + 2x-415 - 17) dx. 
( 15x2 + 8x) dx 9. 

2V3x + 2 

1 1  dy = ' dx 
- 15(3u2 - 2u + l )x2(x3 + 2)4 

(u2 - u)2 

1 3 . M = 27rr 6.r + 7r 6.r2 and dA = 
27rr dr = 27rr 6.r, since dr = 6.r. 
Imagine that the thin circular ring i s  
cut across and unrolled-with slight 
distortions-into a long thin rectangle 
with length 27rr and width /::,.r. 
1 5 . 1 2, 12.048064. 
17 .  1 6. 167, 1 6. 1 66236. 
19. 26.75, 26.74961 2. 
2 1 .  6.019, 6.0 1 8462. 
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23. 0.849, 0.848048. 
25. 1 .037 mi. 27. 125.66 ft. 
Section 5.3, p. 1 77 
I . tx2 + x + c. 
3. }x3 + ix4 + *x5 + c. 
5 .  2Yx + c. 7. *x714 + c. 
9. fx213 + c. 
1 1 . tx312 - 2Vx + c. 
1 3 . 6Yx + fx312 + c. 
1 5 . }x3 + ·h6 + c. 
1 7 . 7x + tx2 + c. 
1 9  tx6 + 3x2 - 5x + c. 
2 1 .  -2x-2 + c. 
23. tx312 - 4x7/2 - 3x- 1 + c. 
25. 9x 1 13 - 1 6x 114 + c. 
27. 2Yx - t\Jx 1013 + c. 
29. x4 - 4x2 + 1 7x + c. 
3 1 . Jtx 1013 + fx 7/3 + 3x413 + c. 
33. fx312 _ ¥x712 + *x i 112 + c. 
35. +xsoo + c. 
37 . t(3 + 4x)312 + c. 
39. -t(2x - 3)- 1 + c. 
4 1 .  -t\/5 - 4x2 + c. 
43 . w + Vx)S/4 + c. 
45 . }(l + x2)3/2 + c. 
47. t(7 - x)-6 + c. 
49. -}(2 - x2)312 + c. 
5 1 .  2� + c. 
53 . Jfo( I Ox +  1 0) 1 1 + c. 
55 . -fs(3x2 + 4)512 + c. 
57 . 4Y3x3 - x + 2 + c. 
59. +x 15 + c. 6 1 .  y = x3 + 2. 
63 . Ca) t sin 2x + c; (b) -+ cos 5x + 
c; (c) 2 sin 2x - 3 cos 5x + c; 
(d) -+ cos 2x + i sin 5x + c. 
65 . (b) tx - t sin 2x + c. 
67. (a) + sin5 x + c; (b) -i cos6 x + 
c; (c) sin (sin x) + c. 
69. (a) t sin2 x + c; (b) -+ cos2 x + c. 
They differ by a constant. 
Section 5.4, p. 1 81 
I . y = 2x3 + 2x2  - 5x + c. 
3 . y = 6x4 + 6x3 - 4x2 + 3x + c. 
5 . 3y2 - 4y3i2 = 3x2 + 4x312 + c. 
7 . y = _ _!_ + _!_x2 + c x 2 . 

I 9. y = -5--2 · - x  
�---

2x2 - 3 1  1 1 . y = 33 - 2x2 · 

ANSWERS TO ODD-NUM BERED PROBLEMS 

1 3. 3Vy = xVx - 3. 
Section S.S, p. 187 
I .  8 s; velocity = - 1 28 ft/s and 
speed = 1 28 ftls. 
3. v = - 32t + 1 28; s = - 1 6t2 + 
1 28t. 
5. lOVlO s . 7. 40 ft/s . 
9. 96 ft/s. 
I I . vo2164 ft; 96 ft/s. 
Additional Problems, p. 1 88 
I . fx5 - f x4 + IOx + c. 
3. }x3 - fx2 + x - 4Vx + c. 
5. h4 + tx3 + tx2 + c. 
7 . 1 7x3 - 27x4 + c. 
9. 6x - tx312 - h2 + c. 
1 1 . -%(2 - 3x)312 + c. 
1 3 . 8;5 (5x + 2) 165 + c. 
1 5. 5� + c. 
1 7 . }Y2 x3 - I + c. 
1 9. i<x2 - 2x + 3)213 + c. 
2 1 .  -fV2 - x2 + c. 
23. -+ ( 1 + � )3 + c. 
25. t(x + 1 )713 + c. 
27. t( l + x)7/3 - %(1 + x)4/3 + c. 
29. fJ(x3 + x + 32) 1 1 12 + c. 
3 1 .  fs-(x3 - I )413(4x3 + 3) + c. 

7x2 - 3 33. (a) y = 3x2 + 1 3  ; 

(b) 3\/Y-=-4 = (x - 1 )312 - 2. 
35 . x2 - y2 = c. 
39. (a) 25 s , 1 200 ft/s; (b) 25\/2 = 

35 s, 800\/2 = l 120 ft/s. 
4 1 .  30 mis. 
43. (a) 44 ft; (b) 680 ft. 
45. About 1 .86 mi About 0.36 in. 
47. About 1 79,427 mils. 

CHAPTER 6 

Section 6.3, p. 196 
I . (a) 55 ;  (b) 62; (c) 206; (d) O; (e) O; 
(f) 1500; (g) 7. 
S . (a) (n � l )n ; (b) (n - l)n�2n - I )

; [ (n - l )n ]2 (c) 2 . 

Section 6.6, p. 212 
I .  9. 3 .  ¥-. 
5 . 12. 7. -¥-. 

9.  48Vll5. I I .  � 
3 . 

1 3 . 1_l_ 1 5 . 26 2 · 3· 
1 7. 33 .  1 9. 26 3· 
2 I .  4 23 . 2 9· 3· 
25 . 1 .  27. 13  3· 
29. 5 -2 3 I .  I 4Ba 6· 
33 .  a414. 35 .  b216. 
37. _I_ 39. I 30 • 2· 
4 1 .  3 .  
Section 6.7, p. 216 
I .  (a) -¥-; (b) ±f-; (c) 1 9 ;  (d) Jf. 
3. 128 1 3. 7Ta212. 5· 
Additional Problems, p. 217 
7. (a) f ; (b) -¥-; (c) 1 2; (d) 5Vsl3; 
(e) fa-. 
9. (a) 4(2\/2 - I ) ; (b) f; (c) 3; (d) f. 

4x3 2x I I . (a) I + x4 ; (b) �; 

(c) 3x2 ; (d) 5x9 
V 3x3 + 7 VI+:0l .  

CHAPTER 7 

Section 7 .2, p. 224 
1 .  f. 3 . t. 
5 . ¥-. 7. *\/2. 
9. 4 .  I 1 . 36. 
1 3 . 
1 7 . 
2 1 . 

l2. 
3 . 
1;s\/2. 
� 

3 . 

1 5 . 8 . 
1 9 . 320 3 
23 . (a) Ji; (b) f. 

]]_ 25 . 4 .  
27. 2(Vb - I ) � oo as b � oo. 

29. (a) 2(\/2 - l ) ;  (b) t(3\/3 -

\/2 - 3)· (c) 57T2 + _!_\/2 - 2 ' 32 2 . 
4 V2 - 5 2 - 895 2 33 . 3 a = (0.2 I )a . 

Section 7.3, p. 229 
I . (a) 87T; (b) 167T/ 15 ;  (c) 37Tl5; 
(d) 27Tl3; (e) 87Tl3 ; (f) 167Ta3/105. 
5 .  47T. 7. fa3. 
9 . �a3. I I . 2TT2a2b. 
1 3 . i\/3 a3. 1 5 . 9Yll2. 
1 7 . �a3. 1 9 . 5m:2 in3 . 

2 1 . (a) The volumes are LH A(x) dx 

and LH B(x) dx, which are equal 

because A(x) = B(x) for every x. 



25. y = ax4. 

Section 7 .4, p. 235 
3 . 1 28 7T/5. 5. 4867T/5. 

87T  ' �  7 .  27".,b - a). 9 . 3 (2 - v 2). 

1 1 . (a) 87T; (b) 2567r/ l  5 .  
13 .  7Th3/6. 1 5 . 87T/9. 
I 7. By a factor of 1 . 7 1  , 
approximately. 

Section 7.5, p. 240 

1 .  i? c 1ovlo - 1 ). 
3. ¥. 
7. 1 2 . 

Section 7.6, p. 244 

5 .!!.I . 9 . 

I .  2537T/20. 3. l 27T. 

5 . ; ( lOvlo - I ) . 

87T ' � 7. 3 (2v2 - l )p2. 

9 f7Ta2 . I I . ( 0, ! a). 
1 3 . (a) y = � a; (b) area = 47T2ab. 7T 

Section 7.7, p. 249 
I .  64 ft-lb. 3. 6000 ft-lb. 
5. 550 ft-lb. 7 . 50,000 ft-lb. 
I I . (b) 250 ft-lb. 1 3 . 5 ft-lb. 
1 5 . GMm/2a. 1 7. mgRhl(R + h). 
1 9. 2407TW ft-lb. 2 1 . t7Ta3w(h + a). 
23 . About 1 1 8,500. 
25. m, = im2. 

Section 7 .8, p. 254 
I . 1 50  tons. 3. 1 25 tons. 
5 . t ton. 7 . i tons. 
9. 3007T lb. 
I I . 1 oft tons; 1 1  ft. 
1 3 .  300v'2w or approximately 
1 3 . 2  tons. 

Additional Problems, p. 254 
I . }. 3 .  \2ss · 
5 . 36. 7. 1�5 • 

9. 1 8. 1 1 . f. 
1 3 . 64. 1 5 . ¥. 
1 7 . 1�6 . 
1 9. (a) 567T/ 15 ;  (b) 567T/ 1 5 ;  (c) 327T/3 ; 
(d) 487T/5 ; (e) 7Ta3/ 15 .  
2 1 .  (a) 5 1 27T/ l 5 ;  (b) 1 287T/3 . 
23 .  fa3. 25. t7T(b5 - a5). 
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27. (a) 27Ta3; (b) f7ra3; (c) *7Ta3. 
29. a2h. 3 1 . ta2h. 
33 .  1 287T/3. 35. l l 7T/ 15. 
37. I 357T/2. 
43. �. 
47. Jf. 
5 1 .  AB = .tz. 
55. 1 687T. 
59. 7 ft-lb. 
63. 945 . 2 1 3 ft-lb. 
65. 36274 aB. 

39. 27T. 
45. �-
49. 4�5 . 
53. 907T. 
57. 7Ta2/2. 
6 1 .  2325 ft-lb. 

67. � c, where c is the constant of 
proportionality. 
69. 1 257TW/6. 
73 . 1 0  tons. 
77. 1 87 .5 tons. 
8 1 . 4096 lb. 

CHAPTER 8 

Section 8.2, p. 263 

7 1 . if .  837TW ft-lb. 
75 . t ton. 
79. 60 tons. 

I . (a) log4 1 6  = 2; (b) log3 8 1  = 4; 
(c) logg 1 9 = 0.5 ; (d) log32 16 = i. 
3. (a) 4; (b) 6; (c) -4; (d) f. 
5 . (a) a = 32; (b) a = -k; (c) a =  6; 
(d) a = 49. 
9. (a) 7; (b) acidic pH < 7, basic 
pH > 7. 

Section 8.3, p. 269 
I .  tcex - e -x). 3 . (x2 + 2x)ex. 
5 . e•·'ex. 7. xeax. 
9 . 4x2e2x. I I .  te3x + c. 
1 3 . 5exlS + c. 1 5 . 2ex' + c. 
1 7 . (a) Max. pt. (0, 1 ), no min. pt., 

pts. of inf!. ( :!::f v'2, �} (b) no 

max. pt., min. pt. (-3 ,  -�). pt. of 

inf!. (-6, - e
6
2 ) . 

1 9. +(eh - e -b) . 
23 . Area = 1 - e -b -7 1 as b -7 =. 
25 . (a) e; (b) e; (c) e; (d) e2; (e) Ve. 
29. 8%. 

Section 8.4, p. 276 
I .  (a) 2; (b) 3; (c) l/x; (d) l/x; (e) -x; 
(f) l /x; (g) x; (h) 3x; (i) O; (j) 4; (k) t; 
(1) O; (m) x3y2; (n) 8 ;  (o) 2e3; (p) x2ex. 
3 _ (a) y( l  + 2x) ; (b) y( l  + xy) . x(3y - 1 )  x( l - xy) 
5. (a) t In (3x + 1 )  + c; 

(b) i In (3x2 + 2) + c; (c) tx2 + 
2 In x + c; (d) x + In x + c; 

(e) x - In (x + 1 )  + c; 
(f) t In (x2 + 1 )  + c; 
(g) -t In (3 - 2x2) + c; 
(h) In x(x - l )  + c; (i) ton x)2 + c ;  

( j )  I n  (In x)  + c; (k) 2 In (Vx + I )  + 
c; (!) In (ex + e -x) + c. 
9 . No max. ,  no pt. of inf! . , min. 
(3, 9 - 1 8  In 3 )  = (3, - 1 1 ). 

I I .  7T In 4. . ( 1 1 ) 1 5 . mm. -;• --; . 

17. ! /Ve. ( 2x 3 ) 1 9. (a) y 1 + -- - -- ; x2 - I 6x - 2 
y ( 2x 1 ) (b) S x2 + 3 - x + 5 · 

2 1 .  (a) xx'xx [ � + (In x)( I + I n  x) J 
,x/ ( 1 - In x ) ,e/ (b) vx x2 . Max = v e. 

Section 8.5, p. 282 
I . (a) 2520; (b) 1 3 .8. 
3 .  20. 1 .  5 .  95.8 percent. 
7. When t = 6. Can you solve this 
problem without calculation, by 
merely thinking about it? 
9. x = JO(i)'. 1 1 . 2 more hours. 
1 3 . (a) About 3330 years ( 1 380 B .C.) ;  
(b) about 3850 years ( 1 900 B .C . ) ;  
(c) about 1 0,5 1 0  years; (d) about 70 1 0  
years. 
1 5 . x -7 A if A < B; x -7 B if A > B. 

Section 8.6, p. 287 
I .  tN,. 

X(}X1 3. x = xo + (x1 - xo)e-cx, t .  

5 . s = Vo ( 1  - e-ct). c 
7. When v < 1 ,  the resisting force in 
the second case becomes very small. 
9. About 53 .4 lb. 

Additional Problems, p. 288 

l . -xe�/� . 
3. (2x - 2)ex'-2x+ 1 . 

eYx l , ;-;: 
5. -- + - v ex. 

2Yx 2 

7. -1-e-3-' + c. 9. -e 11x + c .  

I I . 2V'7+! + c .  
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1T 1 3. ( l/a, e). 1 7 . 2 (e6 - 1 ). 

y(3x + 1 )  y(2x2 + 1 )  23. (a) x(2y2 - 1 )  ; (b) x(l - 3y) . 

25. (a) t In ( 1  + 2x) + c; (b) -f In 
(I  - 3x) + c; (c) t In 2; (d) t In 10 ;  
(e) I n  3; (f) 2� + c ;  (g) t In 7 ;  
(h) -t I n  ( l  - x2) + c; (i) t (In 3 )2 ; 
( j )  t In (3x2 - 3x + 7) + c; (k) In 
(ex + l )  + c ;  (I) In (x + l )(x + 2) + c; 
(m) t (In x)3 + c; (n) ± (In x)2 + c;  
(o) t [In (In x)]2 + c; (p) -i {In x)2 + c. 

3 a /6 29. 2a + 4 In 2; a = y J;;Z· 
3 1 .  (a) (In l O) l OX; (b) (In 3)Y; 
(c) (In 7r)7rx; (d) (3 In 7)73x; 
(e) (In 6)(2x - 2)6x2-2x; 

(f) ( In 5 )5vx. 
2Vx 

33. Max. at x = 1� 5 ; pts. of inf!. at 

2 ± v'2 x = In 5 . 

35. (a) (In x)X [ ln
l 
x + In (In x) l 

(In x)In x (b) (2 In x)xin x- l ;  (c) --- X x 
XvX I [ l  + In (In x)]; (d) - (l  + 2 In x); 
Yx 

X'(.I;: I (e) 213 (1 + 3 In x). x 
37. In the year 3524, approximately. 
39. In 4 more hours. 
4 1 . 73. l 2°F. 
47. 17 more days. 
49. v2 = .s_ ( l  - e-2cs); v -t  {i._ as 
s -t oo. c .Y '";; 
5 1 . When t = 4.86 min; when t = 
2 1 .50 min. 
53. About 1 .39 h. 

CHAPTER 9 

Section 9.1, p. 299 
I . (a) 1T/ l2; (b) 77T/ l2 ;  (c) 27T/3; 
(d) 57r/l2; (e) 57r/6; (f) 37r/4; 
(g) 5 7T/4; (h) 7 7T/6; (i) 77T/2; (j) 5 7T. 
3. 8 = 2 radians. 
5. A =  25 cot to. 
7. H = L tan 8. 
I I . sin 3 8 = 3 sin 8 - 4 sin3 8, 
cos 3 8 = 4 cos3 8 - 3 cos 8. 

ANSWERS TO ODD-NUMBERED PROBLEMS 

1 3 . sin 48 = (4 sin 8 - 8 sin3 8) cos IJ. 
1 5 . (a) t(V6 - v'2); 

(b) t v' 2 - \/3. Show that these 
numbers are equal. 
17 . (a) 0, 27r; (b) 7T/2, 37T/2; (c) 'TT. 

'TT 27m 'TT 27m 19 . (a) 8 = 4 + -3- or 12 + -3-

for ail integers n; (b) IJ = ( 1  + 2n)51T 
. 7 7T  27m for all mtegers n; (c) IJ = 30 + -5-l I 7T 2mi . or 30 + -5- for ail mtegers n. 

35 . For a proof by geometry, use the 
fact that the vertex opposite the fixed 
side must lie on a circle of which this 
side is a chord. 
37. f v'2 ft. 

Section 9.2, p. 304 
I .  3 cos (3x - 2). 
3. 48 cos 1 6x. 5. 2x cos x2. 
7. 15(cos 3x - sin 5x). 
9. x cos x + sin x. 
I I .  t sin 1 2x. 1 3 . cos5 x. 
1 5 . 3e2x cos 3x + 2e2x sin 3x. 
1 7 . -tan x. 2 1 .  45°. 
23 . 5 . 
3 1 .  'TT/3, tangent = 3. 
33. I .  35. I .  
37. t. 39. l .  
4 1 .  l .  43 . - 1 .  

Section 9.3, p. 309 
I .  -t cos 5x + c. 
3. t cos ( 1  - 9x) + c. 

5. sin2 x + c or -cos2 x + c or 
-t cos 2x + c. 
7. t sin4 2x + c. 9. ± sin8 tx + c. 

1 1 . -2 cos Yx + c. 

1 3 . t sin (sin 2x) + c. 

1 5 . f sec ( 2x; 1 ) + c. 

1 7. -In (cos x) + c. 
1 9. sin (x2 + x) + c. 
2 1 . t. 23. v'2 - 1 .  
25. f. 
29. t7T2. 

Section 9.4, p. 31 1  
I . Sx sec2 4x2 . 

27. 3 .  

3. 2 tan (s in x) · sec2 (sin x) · cos x. 
5. 0. 
7. 24 csc ( - 6x) cot (-6x). 
9. -v'csc 2x cot 2x. 

I I .  
1 3 . 
1 5 . 
1 7 . 
1 9. 

sec2 x e1•n x. 

- t  cot 6x + c. 

-t cot 2x + c. 

t tan5 x + c. 

--:\- csc 7x + c. 

2 1 .  I 23. t<'TT - 2). 2· 
25. 2 .  27. 4\/3; no. 
29. 3 .2 7T mils. 3 1 .  (c) 66°. 

Section 9.5, p. 318 
I .  tv3, -fv3, -v3, fv3, -2. 
3. (a) 'TT; (b) 7T/2; (c) 0 . 1 23; (d) 0.8; 
(e) 0.96; (f) 7T/7; (g) 7T/6; (h) 7T/4. 
5 .  1 /(25 + x2). 

7. 1 9. sin- I x. 
Yx(x + l )  

4 1 1 . (sin - I x)2. 1 3 . 5 + 3 cos x 
1 5 . 7T/6. 1 7 . t sin-I 2x + c. 

1 9 . 7T/8 . 2 1 .  t sin- 1  fx + c. 
23 . i tan- 1 fx + c. 

25 . - 7T/12 . 27 . 'TT/4. 
29. (a) sin- I t; (b) ± rad/s. 
3 I . The formula is invalid, because 
the integrand 1/� is 
discontinuous at the point x = l in the 
interval of integration. 
33 . 47T2a2. 

Section 9.6, p. 323 

I .  (a) x = 5v'2 sin (r - ;). 

A =  5v'2, T =  27T; (b) x = 

2 sin (3t + 231
T) . A =  2, T = 

2
3
7T; 

(c) x = v'2 sin (r + ;) . A =  v'2, 

T = 27T; (d) x = 4 sin ( 2t - ;) . 
A =  4, T = 7T. 

3. A =  � in; T =  ;. 

5. T = 2 7TJB; = 89 min. 

7 . About 39 in. 

Section 9.7, p. 329 
I . (a) t; (b) f; (c) *· 
1 3 .  3x2 cosh x3. 
1 5 . 6 csch 6x. 1 7 . 0. 
19. t cosh (5x - 3) + c. 
2 1 .  2V2 sinh h + c. 



23. x - tanh x + c. 
29. � sinh 1 .  a 

Additional Problems, p. 330 
I . - 9  cos (1 - 9x). 
3 . -2 sin x cos x = - sin 2x. 
5 .  - 10 sin 5x cos 5x = -5 sin lOx. 
7 . -6 sin 6x. 
9 . -x2 sin x + 2x cos x. 
1 1 . x cos x. 
1 3 . (sin x)[sin (cos x)]. 
1 5 . - (cos x)[sin (sin x)] .  
1 7 . cos x. 25. 0. 
27 . I .  29. 2. 
3 1 . t 33 .  2. 
35 . 7T/4. 37 .  f sin 3x + c. 
39. -2  sin ( 1  - tx) + c. 
4 1 .  ft sin6 3x + c. 
43 . -f cos 3x + t cos3 3x + c. 
45 . f sin x3 + c. 
47. t cos (cos 2x) + c. 
49. -+ csc 4x + c. 

1 5 1 .  + c. 
2(3 + 2 cos x) 

53 .  -f Y7 - sin 5x + c. 
55. +. 57 . t. 
59. 2v'2. 6 1 .  2 17T. 

67. 1 2  sec2 3x. -csc2 2x 69. 

7 I .  4 sec2 x tan x. 
73 . - 10 cot 5x csc2 5x. 

75 . tan _!_ - _!_ sec2 !. 
x x x 

VCOth 

77. � + tanVx . 
4Vx 

79. sec2 x sec2 (tan x). 
8 1 .  -3 csc tx + c. 
83. -t cot 3x + c. 
85. -+ csc4 x + c. 
87. -+ cot4 x + c. 
89. 47T/3. 9 1 .  300 km/h. 
93. (a) -7T/3; (b) 7T/3; (c) - 7T; 
(d) 0.7; (e) 0.7; (f) - 1 ;  (g) 7T/3. 

95. 1 x4 
V25 - x2

. 97. -1--1-0 ·  + x  

99. 1 0 1 .  l + x  
x� 1 + x2 · 

103 . Yx2-=I I 05. 7T/2. 
x 

ANSWERS TO ODD-NUMBERED PROBLEMS 

1 07. _l_ tan- 1 Vsx + c. 
v5 

1 09. t sin- 1 tx + c. 

I I I .  + tan - 1 x4 + c. 
I I 3. 36 ft from the point on the road 
closest to the bill board. 
1 1 5. 2'sso rad/s. 
1 1 7. T = 2 7T/\!2; = 0.56 s. 
1 1 9. A =  5 , f =  l /7T. 

CHAPTER 10 
Add a constant of integration to the 
answer for each indefinite integral in 
this chapter. 

Section 10.2, p. 339 
I . -t(3 - 2x)312 .  
3 . t In [ l + ( In x)2]. 
5 . -t cos 2x. 
7. t In [sin (3x - ! )] .  
9. t<x2 + 1 )312 . I I . tesx. 

1 3 . -t cot (3x + 2). 
1 5 . 2. 1 7 . 2V1 - cos x. 
1 9 . e'an- • x. 2 1 . t sec 5x. 
23 . ton x)2. 25. In 2. 
27. sin- 1 ex. 29. t sin3 x. 
3 1 . In ( 1  + ex). 33 . -t In (cos 3x). 
35 . 4�. 37. tan- 1 ex. 
39. +<ex + 1 )7 . 4 1 . t tan 5x. 
43. -t csc 2x. 45. 4(v'2 - 1 ) .  
47. f. 
49. (a) n = 3, ±ex'; (b) n = 2, f sin x3; 
(c) n = - 1 , ton x)2; (d) n = -t, 
2 tan Vx. 

Section 10.3, p. 344 
I .  tx - + sin 2x. 
3. ftx + + sin 2x + i4- sin 4x -
;/s sin3 2x. 
5 .  -t cos3 x + t COSS x. 
7. sin x - f sin3 x. 
9. t sin312 x - t sin712 x. 
1 1 . fx - i sin 1 2x. 
1 3 . t. 
I 5. + sec 7 x - t secs x + t sec3 x. 
1 7. -cot x - x. 1 9. -+ cot 4x. 
2 1 .  -t cot 2x - t csc 2x. 
23 . t sin 3x. 
25. (a) tan x - x, f tan3 x - tan x + x, 
t tans x - t tan3 x + tan x - x; 

867 

(b) t tan2 x + In (cos x), + tan4 x -
t tan2 x - In (cos x), i tan6 x -
+ tan4 x + t tan2 x + In (cos x). 
27. (a) 7T2/2; (b) 7T; (c) (47T - 7T2)/8; 
(d) 3 7T2/1 6. 
29. t[sec x tan x + In (sec x + tan x)]. 

Section 10.4, p. 348 
x Ya2 - x2 I .  -sin- 1 - - ----a x 

1 x x 1 - tan- 1 - + ----- · 2a3 a 2a2(a2 + x2) · 

5. -f�(x2 + 18) . 

7. � ln C
+
�) . 

9. In (x + Yx2 - a2). 
I I . h Y a2 + x2 + 

ta2 In (x + Ya2 + x2). 

1 1  __!__ I a + x  
- · 2a n a - x · 

1 5 . Ya2 + x2 -

( a +  Ya2 + x2 ) a In . x 

. ;-;;--;; Y x2 - a2 1 7 . Jn (x + vx2 - a2) - ---x 

1 9. t [a4 sin- 1  � + 

Ya2 - x2(2a3 - a2x)]. 

2 1 .  -V4 - x2. 1 x 23. - tan- 1 -. 

25. -f(9 - x2)312. 
a a 

27. Y9 + x2. 3 1 .  27T2ba2. 
33. 3 - v'2 + Jn (1 + tv'2). 

Section 10.5, p. 350 
I .  sin- 1 (x - 1 ). 3. tan- 1  (x + 2). 
5 . -V2x - x2 + 2 sin- 1  (x - 1 ). 

7. ¥ sin- 1 ( x; 3 ) - 6Y6x - x2 -

t<x - 3)Y 6x - x2. 
9. t Jn (x2 + 2x + 5) + (x + 1 ) 3 tan- 1 -2- . 

1 1 . In (x - 1 + Yx2 - 2x - 8). 
13 . t In (2x + 1 + V 4x2 + 4x + 17) . 

15 . x - 1 
4Yx2 - 2x - 3 
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Section 10.6, p. 356 
1 I 2 I . (a) x + I + --1 , 2x + x + x -

ln (x - I ) ; (b} fx2 - ix + z\- -
8 2'i 1 3 1 2 4 --- -x - -x + -x -3x + 2 , 9 9 27 

8 x ST ln (3x + 2); (c) x - -2--1 , x + 
I 2 I 2 J 2x - 2 In (x + I ) ; (d) I + x + 2 , 

2 x + In (x + 2); (e) I - x2 + 1 , 

x - 2 tan-I x. 
3 .  3 In (x - 3) + 4 In (x + 2). 
5 . 5 In (x - 7) - 3 In x. 
7 .  2 In x - 4 In (x + 8) + 
3 In (x - 3). 
9 . 3 In x + 2 In (x + 1 3) -
In (x - 3). 

2 
1 1 . -In (x + I ) - --1 - 3 In x. x +  
1 3 . 2 In x + t In (x2 + 2x + 2) -
6 tan- 1 (x + 1 ). 

I 5 1 5 . x + 2 In (x - I )  - 2x _ 2 + 

t ln (x2 + 1 ) + 2 tan- I x. 
1 7 . tx2 - 2x + 4 In (x + 2). I 9. tx2 - 2x + 5 In (x + 2). 

2 I .  t In ( ::� : � ! ) . 
2 3 . ± in (::��)· 
2 9. X = 

XO . 
xo + ( 1  - xa)e-k' 

S ection 10.7, p. 362 I .  tx2 In x - ±x2. 
3. tx2 tan- I x - tx + t tan- I x. 
5 . tex(sin x - cos x). 
7 . tx� + t sin- 1 x. 
9 . tx2 sin- 1 x - ± sin- 1 x + 
t�. I I . tx sin (3x - 2) + t cos (3x - 2). 
1 3 . x tan x + In (cos x). 
1 5 . x In (a2 + x2) - 2x + 2a tan-I �. 

I a 
1 7 . 2(ln x)2. 1 9 . 7T(7T - 2). 
23. (b) x(ln x)s - 5x(ln x)4 + 
20x(ln x)3 - 60x(ln x)2 + 120x In x -
120x. 
25 . 27T[Vl + In (Vl + ! )] .  

ANSWERS TO ODD-NUM BERED PROBLEMS 

Section 10.8, p. 368 

1 . -�. 

3. t sin3 x - f sins x + t sin 7 x. 
5 .  2YI + In x + 

I n ( YI + In x - I ) · 
Yl + In x + 1 

7. -2Vx cos Vx + 2 sin Vx. 
9. -cos x. I I .  ±<x2 - x sin 2x - t cos 2x). 
1 3 . ex - In (ex + I ). 
1 5 . t(x - 1 )8/3 + f(x - l )S/3 + 
t(x - 1 )213 _  
1 7 . 2Vx tan- I  Vx - ln ( l + x). 
1 9 . 3x + 1 1  ln (x - 2). ( 2 - � ) - � 
2 1 . 2 In x + v 4 - x2. 

23. -+e-x'(x3 + I ). 

3 
25 . In (x + 3) + --3 . x +  

n i tan- 1 ( x2; 1 ) . 

29. ln x� - W-=--J + 
tan- I �. 

3 1 .  -t cos x3. I (x2 + I ) 
33 6 In x2 + 4 . 

2 I 
35 In (x - 1 )  - ";=-I - 2(x _ ! )2 . 

37. i tan6 x + ± tan4 x. 
39 -In ( I  + �) .  

4 1 .  Ti,-(x - ± sin 4x + t sin3 2x). 
43. 2� -( Vx-=I)  4 tan- 1 

2 . 

45. x In (x2 + 3) - 2x + 

eSx 
47. 34 (3 sin 3x + 5 cos 3x). 

49. t in (����). 
5 1 .  t In (xs + 5x + 3). 
53. -4 I n (� + 2) + 
6 1n (� + 3). 

55. - -1- tan- 1 (v3 cos x). 
v3 

57. -±(x + 1 )-4 + t<x + 1 )-s  -
t<x + 1 )- 6  + t<x + W7. 
59. t tans x - t tan3 x + tan x - x. 
6 1 .  -2 In (x + 2) + 3 In (x + 3) . 
63 . x ln � - h -
± ln (2x - 1 ) . 
65. sin- 1 x - �-
67. tx - 1!o sin 20x. 
69. t[ln (sin x)]2. 
7 I i csc3 2x - -fa cscs 2x. 
73.  x In (2x + x2) - 2x + 2 In (x + 2). 
75_ tx413 _ 11xI I/6. 
77.  x In ( I  + x2) - 2x + 2 tan - I x. 
79. x tan x - tx2 + In (cos x). 
8 1 .  t sec7 x. 
83.  ±<2x2 sin - I x - sin- 1 x + 
x�). 
85. ± tan- I  x4. 87. In (tan x). 
89. 2evX. 9 1 . 5(ln x)2. 
93 . 2-Vx"=2 - 4 tan-1 <t-Vx"=2). 
95 . -cot x. 
97. i(sin- I 3x + 3x\/1="9x2). 
99.  In (x2 + 5x + 6). I 0 I .  t In ( �� � �). 
1 03 . tx2 + t In (x - I )  - i In (x2 + 

x + I ) + _I_ tan- 1 ( 2x + I ) . 
v3 v3 

1 05 .  ± sec4 x - t sec2 x. 
1 07 .  cos x - t cos3 x. 
1 09. t<x - J )S/3 + t(x - J )2/3 .  

1 
1 1  I . - (ax + b) In (ax + b) - x. a 
1 1 3 . sin ex. 
1 1 5 . tx312(3 In x - 2). 
1 1 7 . tan x - cot x. 

1 1 9.  7 In (���) - x � 3 . 

1 2 1 .  (x - 1 )  In ( I  - Vx) - tx - Vx. I 23.  t<x - I )2 tan - 1 (x - 1 )  -
t<x - 1 )  + (x - t) tan- I  (x - I )  -
t In [(x - 1 )2 + I ] . 
1 25 . t<x� - sin- I x). 

Section 10.9, p. 374 I . (a) 0.643; (b) 0.656. 
3.  2.2845. 5. 0.88 1 .  
7. 3. 1 4 1 56. 
9. About 23,630 yd2. 



Additional Problems, p. 375 
I .  t(3x + 5)312. 3 . In ( I  + 3x2). 
5 . -f sin ( I  - 5x). 
7 . 2 sec Yx. 9. tan- 1 x2. 
1 1 . ± In (sin 4x). 1 3 . - l/ln x. 
1 5 . In (tan x). 

1 7 . -t cos ( 3x; 5 ) . 
1 9 . -2  csc x3. 2 1 . tan- 1 (In x). 

23 . 3(3x + 5) 
· 

25 . -t In (3 - 2x). 
27 . t sin ( l  + x3). 
29. -t cot (x2 + 1 ) . 
3 I .  tan- 1 (sin x). 
33 . t In (sin 2x). 35 .  t<tan- 1 x)2. 
37. t ln (2x + I ). 
39. 3ex13. 
43 . f sin- 1 5x. 
47. ton x)3. 

4 1 . tan (sin x). 
45 . tan- 1  (sec x). 

-W. -ln ( I  + cos x). 
5 1 . -te-3x. 53 . -cos (In x). 

l 55 . csc -. 57 .  t tan- I e2x. x 
59. t(2 + x4)312. 6 1 . In (ex + x). 
63. -4/W. 65 . -cot x. 
67. -t In (cos x2). 
69 . t In (I + x2). 
7 1 . te3x'-2. 7 3. tan x + sec x. 
75 . f( l + XS/3)3/2. 
77. etan x. 
79. -to + cos x)5 .  
8 1 .  s in (tan x). 83. 7T/6. 
85 . ±. 87. 1;6 . 
89. tx - fcJ sin lOx. 
9 1 .  h + is  sin 1 4x. 
93. -t cos3 x + f cos5 x - t cos7 x. 
95. ± sin 4x - -fl sin3 4x. 
97. csc x - t csc3 x. 
99. t sin815 x. 
I 0 I .  f tan5 x + f tan3 x + tan x. 
1 03 . t sec9 x - t sec7 x. 
I 05 . -± cot4 x + t cot2 x + In (sin x). 
I 07 . t tan 3x - t cot 3x -
f In (csc 6x + cot 6x). 

3 . I X l • r,:---;;2 1 09. 2 sm-
v3 

+ 2 xv 3 - x•. 

1 1 1 . x - a tan- I �. a 
I 1 3. --fs(a2 - x2)312(3x2 + 2a2). 

ANSWERS TO ODD-NUMBERED PROBLEMS 

. � � 1 1 5 . ln (x + v a· + x•) - . x 

1 1 7 .  --1-Ya2 - x2(2x2 + a2). 3a4x3 
I - I  x x 1 1 9. -2 tan - - 2( 2 2) · a a a + x 

x W-=-9 1 2 1 . --9-x-· - 1 23 . • �
· 

v l - 9x2 

l ( 3 + V9+4x2 ) 1 25. -3 In 2x . 

I 27. 
x - sin - 1 � 

Ya2 - x2 a 

1 29. In (x + Y a2 + x2) - x 
Ya2 + x2

. 

rn . tx\!x2 - a2 + 
ta2 In (x + Yx2 - a2). 

13:1 . sin- I (x; 4 ) . 
1 35 . JIJV2 tan- 1 ( x�I ) . 
I 37 _[_ · - I ( 3x - l ) .. . sm . 

v3 V7 

1 39. t sin- 1  (x - l )  - 2Y2x - x2 -
t(x - l )Y2x - x2. 

14 I .  i tan - I ( x ; 1 ) . 
1 43. -± sin- 1 (�). 
1 45. 3Yx2 + 4x + 8 + In (x + 2 + 
Yx2 + 4x + 8). 

5x - 3 
1 47. -==== 

4Yx2 + 2 x  - 3 
1 49. 1 9  In (x - 4) - 3 In (x + 3) .  
1 5 1 . 3 1n (2x + l ) - 5 1n (2x - l ). 
1 53. 5 ln x + In (x + 4) -
3 In (x - 3) .  
1 55. -2 In x + 3 In (x + 3) -
3 In (x - 3). 

1 3 
1 57 . 2 1n x + -;- - 2x2 -

5 In (x + 1 ). 
1 59. - In x + I n  (x2 + 4x + 8) -

I tan - 1 ( x ; 2 ) . 
869 

1 6 1 .  ix3 tan- 1 x - tx2 + t In (l + x2). 
1 63 .  tx[cos (In x) + sin (In x)] .  
1 65 . x3 s in x + 3x2 cos x - 6x sin x -
6 cos x. 

ln x 
1 67 . ---1 + In x - In (x + I ) . x +  

1 69. i�(x2 - 2). 

e= . 1 7 1 .  2 b2 (a sm bx - b cos bx). a + 

1 73. -xe-x - e-x. 
1 75 .  -tx3e-2x - h2e-2x - �xe-2x -
te-2x. 
1 77 . 27T. 1 79 . iis a712. 

x6(1n x)3 x6(ln x)2 1 83 . (b) 6 - 1 2  + 

x6 In x x6 --- - --
36 2 1 6 "  

1 85 .  (b) t[sec x tan x + In (sec x + 
tan x)] .  

CHAPTER 1 1  

Section 1 1.2, p. 391 

5. (0, ta). 7. elf, f). 
9
· Cc4 � 7T) a, 3(4 � 7T) a) . 

1 1 . (fa, fa) 

4 a2 + ab +  b2 2 1 3 . 37T a + b  ; this � 7T a as 

b � a. 
1 5 . (a) On the axis, a distance ±h from 
the center of the base; (b) on the axis, 
a distance ta from the center of the 
base. 

Section 1 1 .3, p. 393 

I . (a) ( 0, 3� a} (b) ( 0, ! a). 
3. (a) Jf7Ta2 ; (b) 6v27Ta2. 
5 . t7Ta3 ; 6v37Ta2. 
7 .  (a) 7Tr2h ;  (b) i7Tr2h. 
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Section 1 1.4, p .  396 
1 . fMa2. 3. iMh2. 
5. tMa2. 7. tMa2. 
9. foMa2. 
1 1 . (a) tV2a = 0 .707a; 
(b) fo\13oa = 0.548a; 
(c) f vToa = 0.632a. 
Additional Problems, p. 396 
3 .  (a) (t, �); (b) (0, %); (c) ( 1 ,  f); 
(d) c%. f?); (e) (0, -'f); (f) (�, *); 
(g) ( e � I ' O) . 
5 .  87Tabc; 87T(a + b)c. 
7 . iMa2. 

CHAPTER 12  

Section 12.2, p .  403 
l .  3. 3 . -f4. 
5 .  t. 
9. +. 
1 3 .  3. 
1 7 . -+. 
2 1 .  16 . 
25 . 6. 

7 .  -t. 
1 1 . -6. 
1 5 . 4. 
1 9 . l/7T. 
23 . +. 

27. f(fJ) = ta2(sin fJ - sin fJ cos fJ), 
g (fJ) = ta2(fJ - sin fJ cos fJ); limit = t· 

Section 12.3, p. 408 
I .  -3.  3 . I .  
5 .  3 .  7. 0. 
9. 2. 1 1 . 1 .  
1 3 . 0. 15 . 0. 
1 7 . 0. 1 9. 2. 
2 1 .  +. 23. I .  
25. 1 .  
29. I .  
33 . ea. 
37 .  1 .  
4 1 .  eP. 

27. 
3 1 .  
35 .  
39. 

Section 12.4, p. 413 

1 .  
1 .  
1 .  
I /Ve. 

1 . l /(2e6). 3 . f. 
5 . 1 - cos I .  
9 .  0. 
1 3 . \12(ln 4 - 4) . 
1 5 . I .  

7 . I .  
1 1 . In \/3. 

1 7 . Converges if p < 1 ,  diverges if 
p � 1 .  
1 9. (a) 7T/5; (b) 7T. 
Section 12.5, p. 423 

1 1 I .  k = 2' k = 
7T' no k. 

ANSWERS TO ODD-NUMBERED PROBLEMS 

3 .  (a) m = t; (b) m = 0. 
5 .  1 6, 34, 34, 14, 2 percent. 

Additional Problems, p. 424 

I .  t· 3. 44. 
5. 12. 7 . t. 
9. -is. l l .  00 , 

1 3 . 6. 1 5 . 3. 
1 7 . +. 
2 1 .  0. 
25 . 0. 
29. i. 
33. 3. 
37. -'f. 
4 1 .  -&;. 

1 9. 00 , 

23. -t. 
27. �. 
3 1 .  9. 
35. t. 
39. t. 

43 . 0. No; instead, it emphasizes the 
logical point that L'Hospital 's rule 
makes a definite statement only when 
the limit on the right exists. 
49. 0. 5 1 . 0. 
53 .  0. 55 . 0. 
57. 0. 59. 0. 
6 1 .  p. 63 . I -3-. 
65. 0. 67. 0. 
69. t. 7 1 1 .  
73. 1 75 . 1 .  
77. I .  79. I .  
8 1 .  I .  83 . -oo. 

85. I .  87 . I .  
89. 1 .  9 1 .  1 .  
93 . e2. 95. e4. 
97. e3. 99. I .  
I 0 I .  11(3e6). 1 03 . I .  
1 05. +. 1 07 . 7T/4. 
1 09. 7T/8. 1 1 1 . t. 
1 1 3 . 2. 1 1 5 . Diverges. 
1 1 7 . Diverges. 1 1 9 . 3 . 

CHAPTER 13 

Section 13.2, p. 437 
I .  (a) D; (b) C, O; (c) C, O; (d) C, O; 
(e) D; (f) C, t; (g) C, O; (h) C, t; 
( i) C, O; (j) D ;  (k) C, O; (I) C, O; 
(m) D; (n) C, O; (o) C, 7T; (p) C, -±. 
5 . (a) a/2; (b) 4a3 . 
9. A decreasing sequence of positive 
numbers converges. 

Section 13.3, p. 444 
5 . (a) C; (b) D; (c) D; (d) C; (e) D; 
(f) C; (g) D; (h) D. 
9. 40 mi. 

I I . All terms must be zero from some 
point on. 
1 3 . (a) 0.6000 . . . ; (b) 1 .666 . . .  ; 
(c) 1 .08000 . . . ; (d) 1 . 1 25000 . . .  ; 
(e) 1 .038461 5384615  . . . .  

Section 13.4, p. 449 
3. (a) JxJ < 1 ,  axl( I - x2); (b) lxJ > 1 ,  
ll(x - l ) ;  (c) J i + xi > 1 ,  1 + x (also, 
if x = 0 the sum is 0); ( d) e - 1 < x < e, 
In x/( 1 - In x). 
5. x < 0. 

Section 13.5, p. 454 
I . (a) D; (b) C ;  (c) C; (d) C ;  (e) C ;  
(f) D; (g) C ;  (h) C .  
3. D. 5. D. 
7. D. 9. D. 
1 1 . D. 1 3 . C. 
1 5 . C. 1 7 .  D. 
1 9. c. 
2 1 . C if p > 1, D if p � 1 .  
23. c. 
25. C if p > 1 ,  D if p � 1 .  
29. I n  2. 

Section 13.6, p. 460 
I . C. 3.  D. 
5. C. 7. C. 

Section 13. 7, p. 464 
I .  c. 3. D. 
5. c. 7. c. 
9. D. I I . c. 
1 3 . D. 1 7 . D. 
1 9 . c. 2 1 .  D. 
23 . C. 

Section 13.8, p. 469 
I .  CC. 3. D. 
5 .  AC. 7 . AC. 
9. D. 1 1 . CC. 
1 3 . CC. 1 5 . AC. 
1 7 . AC. 19. AC. 
2 1 .  CC. 23. D. 
25 . cc. 
27. (a) F; (b) T; (c) F; (d) F; (e) T; 
(f) F. 
Additional Problems, p. 470 
I .  (a) O; (b) t; (c) O; (d) 1 .  
5 . (a) ± ; (b) -&;; (c) 2:6 . 

An - Bn 7. Xn = , where A and B are 
Vs 

the positive and negative roots of 
x2 - x - 1 = 0. 



I 
1 + Vi+4a I 2 

23. JxJ > Vz. 
x( l - x") nx"+ 1 

25 . Sn = ( 1  _ x)2 - �· 

3 1 .  (a) -In 2; (b) 1 .  
35. (a) C ; (b) D ;  (c) C ;  (d) D; (e) C; 
(f) D; (g) C; (h) D; (i) C; ( j )  D; (k) C; 
(I) C; (m) C; (n) C; (o) C; (p) D; 
(q) C; (r) C; (s) C; (t) D; (u) C; (v) C. 
5 1 . C. 53. Inconclusive. 
55. D. 57. C. 
59. D. 

CHAPTER 14 

Section 14.2, p. 489 
I .  (-4, 4). 3 . R = 0. 
5. [ - 1 ,  1 ) . 7. [- 1 , l ] .  
9. R = 0. 1 1 .  (-

\13
, °V3). 

1 3 . [- 1 .  1 i .  1 5 . c-+. +i . 
1 7. [ - 1 ,  1 ) . 1 9 . [ - 1 ,  1 ] .  
2 1 .  (2, 6). 23 . R = oo . 

25 . R = 0. 27. (0, 2e). 
29. (a) R = 1 ;  (b) R = oo. 

Section 14.3, p. 494 
I .  (a) L (- 1 )"+ 1 nx"- 1 , JxJ < 1 ;  

(b) L(- 1 )" (n + 2�n + 1 )  x", JxJ < 1 .  
1 l + x  ex - 1  3 .  (a) 2 In 1 _ x ; (b) f(x) = -x-

if x =F 0, f(O) = 1 ; 
x x (c) ( 1  - x)2 ; (d)- ( 1  - x2)2 . 

Section 14.4, p. 503 
X3 XS 15 (a) x - --+ -- - · · · · . 3 . 3! 5 .  5 !  ' 

(b) x + 
i
x4 -

-ft
x 7 + . . . ; 

(c) x - -f
o
x5 + 

i4
x9 - · · · . 

17 .  3 . 1 4085; 3. 14 159. 

Section 14.5, p. 509 
I .  (a) 9; (b) 1 3 . 3. 1 .64872. 
5. 0.978 1 48 .  7. 0.848048. 

. x3 xs x7 9. sm x = x - - + - - -3 !  5 !  7 ! . 

1 3 . 1 .0833, 1 .098 1 ,  1 .0985, 1 .0986. 
1 5 . 0.000006. 

Section 14.6, p. 513 
I .  (a) Y = 

ANSWERS TO ODD-NUMBERED PROBLEMS 

ao 1 + x2 + - + - + - + · · · = ( x4 x6 x8 ) 
2 !  3 !  4 !  

aoex
2
; (b) y = ao - (ao - l )x + 

(ao - l )x2 - (ao - l )x3 + . . . = 2 !  3 ! 

1 + (a0 - 1) X 

( 1 - x + 
�� 

-
�� 

+ . . . 
) 

= 

1 + (ao - l )e-x. 
5. y = [ x2 x3 x4 ] a l x +  1 !2 !  + 2!3 !  + 3 !4 !  + · 

· · = 

a 1 f ( _:�) 1 1 ; converges for 
n = l  n .n . 

all x. 

Section 14.7, p. 519 
I . x + x2 + h3 - -fcix5 - fox6 + . . . . 
3 I . x + fx3 + -fsx5 + 3111sx 7 + . . .  ; 
R = 7T/2. 
35 . (a) t; (b) t. 37 .  272. 

Additional Problems, p. 523 
I . (a) oo; (b) oo; (c) e. 
S .  ( - 1 ,  1 ). 

7 . (a) rx tan- 1 t dt" 
Jo t ' 

(b) ( 1  + x) In ( 1 + x) - x; 
1 + X I 4 (c) ( 1 _ x)3 ; (d) -4 ln ( 1  - x ); 

x + 4x2 + x3 4 - 3x (e) ( 1  - x)4 ; (f) ( 1  - x)2 " 

1 1 . fi(x) = 2x/( l - x)3. 
1 5 . (a) -

f
; (b) O; (c) --fl. 

C HAPTER 15 

Section 15.2, p. 534 
I .  (a) Circle, center ( 1 ,  3) and radius 
5 ;  (b) empty set; (c) point (5, - 1 ); 
(d) circle, center (8, - 6) and radius 2; 
(e) point (-3, 7); (f) empty set. 
3 . (a) (-2, - 1 ), (-2, 0), y = -2; 
(b) (3 , 1 ), (5, 1 ), x = l ;  (c) (-2, 5), 
( - 2, 1 ) ,  y = 9; (d) (-2, 1 ) ,  (-5, 1 ), 
x = l ; (e) (- 1 , 2), ( - 1 ,  t). y = f. 
5. b2y = 4hx(b - x). 

87 1 

Section 15.3, p. 541 
I .  (a) x2/25 + y2/21 = 1 ; (b) x2/36 + 
y2/52 = 1 ;  (c) 4x2/9 + y2/4 = 1 ;  
(d) x2/16 + y2!7 = l ;  (e) x2/27 + 
y2/36 = 1 ; (f) 24x2/2500 + y2/100 = 1 .  
3 . (a) (0, 0), (0, ::!:: 5), (0, ::!::4), e = t 
(b) (0, 0), (::!:: 2, 0), (::!::V3, 0), e = \13

/2; (c) (-2, 1 ), (-2, l ::!:: \/2), 
(-2, 2) and (-2, 0), e = 

Vz
/2; 

(d) ( 1 ,  0), (2, 0) and (0, 0), (1 ::!:: 
tv3, 0), e = \!312; (e) (2, - 1 ), 
(5, - 1) and (- 1 ,  - 1 ), (2 ::!:: Vs, - 1 ), 
e = Vs/3 ; (f) (0, 2), (::!:: 2\/2, 2), 
(::!:: 2, 2), e = 

Vz
/2. 

7 . (a) t'1Tab2; (b) t'1Ta2b. 

1 3  (+
!!:...V

d2 - b 2 !t...) . - d ' d . 

1 7 . �. 
2 1 .  y = mx ::!:: 

Y
b2 + a2m2. 

23. r, + r2. 
Section 15.4, p. 549 
I . (::!:: 2, 0), (::!::v'l3, 0), 2y = ::!::3x, 
e = 

v'I3
!2, x = ::!::4v'13. 

3 . (0, ::!:: 2), (0, ::!::v'13), 3y = ::!::2x, 
e = v'I3!2, y = ::!::4/v'l3. 
5 . (0, ::!::2), (0, ::!:: 2

Vs
) , 2y = ::!::x, 

e = 
Vs

, y = ::!::2/
Vs

. 
7 . (0, ::!:: l ), (0, ::!::Vz), y = ::!::x, 
e = \/2, \/2y = ::!::x. 
9. y2!9 - x2/16 = 1 .  
1 I .  x2/9 - y2/36 = 1 . 
1 3 . x2/36 - y2/28 = 1 .  
1 5 . x2/36 - y2145 = 1 . 
17 . Hyperbola with center ( 1 ,  -2) and 
horizontal principal axis. 
19. Two straight lines 5( y + 1) = 
::!::6(x + 2). 

3 1 .  (±�
Y
b2 + d2, -

�2 ). 

Section 15.6, p. 557 
I .  fJ = 45°, x'2/4 + y'2 = 1 ,  ellipse. 
3. e = 30°, y'2!2 - x'2/2 = l ,  
hyperbola. 
5. e = 45°, x'2 = 4Vzy', parabola. 
7. e = 45°, x'2/2 + y'2/4 = 1 ,  ellipse. 
9 . fJ = 60°, x'2/3 + y'2/ l l = 1 ,  ellipse. 
I I . fJ = sin- 1 l /

Vlo
, x'2 + 3y'2 = 1 , 

ellipse. 
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Additional Problems, p. 558 
I . 4p. 
9. �7T(2 + \/17) ft3. 

CHAPTER 1 6  

Section 16.1, p .  563 
I . (a) (Yl, Yl); (b) (2, -2"\/3); 
(c) (0, 0); (d) (f \/3, f); (e) (0, - 2); 
(f) (-2V2, 2Vz); (g) (-3, 0); 
(h) (-3Yl, 3Vz); (i) (I , O); (j) (0, 0); 
(k) ( 1 ,  \/3); (I) (5, 12); (m) (-2\/3, 2); 
(n) (0, 3). 
3. ( 1 ,  0), ( I ,  27T/5), (l , 47T/5), 
( 1 ,  67T/5), ( 1 ,  87T/5). 
7. (x - 2)2 + ( y  - 2)2 = 8; circle 
with center (2, 2) and radius 2Yl. 
9. (a) Line y = 2; (b) line x = 4; 
(c) line y = -3 ;  (d) line x = - 2. 

Section 16.2, p. 567 
5. (a) r = 5 sec 6; (b) r = -3 csc 6; 
(c) r = 3 ;  (d) r2 = 9 sec 26; 
(e) r = tan 6 sec 6; (f) r2 = 2 csc 26; 

( ) r = sin2 6 . g cos 6 cos 26' 

(h) r = 2 cos 6 
. 

tan2 6 - I 
9. ( 1 ,  27T/3) and ( 1 ,  47T/3); -t. 
I I . r = a sin 26. 
1 3. x3 = y2(2a - x). 
1 5. (x - a)(x2 + y2) = b2x2. 

Section 16.3, p. 573 
I .  9 = r2 + 1 6  - 8r cos (6 - 7T/6). 
3. r =  I O cos 6. 
5. r = 4"\/3 cos (6 - 7T/3). 
7. r = a( l + cos 6). 
9. (a) Vsa, "\/3a; (b) f Vsa, f "\/3a. 
I I .  r = ep/( l + e sin 6). 
1 3 . e = f. 1 5 . e = i. 
17. ::t-w-=-1. 

19. (a) 
(
i � e ' o} (b) 

(
i e: e '  7T

)
. 

2 1 . (a) x = y cot ;;: ; 
2a 

(b) r = - 6 csc 6. 7T 

Section 16.4, p. 579 
5. ¥-7Ta2. 
I I . (a) 47Ta2; (b) 47T2a2. 
1 7 . V2. 

ANSWERS TO ODD-NUMBERED PROBLEMS 

Section 16.5, p. 582 
I .  t7Ta2. 5. 7T/4. 

7. 7T + 3\/3. 9 . a2 c; - V3) . 
Additional Problems, p. 583 
I . (a) tan 6 = 4; (b) r2 = 36/(4 + 5 X 
sin2 6); (c) r = 2 cos 6 - 4 sin 6; 
(d) r = 3/(2 cos 6 - 5 sin 6); (e) r = 
4 cot 6 csc 6; ( f )  r = 1 + 4 sin 6; 
(g) r = 6 sin 26/(sin3 6 + cos3 6). 

3. (a) (Vza, 7T/4); (b) the origin and ( 2 - V2 37T) ( 2 + V2 - 7T)
· 2 a, 4 ' 2 a, 4 ' 

(c) (a/2, ::!:: 7T/6); (d) (3Vz, 7T/4), 
(3Vl, 37T/4); (e) the origin and 
(f, 27T/3), (f, 47T/3); (f) (:ta, 7T/6), 
(::!::a, - 7T/6); (g) the origin and 
(8a/5, sin- 1 3/5); (h) (4, - 7T/3); 
(i) (:!:2, 7T/2); (j) (2, ::!:: 7T/3), (- 1 , 7T); 
(k) the origin and (t, ::!:: 7T/3); 

. . ( 2 + V2 7T) (I) the ongm and 2 a, 4 , 
( 2 - V2 57T) ( ) h . . d 2 a, 4 ; m t e ongm an 

(:ta, 7T/4), (:!:a, 37T/4). 
I 5. Larger angle = 2 7T/3 .  
1 7 . ta[(4 + 47T2)312 - 8] .  
2 1 . V3 - t7T. 
25 . ta2(3v'3 - 7T). 

CHAPTER 17  

Section 17.1, p .  590 
I . (a) x + y = 2; (b) 2x - y = -4. 
3 . x + y = 3. 
5 . x - 1 = (y  - 3)2 .  
7. x2 - y2 = I .  9. y = 1 - 2x2. 
I I . No; the second is part of the first. 
1 3 . (c) 45°. 
1 5 . x = a cos 6 + a6 sin 6, y = 
a sin 6 - a6 cos 6. 

Section 17.2, p. 599 
V2ay - y2 

I . a sin- 1 -�-� 

V2ay - y2 + x. 
7 . 6a. 

a 

I I . x = 2b cos 6 + b cos 26, y = 
2b sin 6 - b sin 26; Jfa. 

Section 17.3, p. 605 
1 .  (a) VIO, 13i - 34j, 4i - 1 3j ;  
(b)  Vs3, -36i - 4j , -39i + 1 4j ;  
(c) 6, IOi - 33j, -2i - 33j; (d) v'34, 
-i + 55j, 20i + 22j. 
_ ( ) 

+ (3i - 4j) . (b) + ( -Si + l 2j) . ) . a 5 ' 13 ' 

( ) + (5i - 7j) . (d) 
+ (24i - 7j) c - \/74 , 25 . 

A B 7 .  ::t2( 12i + sj). 9. lAT + 
TBT· 

1 3 . 6 = 45°. 

Section 17.4, p. 610 
I . The line through the head of A 
which is parallel to B. 

5 . 2ti + j, 2i, \14t2+1. 
7 . i + (3t2 - 3)j, 6tj, 
V1 + 9(r2 - 1 )2. 
9 . sec2 ti + sec t tan tj , 2 sec2 t tan t x 
i + (sec3 t + sec t tan2 t)j, 
! sec tlY2 sec2 t - I .  
I I . R = fat2j + vot + Ro. 

Section 17.5, p. 615 
I . (a) -2/( I + 4x)312; (b) cos x; 
(c) 2x3/(2x4 - 2x2 + 1 )312; 
(d) -f V2e -1; (e) -4t2/(4t4 + 1)312. 
3 .  (a) I ;  (b) -ft55146 112 ; (c) none. 
5 . If (as usual) s increases on the 
circle in the counterclockwise 
direction, then k as calculated from (4) 
has the wrong sign on the upper half
circle, because s increases in the 
direction of decreasing x. Change the 
sign of this result to get I la on both 
halves of the circle. 
7 . (-f In 2, fYl), tv'3. 
9. t a  at 6 = 7T/4. 
I I . 4a sin f 6. 

Section 17.6, p. 619 
3 . ( -aw sin wt)i + (aw cos wt)j, 
(-aw2 cos wt)i + (-aw2 sin wt)j, aw, 
0, aw2. 
5 .  (-e '  sin t + e' cos t)i + (e' cos t +  
e' sin t)j, (-2e' sin t)i + (2e1 cos t)j, 
Vle', Yle', Yle'. 

4t 2t2 - 2 4( I - t2) 7 . + . . + . f2+l I (2+J J, (t2 + J )2 I 

(t2 !t 
I )  2 j, 2, 0, 4/(t2 + 1 ). 



9. a,, = 0 when t = 0, a,, = - I when 
t = 7T/2. 
1 1 . v > 30V2. 
Section 17.7, p. 626 

. ( 47T2 )( a3 ) . 
I . Smee M = G T2 , determme 
the ratio a3/T2 for any particular 
planet ( for instance, the earth) and 
proceed with the arithmetic. 
Additional Problems, p. 627 
I .  3a2/2. 
3 . (a) S 7T2a3 ; (b) �Tra2. 

S .  8b + 8b2 . a 
I I .  Smallest radius = 9/(7�), at 
t = ::1::'1f. 
1 3 . Approximately S .94 x 1 027 g. 

CHAPTER 18  

Section 18.1, p .  635 
I . Faces: x = 1 ,  y = 4, z = S. Edges: 
x =  l , y = 4; y = 4, z = S ; x =  1 ,  
z = S .  
3. 64. 
S . (a) The yz-plane and the xz-plane 
taken together; (b) all three coordinate 
planes taken together. 
7 . (0, 4, 0). 
9 . x2 + y2 + (z - 7)2 = 49 or x2 + 
y2 + z2 = 14z. 
I I . (a) The sphere with center 
( - 1 ,  3, S) and radius 3 ;  (b) the point 
(S, - 1 , 3); (c) the empty set; (d) the 
point (- 1 ,  7, 3); (e) the sphere with 
center (2, -3, 0) and radius I· 
I S . '*· 
1 7 . t(7i + Sj + 4k). 
1 9 .  t(A + B + C + D). 

Section 18.2, p. 639 
3. (a) 60°; (b) 4S0; (c) 90°. 
7 . No. 1 3. 2i - k; 
1 9. Two; 4S0 and 1 3S0 • 
2 1 .  c(z1 - z2 ) . 
Section 18.3, p. 646 
I . (a) 14i + 7j ;  (b) 3i - 3j; (c) 2i -
14j - 22k; (d) k. 
3. 2V6. 
S . Assuming that their tails coincide, 
all three vectors lie in a plane. 
I I .  (b) l 1 1\/T67. 

ANSWERS TO ODD-NUMBERED PROBLEMS 

Section 18.4, p. 651 
I .  (a) T; (b) F; (c) T; (d) T; (e) F; 
(f) T; (g) F; (h) F. 
3. They are parallel. 
S. (a) x = 2 + t, y = - 1  + 4t, z = 
-3 - 2t; (b) x = 2 + 3t, y = - 1 - t, 
z = -3 + 6t; (c) x = 2 + 2t, y = 
- 1 - 2t, z = -3 + St. 
7 . (a) x = 2 + 3t, y = -3t, z = 3 - 2t; 
(b) x = 4 + 4t, y = 2, z = - 1 .  
9 . (t. 1 ,  t). 1 1 . 6. 
1 3 .  2x - y - z + 2 = 0. 
1 7. 8/v'2T. 1 9 . (9, 0, 0). 

x - 2  y + l z 
2 1 .  -17- = ---=2 = �· 
23.  The second plane. 
25 . 4x + 3y + 4z + 2 = 0. 
29 .  (a) *; (b) 0. 

Section 1 8.5, p. 656 
I . Parabolic cy Jinder. 
5 . Plane. 
9. x2 + (z - a)2 = a2 . 
1 1 . (a) z = e -Cx'+y'l; (b) x2 + z2 = 
e - 2y'. 
1 3 . (a) y = x2 + z2; (b) 9(x2 + z2) + 
4y2 = 36; (c) z = 4 - x2 - y2; (d) x = 
y2 + z2. 
I S . (x - 2z)2 + (y  - 32)2 -
6( x - 2z) = 0. 

Section 18.6, p. 660 
I . Ellipsoid. 
3. Circular paraboloid. 
S . Hyperboloid of two sheets . 
7. Hyperbolic paraboloid. 
9. Hyperboloid of two sheets. 
I I . Ellipsoid. 
1 3 . Hyperbolic paraboloid. 
I S . (6, -2, 2), (3, 4, -2) .  

1 7 . (a) A(k) = Trab ( 1 - ��} 
(b) fTrabc. 
23 . Hyperbolic paraboloid. 

Section 18.7, p. 663 
I . (a) (2V2, 7T/4, 1 ); 
(b) (2, - Tr/3, 7); (c) (2v'3, Tr/6, 2); 
(d) (3Vs, tan- 1  2, S). 
3. (a) (2V2, Tr/6, ?T/4); (b) (2V2, 
S ?T/6, - ?T/4) ;  (c) (2, ?T/4, 7T/4); 
(d) (2,Tr/6, - 7T/2). 
S .  r2 + z2 = 1 6. 7. r2 = z2. 
9. r = 2 sin (}. 1 1 . r = 3 .  
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1 3 . p = 4. I S . p = 6 cos <f>. 
1 7 . p2 sin2 <f> + p cos <f> = 4. 

CHAPTER 19 

Section 19.1, p. 669 
I . The entire plane except the line 
y = 2x. 
3. The first and third quadrants, 
including the axes. 
S. The part of the plane above the line 
y = 3x. 
7. All of xyz-space except the origin. 
9. The solid sphere x2 + y2 + z2 � 16. 
I I .  All of xyz-space for which z > 0 
except the planes z = 7T, 37T, . . . .  
25 . Away from the origin. 
27. In the positive x, negative y, 
positive z direction. 

Section 19.2, p. 674 
I .  2, 3 .  
3. -6y2!(3x + 1 )2, 4y/(3x + 1 ). 
5. 2x sin y, x2 cos y. 
7 . tan 2y + 3y sec2 3x, 2x sec2 2y + 
tan 3x. 
9. - 3  sin (3x - y), sin (3x - y). 
1 1 . ex sin y, ex cos y. 
1 3 . 2eY/x, eY In x2. 
1 5 . 2xysz1, Sx2y4z7, 7x2y5z6. 
1 7 . ln l'. � -� z ' y '  z · 
1 9. (a) y = 3, z = 8x +  l ; (b) x = 2, 
z = 6y - 1 .  
3 1 .  f(x, y) = 3xy2 - x 2  cos y +  2y. 

Section 19.3, p. 678 
I .  z - 2S = 20(x - 1 )  + 40(y - 2). 
3. z = 4x + Sy. 
S . z - 1 = 6(x - 3) - 8( y - 2). 
7. z - 1 = y. 
9. lOx + 1 3y + 13z = 75. 
1 3 . XQXla2 + YoYlb2 + zoz)c2 = 1 .  
I S . 60°. 1 7. The origin. 
1 9. h( l + a)!Va. 

Section 19.5, p. 685 
I .  (a) 8i + 4j + 2k; (b) 2i ; (c) t(i + 
2j - 2k); (d) tC-i + 2j + fk). 
3. (a) 3, -j; (b) v'3, i + j + k; 
(c) 2vl9, i + 3j + 3k; (d) 3e2, 
i + 2j + 2k. 
5. ::':: (i + j - 2k)/V6 . 
7. 56!v'2T; i + j + 2k; 4/\/6. 
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Section 19.6, p. 691 
I .  0. 
3 . -9(r2 + 9)/(t2 - 9)2. 
5. 4t3 + 4tu2, 4u3 + 4t2u. 

Section 19.7, p. 695 
I . (3, 5), a minimum. 
3 . ( 1 ,  2), a minimum; (- 1 ,  2), a 
saddle point. 
5 . ( - 1 ,  -2) and (-2, 8), both saddle 
points. 
7. (0, 0), a saddle point; ( - 1 ,  - 1), a 
maximum. 
1 3 . 2, 4, 6. 15 . 1/(27abc). 
1 7 . f. 19. \/14. 
2 I . x/6 + y/6 + z/3 = 1 .  
23. 3v'3/2. 
27. Base of rectangle = (2 - v'3)P; 
height of rectangle = i(3 - v'3)P; 
height of triangle = i(2v'3 - 3)P. 

Section 19.8, p. 701 
I . f. 
3. Comer in first quadrant is 
(v'2, t v'2). 
5. 2r = h. 7. t. f. 
9. x2/3 + y2/12 + z2/27 = 1 .  
I I . *. 1 3 . a3 . 

1 7. (a) jdj/Ya2 + b2 + c2. 

Section 19.9, p. 707 
7. W = CtX + C2. 

Section 19.10, p. 713 
I . 3xly. 
3 . ( 1  - sin y)l(x cos y - 1 ) .  
5 .  ( yexy - 2y2)/(4xy - xeXJ). 
7. 3z/(z - 1) , 2z/( 1 - z). 

9 xyz cos xz + y sin xz 
· 1 - x2y cos xz ' 

x sin xz 
1 - x2y cos xz ' 

1 1 . �· 
CHAPTER 20 

Section 20.1, p. 717 
I . The triangle bounded by x = 0, 
y = 1, y = x. 
3 . fa. 
7 . '71'/8. 
I I .  'Tl'. 

5 . 98. 
9. ¥. 
1 3 . t In 2. 

ANSWERS TO ODD-NUMBERED PROBLEMS 

1 5 . f J: f(x, y) dy dx. 

1 7 . r t x  f(x, y) dy dx. 

1 9. L1 J:' 2x3 dy dx = t. 

2 1 .  f L2 (5 - 2x - y) dx dy = 5 .  

23. f2 (4x-x' dy dx = f. -1 J3x
-2 

25 . iabc. 27 . 4. 
29. il'Tl'a3. 
Section 20.2, p. 722 
I . f. 3. a2. 
5 . l - e -0• 7. t. 
9. 6,2;. 
1 3 . �. 
17 . t(b3 - a3). 

I I . ¥. 
15 . h. 

Section 20.3, p. 726 
I . M = a3; x = y = f2a. 
3 . M = 1;8 ; x = -2¥-. y = 0. 
5. M = ta3; x = -ft'Tl'a, y = 0. 
7. M = 7T; x = ('71'2 - 4)/7T, y = '71'/8. 
9. tMa2. I I . iMa2. 
1 3 . tMa2. 
Section 20.4, p. 730 
I . 'Tl'a2. 3 . i(47T - 3v'3)a2. 
5. a2. 7 . t<3v'3 - 'T1')a2. 
9. ±<8 + 7T)a2. 
I I . f(9\/3 - 2'Tl')a2. 
1 3 . �(9\/3 + 8'71'). 
1 5 .  t7Ta4. 

1 7 . J1T12 f3 z r dr dB. -TT/2 Jo 

l
TT/4 itan 8 sec 8 

19. z r dr dB. 0 0 

2 1 . L1T14 L1 z r dr dB. 
23. (a) f7T[a3 - (a2 - b2)312] ; 
(b) t'Tl'(a2 _ b2)3/2 = i'Tl'h3. 
25 . x = %a, y = 0. 

2 - 0 -
4 7. x = , y = 3'71' a. 

29. t'Tl'a3. 
3 1 . f'T1'a4b; x = y = 0, z = ta2b. 
33. tMa2. 

35 M 2 ( 1 - In 2 ) · a In 2 · 

37. ±Ma2 ( 1 - si��a) . 
Section 20.5, p. 735 
I . -&. 3 . 2abcl'TI'. 
5. 24. 7. 47T. 
9. *· 
I I . L0 r f f(x, y, z) dx dy dz. 

1 3 .  a4/8. 
fl fv'l=Z f� 1 5 . Jo -v'i=Z -� 

f (x, y, z) dx dy dz. 
17. 4. 
2 1 .  t'Tl'abc. 
27. tMa2. 

1 9. 27'71'. 
23. iabc. 

Section 20.6, p. 738 
I .  '71'/2. 
3. x = y = 0, z = ±h. 
5. tM(2a2 + 3b2). 
7. foM(a2 + 4h2). 
9. x = y = 0, z = ta. 
1 1 . t(8 - 3 v'3)'Tl'a3. 
1 3 . 'Tl'/32. 15. a3/3. 
1 7 . -!/a3(3'TI' - 4). 
1 9 . tMa2. 2 1 .  fMa2. 
23. f7ra3(1 - cos a). 

Section 20.7, p. 743 
I .  8 · t'Tl'a5(t - cos a + t cos3 a) = 
�Ma2[t - t cos a (1 + cos a)] . 

3. 2'71'2a3. 5 . t ( :: = :: ) . 
c8'Tl'an+5 7. taa3. 1 1 . 3(n + 5) . 

1 3 . t'Tl'a3. 

1 5 . (a) M = La r L27T 8(p, </>, B) 

p2 sin <P dB d<f> dp; 

(b) M = 4'71' La p2j(p) dp. 

19 .  7TGm8a sin2 a. 
2 1 . 27TGm a. 
Section 20.8, p. 747 
I . 3v'l4. 3. 'Tl'a2v'3. 
5. 27T\/6. 7. a2('T1' - 2). 
9. t7T(5Vs - 1) .  
1 1 . i7Ta2(5Vs - 1) .  
1 5 . fi-a[3Vl0 + In (3 + v'iO)]. 
1 7 . 2a2. 1 9. i(20 - 3'71'). 



CHAPTER 21 

Section 21 .1 ,  p.  757 
I . (a) -2; (b) -f; (c) -4. 
3 . 0. 
7 . (a) f; (b) ¥o-; (c) t; (d) ¥s. 
9. (a) O; (b) O; (c) -f. 

I I . 1 for all paths. 
I 3. Tr for both paths. 
1 5 . 1�5 . 
1 9 . 0 along all paths. 
2 1 . 0. 
Section 21.2, p. 763 
9. 0. I I . 6. 
1 3 . e. 1 5 . 12 . 
Section 21.3, p .  769 
I .  -fz. 3. 2 In 4 - Jf. 
5 . f. 7. I .  
9. t. 
1 3 . t. 
1 7 . tTra2. 

1 1 . -f5-. 
1 5 . 3 Tra2. 

1 9 . 2. 
2 1 .  fa2. 23. xy3. 
25 . exy - x2 + y2 . 
27 . x sin y + y cos x. 
3 I .  27r. 

ANSWERS TO ODD-NUMBERED PROBLEMS 

Section 21 .4, p. 778 
I .  (a) O; (b) 0; (c) 2; (d) ez sin x; 
(e) 2/r. 
3. 4Trabc. 5 . f7ra5. 
7. 2 f(r) + J'(r) . r 
I l .  (a) 36; (b) 1 8. 
1 3 . 20V. 1 5 . 4Tra5. 
1 7 . ¥ for both integrals. 
19 . - 12Tr. 
Section 21 .5, p. 783 
5 . Tr. 7. - 1 . 
9. 4Tr. I I .  1 8Tr. 
13. -87r. 1 5. 0. 
APPENDIX A 

Section A.9, p. 815 
5 . 2Vx - 2 In ( 1  + Vx). 
7. 2Vx - 3Vx + 6Vx -
6 1n (Vx + I ) . 
9. 2Vx - 2 tan- I Vx. 
1 1 . 1x314 - 4Vx + 4 tan- I  Vx. 
1 3. 2� - 2 tan- I �. 

Section A.12, p. 824 
3 . (a) k =:: 3 ; (b) all k; (c) all k. 
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Section A.14, p. 832 3. C if x * tkTr, D if x = fk7r. 

APPENDIX B 

Section B.1, p. 848 9 ! 22! 52 ! I .  (a) 4!; (b) 16!; (c) 5 !47 ! · 3. 720; 1 20. 5. 2880. 7. 9 .  9! = 3,265,920. 9. 1 40,400,000. I I .  1 20; 60; 325. 1 3 . 20, 1 60. 1 5 . 2(3 !3 !) = 72. 1 7 . 2 10. 1 9 . 378. 2 1 .  4200. 23 . 8820. 25. 2 1 1 ,680. 
27 . 4( 1�) = 5 148; [ 1 3(�)][ 1 2(�)] = 
3744. 29. 286. 3 l. 84. 
33 . (;) - n. 

35. (a) 349,440x 1 1 ; (b) -489,888x4; 
(c) -2002a I0b27. 
Section B.2, p. 854 
I .  (a) n(n + l ) ;  (b) n(4n + I ); (c) 4n2 ; 
(d) 3n2; (e) tn(5n + I ). 

n + 1 2 2"+ '  7. (a) -2-, n 2: ; (b) 1 - x , 
n 2: 0. n 
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Angle between two surfaces, 678 
Angles, direction, 640 
Angular acceleration, 394 
Angular velocity, 394 
Antiderivative, 1 7 1  
Aphelion, 542 
Apogee, 542 

Apollonius, 520 
Approximation, tangent line, 166 
Arago, F., 274 
Arc, 236 

centroid of, 390 
length, 236 

element of, 238 
Archimedes, 66, 1 90, 1 92, 193, 206, 225, 

228, 243, 257, 384, 530, 534, 572, 738 
principle in hydrostatics, 250, 324 
principle of the lever, 259, 384 
spiral of, 572, 579 
on surface area of sphere, 228, 243 
on volume of sphere, 257 

Area, 1 9 1  
algebraic, 2 1 4  
o f  circle, 1 9 1  
of curved surface, 7 44 
geometric, 2 1 4  
of parabolic segment, 192 

Area: 
element of, 221 
problem of, 5 1  

Aristotle, 2 1 8, 257 
on Hippocrates' misfortune, 2 1 8  

Arithmetic mean, 702 
Arrow diagram, 24 
Arterial branching, 3 12 
Astroid (see Hypocycloid, of four cusps) 
Astronomical unit, 626 
Asymptote of a curve, 33 
Atmospheric pressure, 282 
Average cost, 148 
Average velocity, 63 
Axiom, least upper bound, 789 
Axis( es): 

of a cone, 529 
coordinate, 632 
of a hyperbola, 544 
of a parabola, 1 8, 533 
polar, 560 
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Axis(es) (Cont. ) :  
rotation of, 554 

Badeer, H. S., 234 
Barrow, Isaac, 2 1 2  
Bartlett 's Familiar Quotations, 30 
Beckmann,  P., 500 
Bernoulli, James, 67, 169, 275, 379, 495, 

565, 598 
Bernoulli, John, 67, 169, 274, 379, 40 1 ,  

495, 596, 598 
on Euler's feats, 275 
joy on solving the catenary problem, 

379-380 
solution of brachistochrone problem, 

596-598, 629 
Bernoulli numbers, 525 
Bessel equation, 494, 5 1 2-5 1 3  
Bessel, F. W., 275, 5 1 3  
Bessel function, 489, 494, 5 1 3  
Big Bang, 1 89 
Big Crunch, 1 89 
Binomial coefficients, 847 
Binomial series, 503 
Binomial theorem, 84, 1 10, 845 
Black holes, 1 87 
Blood flow, 233 
Bound: 

lower, 432 
upper, 433 

Bounded sequence, 432 
Bounded variation, function of, 809 
Boundedness theorem, 796 
Boyle's law, 250 
Brachistochrone, differential equation of, 

630 
Brachistochrone problem, 596-598, 629 
Bracket symbol, 209 
Brahe, Tycho, 620 
Branches of hyperbola, 543, 544 
Brouncker's continued fraction, 382 
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Brouwer's fixed point theorem, 800 
Brown, P. L., 541 
Buck, R. C., 694 
Buffon's needle problem, 307 
Biihler, W. K., 423 
Burton, A. C., 234 

Cajori, F., 275 
Calculus: 

differential, 5 1  
fundamental theorem of, 52, 190, 208, 

2 12, 758, 808 
for line integrals, 758 

infinitesimal, 169 
integral, 5 1  
Leibnizian spirit in, 578 

Calder, N., 541 
Canceling, 35 
Cardano, G., 106 
Cardioid, 564, 567, 575, 577 
Cartesian: 

coordinates, 1 5  
equation of a plane, 648 
plane, 1 5  

Cassegrain telescope, 548 
Cassini, G. D., 571 

ovals of, 571 
Catenary, 327, 328, 347, 378-380 
Cauchy, A. L., 456, 464 
Cauchy condensation test, 474 
Cauchy integral test, 456 
Cauchy product of two series, 828 
Cavalieri, Bonaventura, 205, 230 
Cavalieri 's principle, 230 
Cavendish, Henry, 626 
Center: 

of circle, 532 
of curvature, 614 
of ellipse, 536 
of gravity, 244, 385 
of a hyperbola, 544 
of mass, 385, 386, 388, 724 
of population, 386 

Central force, 622 
Central gravitational force, 623 
Centripetal force, 609 
Centroid, 244, 388, 724 

of an arc, 390 
Certainty, Ultimate, 1 19 
Certitude, 787 
Chain rule, 93, 686, 688 
Champollion, J., 707 
Chebyshev, P., 8 1 6  
Church, wrathful, 620 
Cicero, Marcus Tullius, 259 
Circle, 16, 532 

area of, 191  
center of, 532 
of curvature, 6 1 4  

INDEX 

Circle (Cont.): 

equation of, 1 6, 532 
involute of, 592 
parametric equations for, 588 
polar equation of, 569 
radius of, 532 

Circular error, 322, 598 
Circular functions, 325 
Circular motion, uniform, 608 
Circulation, 779 
Circulation density, 779 
Cissoid of Diocles, 568, 583 
Clarke, Arthur C., 540, 619 
Classical physics, 251 
Clepsydra, 230 
Closed curve, 756 
Closed interval, 4 
CNN, 269 
Cobb-Douglas production function, 701 
Coefficient, binomial, 847 
Coefficient of friction, 3 3 1  
Coefficients of  j{x), Taylor, 495 
Combination, 847 
Cornets, 549 
Common logarithm, 263 
Communications satellite, 6 1 8  
Comparison test, 45 1 

for improper integrals, 414 
limit, 452 

Complete elliptic integral, 542 
Complete ordered field, 790 
Completing the square, 17, 348 
Complex analysis, 484, 523 
Complex number, 521  
Composite function, 25,  93 
Computation of 7T, 498 
Concave down, 1 20 
Concave up, 1 20 
Concho id: 

general, 584 
of Nicomedes, 568, 583, 584 

Condensation test, Cauchy's, 474 
Conditional convergence, 825 
Conditionally convergent series, 468 
Cone: 

axis of, 529 
elliptic, 659 
generator of, 529 
right circular, 529 
vertex of, 529 
vertex angle of, 529 

Conic section, 529 
degenerate, 530 

Conics, 529 
Conjugate axis of hyperbola, 544 
Conservation of energy, law of, 248, 762 
Conservative field, 761 , 781  
Constant, Euler's, 275, 458, 460 
Constant of integration, 172 

Constraint, 696 
Construction problems, 566 
Continued fraction: 

Brouncker's, 382 
expansion of v'2, 438 
Laplace's, 422 

Continuity, uniform, 839 
theorem on, 806 

Continuous function, 75, 666, 795 
Continuous at a point, 75 
Continuous vector, 606 
Continuously compounded interest, 268 
Contour map, 667 
Convergence: 

absolute, 825 
conditional, 825 
interval of, 486, 488 
radius of, 486, 488 
of series, 439 
unconditional, 830 
uniform, 490, 834 

for power series, 834 
Convergent improper integral, 409, 4 1 1 ,  

455 
Convergent sequence, 433 
Convergent series, 439 
Coolidge, J. L., 382 
Cooling, Newton's law of, 282 
Coordinate axes, 632 
Coordinate plane, 6, 633 
Coordinate system, rectangular, 5 
Coordinates: 

Cartesian, 15, 633 
cylindrical, 661 
polar, 560 
rectangular, 633 
spherical, 662 

Copernicus, Nicolaus, 620 
Comers, 1 1 8 
Corridor problem, 1 30, 3 1 2  
Cosecant, 294 
Cosine, 293 

of an acute angle, 38 
of an arbitrary angle, 40 
direction, 640 
graphs of, 42, 298 
hyperbolic, 324 
power series expansion of, 43 1 ,  483 
series, 43 1 ,  450 
Taylor series for, 503 
values of, 42 

Cosines, law of, 299, 637 
Cost: 

average, 148 
function, 146 
marginal, 147 

Cotangent, 294 
Euler's partial fractions expansion of, 

526 



Coulomb's law, 250 
Courant, R., 522 
Critical point, 1 16, 693 
Critical value, 1 16 
Cross product, 640 
Curl, 772 
Curvature, 6 1 1 

center of, 614 
circle of, 614 
radius of, 613 

Curve: 
asymptote of, 33 
closed, 756 
level, 667 
nonrectifiable, 808 
normal (Gaussian), 418  
piecewise smooth, 755 
rectifiable, 808 
simple, 765 
simple closed, 765 

positively oriented, 765 
smooth, 239, 610 

Curvilinear motion, 1 8 1  
Cusps, 1 1 8  
Cycloid, 592, 593 

parametric equations for, 592 
Cylinder, 653 

generator of, 653 
right circular, 653 

Cylindrical coordinates, 661 
element of volume in, 736, 739 

Cylindrical shells, 231  

Decay: 
exponential, 280 
radioactive, 278 

Decimal, 450, 790 
infinite, 428 
repeating, 443 

Decomposition into partial fractions, 352 
Decreasing function, 77, 1 15 
Definite integral, 192, 201 ,  804 

Leibniz notation for, 200 
Definition of e, 265 
Degenerate conic section, 530 
Degree of polynomial, 27 
Del operator, 685 
Delta notation, 55 
Deltoid curve, 600 
Demand curve, 152 
Demand, elasticity of, 153 
Demand function, 1 52 
Democritus, 243, 257, 8 1 5  
Dependent variable, 24 
Derivative, 58 

directional, 68 1 
left, 62 
mixed second partial, 673 
partial, 670 

Derivative (Cont.): 

second-order, 672 
right, 62 
second, 107 
of vector, 606 

Descartes Rene, 1 5 ,  20, 1 36, 594, 600 
dismay of, 592 
folium of, 106, 1 07, 592, 627, 770 
refuted by Fermat, 1 36 
on Snell's law, 1 36 

Determinants, 643 
Difference quotient, 58 
Differentiable function, 58, 680 
Differentiable at a point, 58 
Differential, 164, 680 

partial, 688 
total, 680, 688 

Differential calculus, 5 1  
Differential equations, 1 78 

general solution of, 1 79 
order of, 178 
particular solution of, 179 

Differential, partial, 688 
Differential triangle, 238 
Differentiation, 58, 83 

implicit, 1 03, 708 
logarithmic, 277 

Diffusion equation, 704 
Dirac, P. A. M., 821  
Direction angles, 640 
Direction cosines, 640 
Directional derivative, 68 1 
Directrix, 17 

of ellipse, 538 
of hyperbola, 546 
of parabola, 5 3 1 ,  532 

Dirichlet, P. G. L., 707, 821,  833 
Dirichlet's test, 83 1 
Dirichlet's theorem on primes, 833 
Discontinuity: 

of a function, 3 6  
infinite, 34 

Discriminant, 557 
Disk method, 227 
Distance formula, 7, 634, 652 
Distance from a point to a line, 48, 1 60 
Distribution: 

normal, 420 
standard normal, 420 

Distribution function, 419 
normal, 4 1 9  

Divergence, 77 1 
of series, 439 
of vector field, 77 1 ,  773 

Divergence theorem, 775 

INDEX 

Divergent improper integral, 409, 4 1 1 ,  455 
Divergent series, 439 
Divine intervention, 706 
Division of series, 5 1 6  

Double-angle formulas, 42 
Domain, 23, 665 
Doomsday equation, 291 
Dot product, 636 
Double integral, 7 1 8  
Double-angle formulas, 296 
Doubly ruled surface, 660 
Dummy variable, 2 1 5  
Dyne, 245 

e, 269 
definition of, 265 
irrationality of, 448 
series for, 44 7 
transcendence of, 8 1 5  
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eX, power series expansion of, 430, 491  
Eccentricity: 

of ellipse, 536 
of hyperbola, 545 

Eddington, Arthur, 461 
Edwards, H.  M., 8 1 5  
Egypt, Great Pyramid of, 25 1 
Einstein, Albert, 1 83, 202, 697 

on elegance, 697 
equation E = Mc2, 25 1-252 
law of motion, 25 1 

Elastic, 153 ,  1 54 
Elasticity of demand, 153 
Electric circuit, 283 
Electrostatic potential, 703 
Element: 

of arc length, 238 
of area, 22 1 

in polar coordinates, 727 
of force, 25 3 
of volume, 225 

in cylindrical coordinates, 736, 739 
of work, 246 

Elementary function, 334 
Ellipse, 2 1 7, 529, 535 

area of, 2 1 7, 541 
center of, 536 
directrix of, 538 
eccentricity of, 536 
equation of, 537 
focal radii of, 537 
foci of, 536 
latus rectum of, 558 
major axis of, 536 
minor axis of, 536 
parametric equations for, 588 
reflection property of, 539 
semimajor axis of, 536 
semiminor axis of, 536 
string property of, 536 
vertices of, 536 

Ellipsoid, 657 
Elliptic cone, 659 
Elliptic cylinder, 654 
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Elliptic integral, 348, 579, 8 1 3  
complete, 542 
of the first kind, 628, 8 16  

Elliptic paraboloid, 659 
Endpoints, 4, 1 1 8 
Energy: 

kinetic, 247, 395, 761  
law of conservation of, 248, 762 
potential, 247, 76 1 ,  769 
total, 248 

Epicycloid, 594 
Epsilon-delta definition, 70 
Equation(s): 

Bessel, 494, 5 1 2-5 1 3  
of a circle, 16, 532 
differential (see Differential equations) 
diffusion, 704 
doomsday, 29 I 
general linear, 1 3  
of a graph, 1 5  
heat, 702 
intercept, 1 5  
Laplace's, 674, 702, 703 
of a line, 1 1  
Maxwell's, 784 
one-dimensional heat, 704 
parametric, 586 

for circle, 588 
for cycloid, 592 
for ellipse, 588 
of line, 647 

of plane, 648 
Cartesian, 648 
vector, 648 

point-slope, 1 2  
slope-intercept, 1 3  
of a sphere, 635 
of state, 692 
symmetric, of line, 647 
vector, of line, 647 
Volterra's prey-predator, 290 
wave, 675, 702 

one-dimensional, 705 
Equiangular spiral, 578 
Equipotential surfaces, 668 
Erg, 245 
Escape velocity, 1 86 
Euclid, 47, 480 

on primes, 437 
Euler, L., 1 69, 274, 446, 448, 456, 474, 

480, 525, 750, 8 1 5, 830 
constant, 275, 458, 460 
discovery of e, 273 
elegant truths of, 525 
expansion of cotangent, 527 
formula, 52 I 

for I l/n2, 476, 748 
for I lln2k, 528 

identity, 480 

INDEX 

Euler (Cont. ): 
infinite product for sine, 477 
irrationality of e, 449 
quoted: on fabric of world, 136 
series I l/n2, 748 
theorem: on homogeneous functions, 688 

Even function, 50, 2 I 6, 5 1 8  
Evolute, 6 1 4  
Exhaustion, method of, 190 
Expansion, power series, 428, 483 

of cos x, 43 1 ,  483 
of ex, 430, 49 1 
of f(x), 489 
of sin x, 43 1 ,  483 
of tan - 1  x, 491  

Exponential decay, 280 
Exponential function: 

general, 26 1 
the, 265 

Exponential growth, 268, 278 
Exponential spiral, 578 
Exponents, fractional, 104, 261 
Extreme value theorem, 77, 1 97, 797 
Eynden, C. V., 482 

Factorial, 109, 430, 845 
Factorial notation, l 09, 430 
Fechner-Weber law, 290 
Fermat, P. , 1 5 ,  2 1 ,  52, 53, 1 36, 1 90, 2 12 ,  

592 
concept of tangent, 53 
and Descartes, 592 
last theorem, 2 1 ,  59 l ,  821 
principle of least time, 136, 629 
theorem, 78 

Fermi, Enrico, 691 
Feynman, Richard, 494, 784-785 
Fibonacci, 47 1 
Fibonacci sequence, 4 71  
Field (algebraic), 790 

ordered, 790 
complete, 790 

Field (in vector analysis): 
conservative, 761 ,  781 
force, 752 
gradient, 752 

of scalar, 758 
irrotational, 7 8 1  
scalar, 752 
vector, 752 

First law of motion, Newton's, 1 82, 6 1 1  
First Mean Value Theorem of Integral 

Calculus, 208 
First-order reaction, 283 
Fixed point theorem, Brouwer's, 800 
Flux: 

through surface, 77 4 
of vector field, 772 

Focal chord of a parabola, 49 

Focal radii of ellipse, 537 
Focus, 1 7  

of ellipse, 536 
of hyperbola, 543 
of parabola, 532 

Focus-directrix-eccentricity definition, 550 
Folium of Descartes, 1 06, 1 07, 592, 627, 

770 
Force: 

central, 622 
gravitational, 623 

centripetal, 609 
of gravity, 1 83 
restoring, 320 

Force field, 752 
Formula(s): 

Abel's partial summation, 83 1 
addition, 42, 295 
distance, 7, 634, 652 
double-angle, 42, 296 
Euler's 476, 521 

for I l/n2, 476, 748 
for I l ln2k, 528 

half-angle, 42, 46, 296, 34 1 
Heron's, 695 
Legendre's, 747 
Leibniz, 3 1 7, 36 1 ,  692 
midpoint, 8 
quadratic, 22 
recursion, 5 1 1  
reduction, 344, 356, 360 
Stirling's, 472 
subtraction, 45, 296 

Four squares theorem, 2 1  
Four vertex theorem, 6 1 5  
Four-leaved rose, 566 
Fourier, J . ,  275, 704, 707 
Fractional exponents, I 04, 261 
Franklin, Benjamin, 269 
Franklin, P., 7 1 9  
Frequency, 320 
Frequency density, 4 1 5  
Function, 2 3  

algebraic, 2 7  
Bessel, 489, 494, 5 1 3  
of bounded variation, 809 
circular, 325 
composite, 25, 93 
continuous, 75, 666, 795 
cost, 146  
decreasing, 77 ,  1 15 
demand, 1 52 
differentiable, 58, 680 
discontinuity of, 36 
distribution, 4 1 9  
domain of, 23 
elementary, 334 
even, 2 1 6, 5 1 8  

and odd, 50, 5 1 8  



Function (Cont.) :  
exponential, 265 
of a function, 26 
gamma, 4 1 3  
general exponential, 26 1 
general logarithm, 262 
graph of, 24 
homogeneous, 688 
hyperbolic, 325 
implicit, 102, 7 1 0  
improper rational, 35 1 
increasing, 77, 1 1 5 
integrable, 202, 806 
inverse, 3 1 7  
inverse hyperbolic, 327 
limit of, 68 
l inear, 29 
normal distribution, 4 1 9  
odd, 2 1 7, 5 1 8 
period of, 43 
periodic, 43, 294 
potential, 769 
price, 1 52 
probability density, 4 1 5  

normal (Gaussian}, 4 1 8  
profit, 1 5 1  
proper rational, 35 1 
quadratic, 29 
rational, 27, 35 1 

improper, 35 1 
proper, 35 1 

revenue, 1 5 1  
transcendental, 27 
trigonometric, 292 

inverse, 3 1 3  
zero of, 3 1  
zeta, 474, 480 

Fundamental lemma, 680 
Fundamental theorem of algebra, 353, 522 
Fundamental theorem of calculus, 52, 1 90, 

208, 2 12, 758, 808 
for line integrals, 758 

Galileo, I ,  230, 379, 448, 530, 594 
Gamma function, 4 1 3  
Gas law: 

adiabatic, 1 6 1 ,  250, 283 
ideal, 67 1 

Gauss, C. F., 202, 274, 423, 456, 5 1 3, 565, 
579, 82 1 ,  833 

on lawyers, 787 
Gauss's test, 823 
Gauss's theorem on divergence, 755 
Gelfond, A. 0., 8 1 5  
General concoid, 584 
General exponential function, 26 1 
General linear equation, 1 3  
General logarithm function, 262 
General solution, 1 79 

J N  DEX 

Generalized mean value theorem, 40 I ,  803 
Generalized Stokes theorem, 783 
Generator: 

of a cone, 529 
of a cylinder, 653 

Geometric area, 2 1 4  
Geometric mean, 702 
Geometric series, 440 
Geometry, analytic, 1 5  
Grade inflation, 42 1 
Gradient, 682, 77 1 
Gradient: 

field, 752 
of a scalar field, 7 5 8  

Graph: 
of an equation, 1 5  
of a function, 24 

Graph(s): 
of cosine, 42, 298 
of polar equation, 56 1 
of sine, 42, 298 
of tangent, 298 

Gravitation: 
constant of, 246 
Newton's law of, 1 85 ,  246, 62 1 ,  706 

Gravitational attraction of spherical shell, 
74 1 

Gravitational force, central, 623 
Gravitational potential, 703 
Gravity: 

acceleration due to, 1 83 
center of, 244, 385 
force of, 1 83 

Great Plague of London, 66 
Great Pyramid of Egypt, 25 1 
Green, George, 765 
Green's theorem, 765, 780 
Growth: 

exponential, 268, 278 
population, 277 

inhibited, 284 
Growth curve, inhibited or sigmoid, 285 
Gyration, radius of, 396 

Half-angle formulas, 42, 46, 296, 341 
Hal f-1 i fe, 279 
Hall, Tord, 423 
Halley, Edmund, 540 
Halley's Comet, 540 
Halmos, P. R., 445 
Hamilton, Sir W., 50 I 
Hardy, G. H. ,  595 
Harmonic series, 44 1 
Heart, working, 248 
Heat equation, 702 

one-dimensional, 704 
Heath, T. L., 572 
Heilbroner, R. L., 1 54 
Heliocentric system, 620 

Henderson, J. M., 689 
Hermite, C., 479, 8 1 5  
Heron of Alexandria, 1 35 
Heron's formula, 695 
Hille, E., 790 
Hippocrates of Chios, 1 93, 2 1 8, 583 

lune of, 1 93 
Histogram, 4 1 4  
Hobbes, Thomas, 382 
Holder's inequality, 702 
Holmes, Oliver Wendell: 

on certitude, 787 
on Descartes, 20 

8 8 1  

Homogeneous function, Euler's theorem on, 
688 

Hooke's law, 245 
Horizontally simple, 720 
Hubble's law, 1 89 
Hungarian proverb, 1 1 8 
Hutchinson, G. Evelyn, 778 
Huygens, Christiaan, 379, 598 

and tautochrone, 598 
Hydrostatics, 252 
Hyperbola, 529, 543 

asymptote of, 545 
axes of, 544 
branch of, 543, 544 
center of, 544 
conjugate axis of, 544 
directrix of, 546 
eccentricity of, 545 
focus of, 543 
latus rectum of, 559 
principal axis of, 544 
rectangular, 546 
reflection property of, 548 
vertices of, 544 

Hyperbolic functions, 325 
inverse, 327 

Hyperbolic paraboloid, 659 
Hyperbolic spiral, 572 
Hyperboloid: 

of one sheet, 658 
of two sheets, 658 

Hypergeometric series, 489, 824 
Hypocycloid, 594 

of four cusps, 1 14, 240, 596 

i, 52 1 
i-, j-, k-component, 634 
I-beam, 396 
Ideal gas law, 6 7 1  
Identities, trigonometric, 41-42 
Imaginary unit, 5 2 1  
Implicit differentiation, 1 03, 708 
Implicit function, 1 02, 7 10  
Implicit function theorem, 7 1 0, 840 
Improper integral, 409, 455 

comparison test for, 414  
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Improper integral (Cont.): 
convergent, 409, 4 1 1 ,  455 
divergent, 409, 4 1 1 ,  455 

Inclination, 1 2  
Increasing function, 77, 1 15 
Increasing sequence, 435 
Increment, 55 
Indefinite integral, 1 7 1-172, 192 
Independent variable, 24 
Indeterminate form, 398, 404, 405 
Index of refraction, 1 36 
Induction, mathematical, 471 

principle of, 850 
Inelastic, 153, 154 
Inequalities, 3 
Inequality: 

HOider's, 702 
Schwarz's, 1 60, 702 

Inertia: 
moment of, 393, 394, 724 
polar moment of, 725 

Infinite decimal, 428 
Infinite discontinuity, 34 
Infinite product for the sine, Euler's, 477 
Infinite product, Wallis's, 275 
Infinite series (see Series) 
Infinitesimal, 168 
Infinitesimal calculus, 1 69 
Infinity, 5 
Inflection, point of, 1 20 
Inhibited growth curve, 285 
Inhibited population growth, 284 
Initial condition, 1 80 
Instantaneous velocity, 64 
Integers, 2 
Integrable function, 202, 806 
Integral, 1 7 1 ,  804, 805 

complete elliptic, 542 
definite, 1 92, 20 1 ,  804 
double, 7 1 8  
elliptic, 348, 579, 8 1 3  

of the first kind, 628, 816 
improper, 409, 4 1 1 ,  455 

comparison test for, 414 
convergent, 409, 4 1 1 ,  455 
divergent, 409, 4 1 1 ,  455 

indefinite, 1 7 1 - 1 72, 1 92 
iterated, 7 1 5  
line, 752 

fundamental theorem of calculus for, 
758 

lower, 805 
Riemann, 203, 707 
sign, 1 7 1 ,  201 
surface, 77 4 
test, 456 

Cauchy, 456 
triple, 731 
upper, 805 

IN DEX 

Integral calculus, 5 1  
first mean value theorem of, 208 

Integrand, 1 7 1 ,  201 
Integration, 1 7 1  

constant of, 1 72 
Leibniz approach to, 723 
limits of, 201 
numerical, 369 
by parts, 357 
by substitution, 174, 176 
variable of, 201 

Intercept equation, 15 
Interest, continuously compounded, 268 
Interior point, 5 
Intermediate value theorem, 78, 143,  799 
Interval, 4 

of convergence, 486, 488 
Inverse function, 3 1 7  
Inverse hyperbolic function, 327 
Inverse sine, 3 1 3  
Inverse square law of universal gravitation, 

Newton's, 62 1 
Inverse substitution, 8 1 7  
Inverse tangent, 3 1 4  
Inverse tangent series, 498 
Inverse trigonometric functions, 3 1 3  
Involute of a circle, 592 
Irrational number, 2, 444 
Irrotational field, 78 1 
Isothermal surfaces, 668 
Iterated integral, 7 1 5  

Jacobi, C. G. J . ,  842 
Jacobian, 842 
James, D. E.,  689 
Jesus, horoscope of, 106 
Jointly proportional, 1 30 
Joule, 245 

Kelvin, Lord (W. Thomson), 729 
Kepler, Johannes, 530, 540, 5 7 1 ,  605, 620, 

621 
first law, 625 
laws of planetary motion, 620 
problem of, 1 59 
second law, 623 

of planetary motion, 581  
third law, 625 

Keynes, J.  M. ,  154, 445 
Kinetic energy, 247, 395, 761 
Knopp, K. ,  5 17, 525 
Kummer, E.  E., 821 
Kummer's theorem, 821 

Lagrange, J .  L. ,  1 69, 501 
Lagrange multiplier, 698 
Lagrange's remainder formula, 5 0 1  
Lambert, J. H . ,  8 1 5  
Lambert's law o f  absorption, 282 

Landau, E. ,  790 
Laplace, P. S. ,  275, 706, 765 
Laplace transform, 413 
Laplace's continued fraction, 422 
Laplace's equation, 674, 702, 703 
Latus rectum: 

of ellipse, 558 
of hyperbola, 559 
of parabola, 558 

Law: 
of absorption, 282 
adiabatic gas, 250, 283 
Boyle's, 250 
of conservation of energy, 248, 762 
of cooling, Newton's, 282 
of cosines, 299, 637 
Coulomb's, 250 
Fechner-Weber, 290 
of gravitation, Newton's, 1 85 ,  706 
Hooke's, 245 
ideal gas, 671 
Kepler's: 

first, 625 
second, 623 

of planetary motion, 5 8 1  
third, 625 

of the lever, Archimedes ' ,  384 
of mass action, 283 
of motion: 

Einstein's, 25 1 
Newton's first, 182 

second, 182, 25 1 ,  608, 761 
Ohm's, 3 1 2  
Parallelogram, 639 
Poiseuille 's, 234, 3 1 2  
of  reflection, 134-135 
of refraction, Snell's, 135 ,  629, 702 
of sines, 50 
Torricelli's, 230 

Lawyers, Gauss on, 787 
Least squares, 159 

method of, 1 38, 696 
Least time, Fermat's principle of, 1 36, 629 
Least upper bound, 789 
Least upper bound axiom, 789 
Legendre, A. M., 747 
Legendre's formula, 747 
Legendre polynomials, 524 
Leibniz, G. W., 2 1 ,  52, 67, 1 69 ,  1 7 1 ,  190, 

207, 2 1 1 , 274, 361 , 382, 429, 441 ,  
465, 466, 495, 598 

alternating series test, 465 
approach to calculus, 1 68-1 69, 222 
approach to integration, 723 
formula, 3 17, 361 ,  499, 692 

for differentiating integrals, 692 
for TT/4, 3 17, 361 ,  499 

notation, 60, 61 
notation for definite integral, 200 



Leibniz (Cont.): 
notation for derivatives, 60-6 1  
series, 3 17, 441 ,  499 
use of differentials, 168 

Leibnizian myths, 1 68 
Leibnizian spirit in Calculus, 222, 578 
Lemniscate, 48, 565, 576, 580 
Length of vector, 634 
Leonardo of Pisa, 47 1 
Level curve, 667 
Level surface, 668 
Lever, Archimedes' principle of, 259, 3 84 
Leverrier, U. J., 626 
Lewis, J. H., 599 
L'Hospital, G.F.A. de, 401 
L'Hospital's rule, 401 
Libby, W., 28 1 
Lima1ton, 564, 567 
Limit: 

of a function, 68 
of a sequence, 433 

Limit comparison test, 452 
Limit laws, 72 
Limit-of-sums process, 199-201 
Limits of integration, 201 
Lindemann, F., 8 1 5  
Line: 

equation of, 1 1  
parametric equations of, 647 
slope of, 1 1  
symmetric equations of, 64 7 
vector equations of, 64 7 

Line integral, 752 
fundamental theorem of calculus for, 758 

Linear approximation, 166 
Linear equation, general, 1 3  
Linear function, 29 
Liouville, J., 8 13, 8 1 5  
Liouville's  theorem, 8 1 5  
Lithotripsy, 540 
Little old man, 504 
Little-oh notation, 458 
Lobachevsky, N., 347 
Locus, 20 
Logarithm, 262 

common, 263 
natural, 269 

Logarithm function, general, 262 
Logarithm series, 490-491 ,  508 
Logarithmic differentiation, 277 
Long division, 3 5 1  
Lord Brouncker, 382 
Lower bound, 432 
Lower limits of integration, 201 
Lower sum, 199 
Lune of Hippocrates, 193 

Machin, J., 500 
Machine diagram, 24 

Maclaurin's series, 500 
Magic, in mathematics, 1 76 
Major axis of ellipse, 536 
Marginal analysis, 1 5 1  
Marginal cost, 147 
Marginal profit, 1 5 1  
Marginal Q ,  66 
Marginal revenue, 1 5 1  
Mass, 724 

center of, 384, 385, 386, 388 
Mass action, law of, 283 
Mathematical induction, 47 1 

principle of, 850 
Maximum, 1 16 

absolute, 1 16 
at endpoints, cusps, and comers, 1 1 8 
relative, 692 

Maxwell, James Clerk, 784 
Maxwell's equations, 784 
Mead, D. G., 8 1 3  
Mean, 4 1 6  

arithmetic and geometric, 702 
proportional, 584 

Mean value theorem, 76, 1 7 1 ,  237, 399, 
802 

generalized, 803 
Mechanics, Newtonian, 182  
Median, 10  
Mersenne, Marin, 584, 594 
Mertens, F., 830 
Method: 

of cylindrical shells, 23 1 
disk, 227 
of exhaustion, 190 
of least squares, 1 38, 696 
of moving slices, 227 
of partial fractions, 35 1 
of substitution, 337 
washer, 228 

Microeconomics, 146 
Midpoint formulas, 8 
Millikan, R. A., 283 
Minimum, 1 16 

at endpoints, cusps, and comers, 1 18 
Minor axis of ellipse, 536 
Mixed second partial derivative, 673 
Mixing, 286 
Moment, 244, 259, 384, 724 

of inertia, 393, 394, 724 
polar, 725 

Momentum, 1 89 
Monte, Guidobaldo de!, 448 
Morgan, J. P., 43 1 
Morse, P. M.,  691 
Motion: 

curvilinear, 1 8 1  
Einstein's law of, 25 1 
Newton's: 

first law of, 1 82, 6 1 1 

INDEX 8 8 3  

Motion (Cont.) :  
second law of, 1 82, 25 1 ,  608, 761 

rectilinear, 1 8 1  
simple harmonic, 3 19 
uniform circular, 608 

Mountain building, 25 1 
Moving slices, method of, 227 
Multiplier effect, 445 

Napoleon, 706, 707 
Nappes, 529 
Natural logarithm, 269 
Natural number, 2 
Needle problem, B uffon's, 307 
Neighborhood, 666 
Nephroid curve, 600 
Neumann, J. von, 445 
Neutron stars, 1 87 
Newman, J. R., 626, 784 
newton (unit), 245 
Newton, Isaac, 2 1 ,  52, 66, 190, 207, 2 1 1 ,  

234, 274, 472, 495, 530, 540, 571 ,  
574, 598, 605, 6 1 9, 626, 627, 743 

area under quadratrix,  574, 584 
and Bernoulli, John, 598 
and Fermat, 21  
first law of motion, 1 82, 6 1 1 
and Halley, 540 
inverse square law of universal 

gravitation, 62 1 
law of cooling, 282 
law of gravitation, 1 85,  246, 706 
mechanics, 182 
method of approximate solution, 144 
second law of motion, 1 82, 251 ,  608, 

761 
theorem on attraction of spheres, 741 

Niven, I., 479, 482, 595 
Norm of partition, 804 
Normal, 88 
Normal curve (Gaussian), 4 1 8  
Normal distribution, 420 

function, 420 
Normal probability density function, 4 1 8  
Notation, factorial, 1 09,  430 
nth term test, 442 
nth-degree Taylor polynomial, 501 
Number(s), 

Bernoulli, 525 
complex, 521 
irrational, 2, 444 
natural, 2 
prime, 437 
rational, 2, 444 
real, 787 
transcendental, 8 1 5  

Numerical integration, 369 

Oblate spheroid, 229, 5 4 1 ,  657 
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Odd function, 50, 21 7, 518 
One-dimensional heat equation, 704 
One-dimensional wave equation, 705 
Open interval, 4 
Orbit, synchronous, 619 
Orbital speed, 6 1 8  
Ordered field, 790 

complete, 790 
Ordinate, 6 
Origin, 5, 632 
Oscillation of a function, 806 
Ovals of Cassini, 571 

p-series, 453, 456 
Paddle wheel, 779 
Paint paradox, 414 
Papp us of Alexandria, 39 1 ,  57 4 
Pappus'  theorems, 39 1-392 
Parabola, 17,  529 

axis of, 1 8, 533 
directrix of, 5 3 1 ,  532 
equation of, 1 8, 533 
focal chord of, 49 
focus of, 532 
latus rectum of, 558 
reflection property of, 88, 534 
vertex of, 1 8, 533 

Parabolic cylinder, 654 
Paraboloid: 

elliptic, 659 
hyperbolic, 659 

Parallel axis theorem, 397 
Parallelogram law, 639 
Parallelogram rule, 602 
Parameter, 5 86 
Parametric equations, 586 

for circle, 588 
for cycloid, 592 
for ellipse, 588 
of line, 647 

Parthenon, 220 
Partial derivative, 670 

mixed second, 673 
second-order, 672 

Partial differential, 688 
Partial fractions, 35 1 

decomposition into, 352 
expansion of cotangent, 526 
method of, 35 l 
theorem, 354, 818  

Partial sums, 439 
Particle, 1 8 1  
Particular solution, 179 
Partition, 804 

norm of, 804 
Parts, integration by, 357 
Pascal, Blaise, 2 1 ,  190, 212, 584, 854 
Pascal, Etienne, 584 
Path, 755 

INDEX 

Pendulum, 322, 627 
period of, 322 

Perfect competitor, 155 
Pericles, 2 1 9  
Perigee, 542 
Perihelion, 542 
Period, 3 1 9, 294 

of a function, 43 
Periodic function, 43 
Permutation, 846 
pH, 264 
pi ( 7r): 

computation of, 498 
definition of, 191 
experimental method of calculating, 309 
irrationality of, 479 
Leibniz's formula for 71"/4, 3 1 7, 499 
value of, 500 
Wallis's product for 71"!2 ,  3 6 1 ,  380 

Piecewise smooth curve, 755 
Piecewise smooth surface, 775 
Plane: 

Cartesian, 15 
equation of, 648 

coordinate, 633 
equation of, 648 
tangent, 676 
vector equation of, 648 

Planetary motion, Kepler's laws of, 581,  
620 

Plato, hatred of Democritus, 257 
Point: 

critical, 693 
of inflection, 120 
interior, 5 
surface, 660 

Point-slope equation, 1 2  
Poiseuille, Jean, 234 
Poiseuille's law, 234, 3 1 2  
Poisson, S . ,  283 
Poisson's gas equation, 283 
Poker hands, 848 
Polar axis, 560 
Polar coordinates, 560 

element of area in, 727 
Polar equation: 

of circle, 569 
of conic section, 571 
graph of, 561 

Polar moment of inertia, 725 
Polya, G., 129, 276, 854 
Polynomial, 26 

degree of, 27 
Legendre, 524 

Pope, Alexander, 67 
Population, center of, 386 
Population growth, 277 

inhibited, 284 
Population, world, 289 

Positive integer, 2 
Potential, 246, 769 
Potential, electrostatic, 703 
Potential energy, 247, 76 l ,  769 
Potential function, 769 
Potential, gravitational, 703 
Power rule, 95 
Power series, 484 

expansion, 428, 483 
of cos x, 43 1 ,  483 
of eX, 430 
of f(x), 489 
of sin x, 43 1 ,  483 
of tan- 1  x, 491 

interval of convergence, 486 
properties of, 490 
radius of convergence, 486 
for tan x, 526 
uniform convergence, 834 
in x - a, 488 

Powers of belief, 1 8  l 
Pressure, 252 

atmospheric, 283 
Prey-predator equations, Volterra's, 290 
Price function, 152 
Prime number, 437 
Primes, series of reciprocals of, 480 
Principle, Archimedes, 324 
Principal axis of a hyperbola, 544 
Principle of mathematical induction, 850 
Probability, 307 
Probability density, 4 1 6  

standard normal, 4 1 9  
Probability density function, 415 

normal (Gaussian), 4 1 8  
Problem(s): 

of areas, 51 
brachistochrone, 596 
construction, 566 
of tangents, 51 

Product: 
cross, 640 
dot, 636 
of numerical series, 827-829 
of power series, 5 1 4-5 16 
of series, 5 1 5  

Product rule, 88, 1 1 2 
Product, Wallis's, 275, 3 6 1 ,  380, 472, 477 
Profit function, 1 5 1  
Profit, marginal, 1 5 1  
Projection: 

scalar, 636 
vector, 636 

Prolate spheroid, 229, 5 4 1 ,  657 
Proper rational function, 351  
Properties of power series, 490 
Proportional: 

mean, 584 
third, 584 



Pseudosphere, 347 
Ptolemaic system, 620 
Ptolemy, 620 
Pythagoras, 9 
Pythagorean theorem, 7, 47, 578 

Quadrant, 6 
Quadratic formula, 22 
Quadratic function, 29 
Quadratrix, 574 
Quadric surface, 656 
Quandt, R. E., 689 
Quotient rule, 90 

Raabe, J. L., 821 
Raabe's test, 82 1 
Radially simple, 727 
Radian, 39, 292 
Radioactive decay, 278 
Radiocarbon dating, 281 
Radius: 

of circle, 532 
of convergence, 486, 488 
of curvature, 614 
of gyration, 396 

Ramanujan, Srinivasa, 500 
Range, 23 
Rate of change, 65, 1 39 
Ratio test, 461 
Rational function, 27, 3 5 1  

improper, 35 1 
proper, 351 

Rational number, 2, 444 
Rational point, 479 
Rationalizing substitution, 8 1 6  
Reaction: 

first-order, 283 
second-order, 283 

Real line, 3 
Real numbers, 787 
Reciprocals of primes, series of, 480 
Rectangular (or Cartesian) coordinates, 633 
Rectangular coordinate system, 5 
Rectangular coordinates in space, 632 
Rectangular hyperbola, 546 
Rectilinear motion, 1 8 1  
Recursion formula, 5 1 1  
Reduction formula, 344, 356, 360 
Reflection, law of, 1 34-1 35 
Reflection property: 

of ellipse, 539 
of hyperbola, 548 
of parabola, 88, 534 

Refraction: 
index of, 1 36 
Snell's law of, 1 35, 629, 702 

Region, simply connected, 7 8 1  
Relative maximum, 692 
Remainder formula, 496, 500, 501 

Repeated integral (see Iterated integral) 
Repeating decimal, 443 
Rest mass, 25 1 
Restoring force, 3 20 
Revenue function, 1 5 1  
Revenue, marginal, 1 5 1  
Revolution: 

solid of, 225 
surface of, 240, 655 

Rhetoric and invective, 382 
Richter, Charles, 264 
Richter scale, 263 
Riemann, B . ,  202, 274, 707, 827, 833 

integral, 203 
rearrangement theorem, 827 

Riemann sums, 203 
Riemannian Geometry, 202 
Right circular cone, 529 
Right circular cylinder, 653 
Right triangle trigonometry, 39 
Right-hand thumb rule, 640 
Ritt, J. F., 790, 8 1 3 , 8 1 6  
Robbins, H . ,  522 
Roberval, G., 584 
Robinson, A., 1 69 
Rolle, Michel, 800 
Rolle's theorem, 800 
Roller, D., 283 
Root test, 463 
Rose, four-leaved, 566 
Rosen, M., 565 
Rotation of axes, 554 
Routine research, 202 
Rule: 

parallelogram, 602 
trapezoidal, 370 

Ruled surface, 660 

INDEX 

Ruler-and-compass constructions, 566-567 
Rulings on surface, 654 
Rumor, spread of, 287 

Saddle point, 660 
Saddle surface, 660 
Scalar, 600 
Scalar field, 752 
Scalar projection, 636 
Schwarz, H. A., 747 
Schwarz's inequality, 1 60, 702 
Sears, F. W., 69 1 
Secant, 294 
Second derivative, 1 07 
Second derivative test, 1 22, 694 
Second law of motion, Newton's, 1 82, 25 1 ,  

608, 761 
Second partial derivative, mixed, 673 
Second-order partial derivatives, 672 
Second-order reaction, 283 
Segment of a sphere, volume of, 226 
Semimajor axis of ellipse, 536 

Semiminor axis of ellipse, 536 
Separation of variables, 1 79, 272 
Sequence, 432 

bounded, 432 
convergent, 433 
decreasing, 438 
Fibonacci, 47 1 
increasing, 435 
limit, 433 
lower bound of, 432 
of partial sums, 439 
unbounded, 433 
upper bound of, 433 

Series, 427, 439 
Abel's, 457 
absolutely convergent, 467 
alternating, 465 
binomial, 503 
conditionally convergent, 468 
convergent, 439 
cosine, 43 1 ,  450 
divergent, 439 
division of, 5 16, 836 
for e, 447 
geometric, 440 
harmonic, 441 
hypergeometric, 489, 824 
infinite, 427, 439 
interval of convergence of, 486 
inverse tangent, 498 
Leibniz's, 3 1 7, 44 1 ,  499 
In 2, 459 
logarithm, 490-49 1 
Maclaurin 's, 500 
multiplication of, 5 14, 827-829 
p-, 453, 456 
partial sums of, 439 
power, 484 

in x - a, 488 
product of, 5 1 5  
sine, 497 
sum of, 439 
for tangent, 526 
Taylor, 495 

for cos x, 498 
for ex, 496 
for even and odd functions, 5 1 8  
off(x), 495 

in powers of x - a, 500 
for sin x, 497 

telescopic, 441 
Shakespeare, William, 276 
Shell method, 23 1 
Sigma notation, 1 94 
Sigmoid growth curve, 285 

8 8 5  

Simmons, G .  F.,  2 ,  47, 205, 4 1 3, 423, 437, 
501 ,  599, 6 14, 689, 701 ,  8 1 5, 824 

Simple closed curve, 765 
positively oriented, 765 
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Simple curve, 765 
Simple harmonic motion, 319 
Simply connected region, 781 
Simpson, T., 371  
Simpson's rule, 372 
Sine, 293 

of an acute angle, 38 
of an arbitrary angle, 40 
Euler's infinite product for, 477 
graphs of, 42, 298 
hyperbolic, 324 
inverse, 3 1 3  
power series expansion of, 43 1 ,  483 
values of, 42 

Sines, law of, 50 
Skepticism, 94 
Slope of a line, 1 1  
Slope-intercept equation, 13  
Smith, D.  E. ,  598 
Smooth curve, 239, 6 1 0  
Snell, W., 1 35 
Snell's law of refraction, 135, 629, 702 
Solid of revolution, 225 
Speed, 64, 1 82, 607 

orbital, 618 
Sphere: 

equation of, 635 
surface area of, 228, 243 
volume of, 257, 728, 734, 737, 740 

"Sphere": 
five-dimensional, 736 
four-dimensional, 736 

Spherical coordinates, 662 
Spherical shell, gravitational attraction of, 

741 
Spherical triangle, 7 4 7 
Spherical zone, 244 
Spheroid: 

oblate, 229, 541 ,  657 
prolate, 229, 54 1 ,  657 

Spiral: 
of Archimedes, 572, 579 
equiangular, 578 
exponential, 578 
hyperbolic, 572 

Spread of infectious disease, 357 
Spring constant, 245 
Square, completing the, 348 
Squeeze theorem, 794 
Standard deviation, 4 1 6  
Standard normal distribution, 420 
Standard normal probability density, 

419 
Stirling, J. ,  472 
Stirling's formula, 472 
Stokes, Sir George, 778 
Stokes' theorem, 780 
String property of ellipse, 536 
Subnormal, 558 

INDEX 

Substitution: 
inverse, 8 1 7  
method of, 337 
rationalizing, 8 1 6  
trigonometric, 344 

Subtangent, 558 
Subtraction formulas, 45, 296 
Sum(s): 

lower, 1 99 
partial, 439 
Riemann, 203 
of a series, 439 
upper, 200 

Surface: 
area of a sphere, 243 
doubly ruled, 660 
equipotential, 668 
flux through, 774 
isothermal, 668 
level, 668 
piecewise smooth, 775 
quadric, 656 
of revolution, 240, 655 
ruled, 660 
rulings on, 654 
saddle, 660 

Surface integral, 77 4 
Symmetric equations of line, 647 
Synchronous orbit, 619 
System: 

heliocentic, 620 
Ptolemaic, 620 

Tan x, power series for, 526 
Tan- 1  x, power series for, 498 
Tangent, 294 

graphs of, 298 
inverse, 3 1 4  
power series for, 526 
problem of, 5 1  

Tangent line, 5 3  
approximation, 166 

Tangent plane, 676 
Taste of victory, 380 
Tautochrone property, 598, 628 
Taylor, A. E., 7 1 9  
Taylor, Brook, 495 
Taylor: 

coefficients, of f(x), 495 
formula with derivative remainder, 496, 

500 
polynomial, nth-degree, 501 
series: 

for COS X, 498 
for ex, 496 
for even and odd functions, 5 1 8  
of f(x), 495 

in powers of x - a, 500 
for sin x, 497 

Telescopes of Cassegrain type, 548 
Telescopic series, 441 
Terminal velocity, 286 
Test: 

Abel's, 833 
alternating series, 465 
Cauchy: 

condensation, 474 
integral, 456 

comparison, 45 1 
limit, 452 

Dirichlet's, 83 1 
Gauss's, 823 
integral, 456 
limit comparison, 452 
nth term, 442 
Raabe's, 821 
ratio, 461 
root, 463 
second derivative, 122, 694 

Thales, 9, 1 6  
Theorem: 

of Algebra, fundamental, 353,  522 
binomial, 84, 1 10, 845 
boundedness, 796 
Brouwer's, 800 
of Calculus, fundamental, 1 90, 208, 212, 

758 
divergence, 77 5 
extreme value, 77, 197, 797 
Fermat's, 78 

last, 2 1 ,  591 ,  821 
four squares, 21 
four vertex, 615 
Gauss's, 775 
Green's, 765, 780 
implicit function, 7 1 0, 840 
intermediate value, 78, 143, 799 
Kummer's, 821 
mean value, 76, 1 7 1 ,  237, 399, 802 

generalized, 401 ,  803 
parallel axis, 397 
partial fractions, 354, 8 1 8  
Pythagorean, 7 ,  47, 578 
Riemann's rearrangement, 827 
Rolle's, 800 
squeeze, 794 
Stokes' ,  780 
Torricelli's, 593 
uniform continuity, 806 
Wren's, 593, 627 

Thinking out loud, 365 
Third proportional, 584 
Three-step rule, 58 
Throsby, C.  D., 689 
Tietze, H., 106, 566 
Titchmarsh, E. C., 523 
Torque, 394 

vector, 645 



Torricelli, Evangelista, 594 
Torricelli's law, 230 
Torricelli's theorem, 593 
Torus, 229, 392 
Total differential, 680 
Total energy, 248 
Tractrix, 34 7 
Transcendence of e, 815 
Transcendental function, 27 
Transcendental number, 815 
Trapezoidal rule, 370 
Triangle, spherical, 747 
Trigonometric functions, 292 

inverse, 3 1 3  
Trigonometric substitution, 344 
Trigonometry: 

analytic, 39 
right triangle, 39 

Triple integral, 73 1 
Tunnel through center of earth, 321  

Ultimate Certainty, 1 19 
Unbounded, 433 
Unconditional convergence, 830 
Uniform circular motion, 608 
Uniform continuity, 839 

theorem on, 806 
Uniform convergence, 490, 834 

for power series, 834 
Universal gravitation, Newton's inverse 

square law of, 621 
Upper bound, 433, 789 
Upper bound, least, 789 

axiom, 789 
Upper limits of integration, 20 1 
Upper sum, 200 

Value, 23 
critical, 1 1 6 
maximum, 1 16 
minimum, 1 16 
of "'· 500 

Values: 
of cosine, 42 

Values (Cont.) :  
of sine, 42 

Variable(s): 
dependent, 24 
dummy, 214 
independent, 24 
of integration, 201 
separation of, 272 

Vascular resistance, 3 12  
Vector, 600 

continuous, 606 
derivative of, 606 
field, 752 

flux of, 772 
length of, 634 
torque, 645 

Vector analysis, 605 
Vector equation: 

of line, 647 
of plane, 548 

Vector projection, 636 
Velocity, 64, 182, 607 

angular, 394 
average, 63 
escape, 1 86 
instantaneous, 64 
terminal, 286 

Vertex:  
angle of a cone, 529 
of a cone, 529 
of a parabola, 18, 533 

Vertically simple, 720 
Vertices: 

of ellipse, 536 
of a hyperbola, 544 

Victory, taste of, 380 
Volcanic ash problem, 362 
Volterra's  prey-predator equations, 290 
Volume, 7 1 9  

algebraic, 720 
element of, 255 
geometric, 720 
of a segment of a sphere, 226 
of a sphere, 728, 734, 737, 740 

INDEX 

Wall, H. S., 423 
Wallis, John, 382 
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Wallis's product, 275, 361 ,  380, 472, 477 
Washer method, 228 
Watson, E. C., 283 
Watson, Fletcher G., 540 
Wave equation, 675, 702 

one-dimensional, 705 
Weber, E. H., 290 
Weight, 183, 245 
Whispering gallery, 540 
White dwarfs, 1 87 
Whitehead, A. N. ,  105 
Whitmore, R. L., 233 
Whittaker, Sir Edmund, 46 1 
Widder, D. V., 747 
Wiles, Andrew, 2 1  
Witch, 591 
Work, 244, 638, 751  

element of, 246 
Working heart, 248 
World population, 289 
Wrathful Church, 620 
Wren, Christopher, 594 
Wren's theorem, 593, 627 
Wright, E. M.,  595 
Wundt, W., 290 

x-axis, 5 
x-coordinate, 6 
x-intercept, 15  
xy-plane, 6 

y-axis, 5 
y-coordinate, 6 
y-intercept, 13  

Zero of a function, 3 1  
Zeta function, 474, 480 
Zeuner, F. E., 280 
Zone, spherical, 244 
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